0

15
9

文字

分享

0
15
9

認識病毒全攻略!病毒的發現、與細菌的不同、科赫假說和致病機制

賴昭正_96
・2020/10/28 ・6731字 ・閱讀時間約 14 分鐘 ・SR值 568 ・九年級

人類繼續位居地球統治地位的最大威脅是病毒

“The single biggest threat to man’s continued dominance on the planet is the virus.”

—約書亞·雷德伯格(Joshua Lederberg),1958 年諾貝爾生理醫學獎得主

經過幾萬年的進化,人類成了地球上的萬物之靈,建立了「人定勝天」的的自信,認為愚公尚可移山,我們還有什麼做不到的?

但這次「2019 年冠狀病毒肺炎」 (COVID-19) 的瘟疫爆發,相信會讓很多人重新思考著這個問題,甚至覺得人類原來這麼渺小,竟然會被一個「不倫不類」的病毒 (virus) 搞到天翻地覆:有足但不能出去、有錢但買不到東西、有醫院但沒有床位、⋯⋯有生命但必須看病毒的臉色!

美、法政府都因之向病毒宣戰,知己知彼百戰百勝,可是我們的敵人在哪裡?

關於病毒,你知道多少?圖 / photocreo

2019年冠狀病毒瘟疫的報章雜誌報導成幾何級數的增加,但它們大多是談如何預防、解藥以及疫苗的發展,很少涉及「病毒到底是什麼東西」。要知己知彼,僅僅談論那些表面的問題,當然只是「知其然不知其所以然」,是不夠的;了解病毒的本質才是根本之道,現在就讓我們一起來探討「病毒到底是什麼東西」吧!

-----廣告,請繼續往下閱讀-----

病毒和細菌有什麼不一樣?

病毒與細菌 (bacteria) 都是導致人類疾病的微生物 (microbe) ,因此相信許多讀者都想知道它們到底有什麼分別?從微生物的觀點上來看,它們最大的分別在於前者不屬於細胞,而後者則是一種細胞。

病毒與細胞。圖/作者賴昭正提供

細胞是生命的基本單位,它主要由基因組 (genome) 、細胞膜 (cell membrane) 、細胞質 (cytoplasm) 、和核醣體 (ribosome) 組成。

細胞質為執行細胞生長、代謝、和復制功能的地方,為細胞中的微觀工廠;核醣體將遺傳密碼從核酸的分子語言翻譯為氨基酸的分子。細胞本身含有代謝酶,因此有營養系統;不需宿主活細胞,即可自行繁殖。

細菌因為沒有真正的細胞核 (nucleus) ,屬於原核生物 (prokaryote) ;儘管如此,它們卻有一個叫做「核苷」(nucleoid,「類核」之意)的區域,內含了懸浮的遺傳物質。像植物的細胞一樣,許多細菌也有支持整個細胞結構的細胞壁。細菌中有一條稱為「質粒」 (plasmid) 的小環狀 DNA 鏈,可以獨立地複製其遺傳結構:因很容易取得、注入、或在(不同)細菌間互換,已經成了生物科技的「寵物」。

-----廣告,請繼續往下閱讀-----
細菌沒有細胞核,有內含懸浮遺傳物質的核苷 (nucleoid) 。圖/ Wikimedia Commons

高等動植物的細胞因為具有真正的細胞核,故稱為真核細胞 (eukaryotic cell) 。它們沒有「質粒」,但卻有像消化系統一樣的「線粒體」 (mitochondria) 來吸收營養,分解營養,並為細胞創造能量豐富的分子。像「質粒」一樣,線粒體含有自己的(小環狀)基因組,也可以獨立自行複製,因此有理論謂它們是細菌進化遺留下來的。

因人類線粒體只由母體遺傳過來,因此在家譜及個體辨識上的研究佔有非常重要的地位註1

高等動植物的細胞圖有「線粒體」 (mitochondria) 來吸收 、分解營養。/ Wikimedia Commons

Virus 一詞來自拉丁語,意思是「粘液」或「毒藥」;中文譯成「病毒」註2。病毒比細菌還小,大約在 20 到 750 奈米( 10-9 公尺)之間,所以它們可通過「錢伯蘭過濾器」 (Chamberland filter) ,因此早期被稱為「過濾性病毒」。

