0

4
0

文字

分享

0
4
0

鑑識故事系列:MRI 才看得到單純疱疹腦炎?

胡中行_96
・2023/09/25 ・2010字 ・閱讀時間約 4 分鐘

在瑞士有個 61 歲的男子,4 天前還被看到好端端的,眼下卻沒來由地在家裡掛了。目擊證人、已知疾病、就診紀錄,或是感染相關的線索,例如:升高的肛溫、皮膚的瘀點、退燒藥、止痛劑等,要什麼沒什麼。驗屍團隊推估男子死亡超過 24 小時,其他所知無多。[1]

非本案使用的核磁共振掃描儀。圖/Jan Ainali on Wikimedia Commons(CC BY 3.0)

驗屍

就外觀而言,男子的