病毒的基本結構由以 RNA 或 DNA 遺傳分子為中心,加上外圍之蛋白質層衣殼 (capside) 組成的。 RNA 或 DNA 具傳染性,衣殼則為病毒提供個別個性。蛋白質層和遺傳信息的排列形式多種多樣,可成二十面體、包膜、或螺旋形。在某些病毒體中,衣殼常被一層脂肪被膜 (envelop) 包裹著註3

-----廣告,請繼續往下閱讀-----
病毒外圍之蛋白質層衣殼 (capside) 組成。圖/Pexels

病毒因本身沒有任何代謝酶,故在沒有宿主活細胞的幫助下,無法自行繁殖。所以保持良好的衛生環境對病毒傳播的疾病是沒有什麼幫助的。在實驗室中,我們可以將病毒像一般沒有生命的化學物質一樣操作,如結晶、離心、及擴散等。就這一點來看,稱病毒為「微生物」是有問題的。

從發現病毒的歷史說起

1676 年,荷蘭商人兼科學家、微生物之父列文虎克 (Anton van Leeuwenhoek) 改進了顯微鏡,首先通過顯微鏡觀察到了單細胞的「原生動物」 (protozoa) ,並將其稱為「動物」 (animalcules) ,為微生物學奠定了基礎。

德國博物學家埃倫貝格 (Christian Ehrenberg) 於 1838 年因最早觀察到的細菌呈棒狀,將它們改稱為「細菌」(bacteria, 源自希臘語 baktḗria ,「小棍子」之意)。

德國博物學家埃倫貝格 (Christian Ehrenberg)。圖/Wikimedia Commons

1892 年,俄羅斯微生物學家伊萬諾斯基 (Dmitri Ivanoski) 試圖尋找引起煙草花葉變色的原因時,發現經過錢伯蘭過濾器過濾後,感染煙草花葉葉片的提取物仍具有感染力;因細菌不能通過這種過濾器,表示該提取物應比細菌還小。 但是,伊萬諾夫斯基可能不知道他事實上是發現了新的微生物,因此報告了他的實驗結果後,就繼續從事其他工作去。

-----廣告,請繼續往下閱讀-----

六年後的 1898 年,荷蘭生物學家貝耶林克 (Martinus Beijerinck) 獨立進行了相同的實驗,宣布發現了一種新型感染生物 (infecting organism) ,並將其命名為「病毒」。

煙草花葉病毒的電子顯微鏡圖像。圖 /STORE NORSKE LEKSIKON

1935 年,美國生化學家斯坦利 (Wendell Stanley) 分離出一種顯示煙草花葉病毒活性的蛋白質和核酸分子的棒狀聚集體註4:它雖然像是一種正在生長的生物,但明顯的是由一些複雜的無生命化學物質組成,因此缺乏代謝功能⎯⎯—生命的生化活性所必需的功能。斯坦利和其他人進一步研究證實,病毒的構造比原核細胞還簡單

造成疾病的原因眾說紛紜

1850 年代前,大部分醫生都不相信看不見的、那麼小的細菌(單細胞生物)會傳播疾病,甚至導致死亡。那個時候的醫生大多認為疾病(例如霍亂或黑死病)是由瘴氣(miasma,古希臘語「污染」)引起的。此一稱為「瘴氣理論」 (Miasma Theory) 認為流行病的起源是由有機物腐爛引起的瘴氣所造成的。

1854 年英國醫生斯諾 (John Snow) 確定倫敦的霍亂流行源是 Broad Street 泵污染的水。 他下令關閉泵後,流行病逐漸消退。 然而,許多醫生還是拒絕相信隱形生物會傳播疾病。

-----廣告,請繼續往下閱讀-----
1854年布羅德街霍亂爆發。圖 /Wikipedia

1857年,法國啤酒釀造商請巴斯德 (Louis Pasteur) 尋找葡萄酒和啤酒有時會變質之原因時,巴斯德研究發現:雖然酵母在釀造過程中可以將糖變成酒精,但細菌可以進一步將酒精變成醋。 他建議釀造過程中將產品加熱到足以殺死細菌,但不能殺死酵母的溫度來防止啤酒變質註5

科赫假說:引起疾病的病原體是誰?

1880年初,德國醫師兼微生物學家科赫 (Robert Koch) 確定了結核 註6 和霍亂等的病原體 (pathogen),為傳染病的概念提供了實驗室的證據。

科赫假說 (Koch’s  postulates) 是將某一微生物與某一疾病聯繫在一起的一系列四項通用原則,奠定了現在的流行病學基礎。到1880年代末,瘴氣理論終漸被「疾病的細菌學理論」 (Germ Theory of Disease) 取代。

疾病的細菌理論是目前公認的疾病科學理論。 它認為疾病是因為「病菌」 (germ) 或「病原體」造成的。這一理論裡面所指的「病菌」或「病原體」事實上是包括任何不用顯微鏡就看不到的「微生物」:它們一旦侵入了人類或其他生物體,立即在宿主體內生長和繁殖而導致疾病。「微生物」的主要類型有病毒細菌真菌 (fungi) 、和原生動物

-----廣告,請繼續往下閱讀-----

病毒如何讓人生病?關於致病機制

病毒透過各種「欺騙」手段混入細胞(稱為宿主)後,它們就脫掉蛋白質外衣,裸露其基因,並誘導細胞自身的複制機制來複製其 DNA 或 RNA ,並根據病毒核酸中的指示生產更多的病毒蛋白質; 新創建的病毒片段會聚集,並產生更多病毒,感染其他細胞。

它們雖然具有上述那些成長、適應環境、繁殖、和進化的生物特質,但卻缺乏通常被認為是生命所必需的其它關鍵特徵(例如細胞結構、新陳代謝等),故病毒常被認為是處於活體與非活體之間的「生命邊緣生物」

病毒既然沒有生命,因此嚴格來說「殺死」病毒是沒有意義的;我們只能說「破壞其化學結構」,使其失去感染的活性。話雖如此,談論病毒可以「存活」(具感染力)多長時間還是有意義的。

化學物質能夠「存活」多久,當然與其結構及環境有關;比如一塊鐵片,在乾燥的環境中可以保存相當久,但是濕度一高便生鏽變質。一般化學物質在高溫度時均比較不穩定,因此年初 2019 年冠狀病毒病爆發時,不少科學家認為疫情到夏天應該會緩和下來;但現在看來這一假設顯然是錯誤的註7

-----廣告,請繼續往下閱讀-----
噬菌體」 (bacteriaphage)可以感染細菌。圖 /flickr

雖然不到 1% 的細菌會引起人類疾病,但大多數病毒都會對特定某一器官如肝臟或呼吸系統引起疾病。某些病毒⎯⎯稱為「噬菌體」 (bacteriaphage) ⎯⎯—甚至可以感染細菌。因為都是身體免疫系統試圖清除感染所造成的反應,故細菌和病毒感染所引起的症狀都非常相似:咳嗽、打噴嚏、發燒、發炎、嘔吐、腹瀉、疲勞、和抽筋等等。

病毒竟然也懂「偷渡」?

病毒常可導致宿主死亡;但這在「進化論」中事實上是違反了「適者生存」之原則:宿主死了,自己不是也跟著滅亡嗎?

因此一個致死率很高的新病毒,應該都是從其它動物傳來的「外來物」;為了生存,它們終將在人類中慢慢進化演變成致死率較低的病毒。從病毒本身的角度來看,理想的感染應是幾乎無症狀的感染,使其宿主不知不覺地提供無限制的庇護和營養;「較聰明」的的病毒甚至可以幫助宿主生存!

這說明了為什麼人類的基因組裡攜帶了成百上千的這種偷渡者,它們模糊了與「正常基因組」之間的界限!

病毒感染的治療與預防

抗生素的發現被認為是醫學史上最重要的突破之一。「不幸」的是:抗生素是透過破壞代謝過程來殺死或抑制特定的細菌;因為病毒不具代謝功能,而是利用宿主細胞來為其執行活動,故抗生素對病毒束手無策!

因病毒不具代謝功能,抗生素也束手無策。圖/giphy

加上病毒相對較小,構造簡單,並且可以在細胞內繁殖,因此病毒感染的治療甚具挑戰性。例如由流感病毒引起的傳染性呼吸道疾病(感冒),全世界每年有 10 億人感染, 300 到 500 萬嚴重病例,以及 30 萬至 50 萬例死亡,但目前還是只有緩解症狀的藥物,沒有治療的藥物。

幸運的是,經過幾萬年的進化,我們的身體已發展出兩套主要的治療方法。

其一是當病毒開始繁殖時,被感染的細胞表面就會發生改變,讓身體裡一些稱為T淋巴細胞的免疫系統細胞,識別並殺死含有病毒的細胞免其繁殖。

被病毒感染的細胞也會產生並釋放一稱為乾擾素 (interferon) 的小蛋白質,它們不但可干擾病毒在感染細胞內的複制能力,也可充當信號分子,警告附近的細胞有病毒存在,促使 T 細胞在該區域進行調查。

T淋巴細胞會辨識並殺死含病毒的細胞。圖/giphy

其二是我們體內有超過100億種因免疫系統針對異物 [稱為「抗原」 (antigen) ] 而產生的抗體 (antibody) ;它們是白血球細胞製造出來的一種蛋白質,可識別入侵的病原體並與其結合(粘附),為免疫系統武器中的主要武器!

「疫苗」 (vaccine) 就是在人體中注射缺乏活性的「異物」,預先引發身體的抗體反應,嚴陣以待具活性之敵人的入侵。 17 世紀時,中國佛教僧侶雖然不明其理,就已經知道喝蛇毒可以增強對蛇咬的免疫力,及用牛痘塗抹皮膚傷口以增強對天花的免疫力。

疫苗可觸發免疫系統,打擊入侵的病毒。圖/Pixabay

1796 年,英國醫師兼科學家詹納 (Edward Jenner) 因聽聞患了牛痘後的擠奶員不受天花的侵害,將牛痘病毒 (cowpox) 注射到一位 8 歲的園丁小男孩身上,發現果對天花具有免疫力註8

儘管當時曾被(尤其是教會)批評為「(用患病動物物質接種人類是)令人反感和不敬虔的」,但現在詹納已被公認為是西方疫苗學的奠基人。 1798 年,詹納從拉丁語「 vacca」(牛)創造出了 vaccine 一詞,醫學畀也開發出第一種天花疫苗。

好的疫苗應可同時觸發免疫系統的兩臂(抗體和 T 細胞),強力反擊入侵的外客。

準備好對抗病毒了嗎?

上次全世界大瘟疫發生於 100 多年前,因此現在還活著的人可以說大都沒親身體會過病毒的厲害:據估計, 1918 – 1819 年由具有禽源基因的 H1N1 病毒引起的流感感染了三分之一的世界人口(約 5 億人),死亡人數至少為 5,000 萬,其中約 675,000 在美國發生。

COVID-19的瘟疫爆發。圖/Pexels

了解病毒事實上只是一種構造簡單的無生命化學物質之後,降低感染之道當然淺而易懂:戴口罩、經常洗手(能戴上眼鏡更好)、及避免到人多地窄不通風的窒內聚會!前面提過,病毒比細菌還小,可通過錢伯蘭過濾器,因此即使是所謂的手術用面罩 N95 ,也不能阻止單獨的病毒通過註9

經常洗手也是降低感染之道。圖/Pexels

還好病毒單獨存在的機率是非常小的!面罩旨在幫助阻止可能包含病毒和細菌的大顆粒唾液和呼吸道分泌物的飛濺(大約在兩公尺內),進入他人的口鼻或塵落於它物表面註10,以及幫助自己減少吸入他人(可能是無症狀患者)的飛濺分泌物。

人體平均約含 37 萬億個細胞,可是病毒卻連半個細胞都稱不上,你相信它們會是「人類繼續在地球上統治地位的一個最大威脅」嗎?

註解

  1. 個體的線粒體基因與核基因的遺傳機制不同。在人類中,當卵細胞受精後,卵核和精子核在遺傳 DNA 上做出同等貢獻。 相反,線粒體及其 DNA 通常僅來自卵細胞。 精子的線粒體進入卵子後,不會為胚胎提供遺傳信息,反而被標記以便在胚胎內破壞。卵細胞中的線粒體相對較少,但是這些線粒體能夠存活並分裂,形成生物體的細胞。 因此,線粒體在大多數情況下僅從母親那裡繼承過來。
  2. 有些病毒生物學家稱被感染的細胞為病毒,存在於宿主細胞外部的完整感染性病毒病則稱為「病毒體」(virion)⎯⎯我們在這裡不做此一區分。
  3. 在這種情況下,病毒體可因暴露於脂肪溶劑(如乙醚和氯仿)而失活。
  4. 斯坦利因「以純淨的形式製備酶和病毒蛋白」的貢獻而得 1946 年諾貝爾化學獎。
  5. 這一現在稱為「巴氏滅菌法」(pasteurize)在日常生活中還到處可見:例如鮮牛奶的消毒與保存。
  6. 由於對結核病的研究,科赫於 1905 年獲得了諾貝爾醫學獎。
  7. 另一可能的解釋是: 2019 年冠狀病毒透過污染物體表面傳播的機率不大(見註 10)。
  8. 隔年,詹納投了一篇短稿到英國皇家學會 (Royal Society) ,描述了實驗和觀察結果;但是,論文被拒登了!
  9. 2019 年冠狀病毒病的粒徑在 0.06 微米至 0.14 微米之間, N95 掩模可過濾至0.3 微米,因此 N95 口罩原則上應該是無法阻擋病毒顆粒通過。但因掩模通道都不是直線的,曲折的病毒顆粒運動大大增加了它們被面罩纖維纏住被捕獲的機會。
  10. 美國疾病管制中心 (CDC) 謂目前的證據顯示 2019 年冠狀病毒可以在物體表面上存活數小時至數天,因此雖然未有病毒透過污染物體表面傳播的案例(見註 7 ),但仍建議消毒物體表面。

人類永無止盡的瘟疫戰爭,快看影片一起聊聊抗疫史吧!

-----廣告,請繼續往下閱讀-----
文章難易度
賴昭正_96
48 篇文章 ・ 60 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此獲有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲它轉載我的科學月刊上的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
CAR-T 之外的新選擇,雙特異性抗體助攻淋巴瘤治療
careonline_96
・2025/09/22 ・2917字 ・閱讀時間約 6 分鐘

「曾有位 65 歲的瀰漫性大型B細胞淋巴瘤女性患者,轉院來時影像一照,全身幾乎沒有一個骨髓是正常的,包括手臂、腿部、脊椎甚至顱骨,全部充斥著淋巴瘤,病情十分嚴重!」臺中榮民總醫院腫瘤醫學中心主任李冠德醫師表示,「因她已接受過三線治療,對化療反應也不佳,無法進行骨髓移植,討論後決定自費試看看最新的雙特異性抗體藥物,結果才做完3個療程,在正子掃描下居然看到全身的癌細胞都消失了!」

談到這個讓人印象深刻的案例,李冠德醫師說為求保險,當時還進行了骨髓穿刺,同樣也證實了骨髓內的淋巴瘤都被清除乾淨,讓患者與家屬都喜出望外。「為了最大幅度降低復發可能,仍建議她把完整的 12 個療程都做完,目前她正在穩定接受治療中。因為當時健保沒有給付,12 個療程要花掉數百萬,如今健保終於宣布雙特異性抗體第三線的給付,對復發病友來說是很令人振奮的好消息。」

瀰漫性大型 B 細胞淋巴瘤惡性度高 復發無法接受骨髓移植者占多數

瀰漫性大型 B 細胞淋巴瘤(Diffuse Large B-Cell Lymphoma,DLBCL)是一種生長非常快速、侵襲性極高的非何杰金氏淋巴瘤。李冠德醫師解釋,瀰漫性大型B細胞淋巴瘤是由體內的 B 細胞發生變異,轉化成癌細胞而引起,也可能出現在淋巴結以外的部位,包括腸胃道、皮膚、骨骼、甚至中樞神經系統等。

瀰漫性大型 B 細胞淋巴瘤的進展相當迅速,常常在數週內急遽惡化,因此必須及早診斷並盡快開始治療。李冠德醫師說,經過第一線治療後,約有六成的病人可以達到完全緩解,進而痊癒;然而仍有約三到四成的病人會復發,而且復發通常發生在完成治療後的兩年內。

-----廣告,請繼續往下閱讀-----

復發後,傳統的標準治療為採高劑量化學治療,再接續造血幹細胞移植。然而,這種治療方式只適用於較年輕且身體狀況良好的患者。高齡、體力不佳、或對化療反應不敏感的病人,根本沒有接受骨髓移植的機會,平均存活期僅剩約六個月,「過往這些病人幾乎可說是走投無路,非常辛苦」李冠德醫師形容。

CAR-T 後最受注目之治療—雙特異性抗體:活化免疫精準攻擊淋巴癌

「近年來瀰漫性大型 B 細胞淋巴瘤的病人相較就幸運多了,治療方式大幅進步,復發後的用藥選擇陸續推陳出新,預後也大大改善!」李冠德醫師分析,對於復發或難治型病患,目前已有 CAR-T 細胞療法、抗體藥物複合體 ADC、雙特異性抗體(Bispecific Antibody,BsAb)等,都可幫助患者大幅提高達成完全緩解的機會。

「其中,雙特異性抗體是目前繼 CAR-T 後最受注目的免疫治療之一,也被醫界普遍看好有潛力成為瀰漫性大型B細胞淋巴瘤復發後的標準治療。」李冠德醫師解釋,雙特異性抗體顧名思義,是一種能夠同時識別兩種抗原的突破性藥物設計,一端可辨識免疫殺手 T 細胞表面的 CD3 受體,另一端可辨識淋巴瘤表面的 CD20 受體,「就好像右手拉著 T 細胞,左手拉著癌細胞,把兩者拉近,使 T 細胞活化後,對癌細胞展開精準攻擊。目前雙特異性抗體也有不同設計,例如透過2:1的抗體結構,將辨識癌細胞的一端設計成兩個結合點,有望可以增加與淋巴瘤的結合能力。」

在臨床試驗中,也可以看到雙特異性抗體用於復發、難治型瀰漫性大型 B 細胞淋巴瘤,能夠快速、長期顯著提升緩解率的數據。「雙特異性抗體用於第三線治療時,約有四成的病人可以達成完全緩解(Complete Remission,CR),且有六、七成能維持完全緩解超過兩年以上,讓治癒在後線也變得可能。」李冠德醫師說,若病人在兩年內未復發,未來復發的機率將大幅降低,顯示雙特異性抗體確實可替後線病患爭取更佳的治癒機會。

-----廣告,請繼續往下閱讀-----

雙特異性抗體納給付:健保德政及時雨 補足 CAR-T 治療可近性

我國健保署已於民國 114 年 8 月起,將雙特異性抗體藥物納入瀰漫性大型 B 細胞淋巴瘤第三線健保給付。

李冠德醫師分析,「雙特異性抗體獲得健保第三線給付,讓復發治療選項更完整,給不同病況的病人,更多彈性選擇的自由。從預後數據來看,雙特異性抗體與CAR-T細胞治療其實差不多,但因為 CAR-T 細胞治療的門檻較高,目前全台灣只有 8 間醫院可執行,也必須要送患者的免疫細胞到國外,進行基因改造後再送回,需耗時將近兩個月;相較雙特異性抗體在多數醫院都可以執行,且只要通過健保,可立即給藥,對於無法等待或無法跨區治療的病人來說,本次雙特異性抗體獲得給付可說是健保及時雨。」

雙特異性抗體第三線健保給付條件包括,需具有 CD20 抗原陽性、不可合併有中樞神經系統侵犯、不可有心臟衰竭等嚴重器官功能異常等,最多以 12 個療程為申請上限。

「若淋巴瘤對雙特異性抗體有反應,通常效果都會蠻快出現,試驗中可以觀察到,有達到完全緩解者,平均是打兩個療程,也就是 42 天就能達成。」李冠德醫師說,「雖然療效反應快速,但是仍會建議患者應依仿單完成全部療程,以降低復發風險。目前健保最多給付 12 個療程,也符合上述 2:1 結構的雙特異性抗體藥物的療程設計,可以讓患者最無後顧經濟之憂地接受完整治療。」

-----廣告,請繼續往下閱讀-----

雙特異性抗體有望推進二線治療 漸進式給藥降低併發症 維持高耐受

雙特異性抗體除被國際癌症治療權威指引 NCCN,列為第三線治療的偏好選擇建議外,推進到第二線治療的臨床試驗,也展現出亮眼的結果。李冠德醫師說,最新發表的大型臨床試驗結果顯示,針對無法接受移植者,比起傳統單用化學治療,若在第二線就合併雙特異性抗體與化療,可顯著提升整體存活期,降低 38% 死亡風險,顯示雙特異性抗體往前線推進使用之極大潛力。

李冠德醫師最後也提醒,身體在剛開始適應免疫治療時,出現細胞激素風暴症候群(Cytokine Release Syndrome, CRS)的機率較高,故相較於 CAR-T 的一次性療程,雙特異性抗體因為是分多次給藥,所以在給藥劑量上也設計成逐步調高劑量,透過漸進式加大劑量的方式,盡可能減少併發症的發生機率,但還是會建議前一、兩個療程可住院觀察,待適應後,通常病人都可維持高耐受度,此時就可採門診給藥。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。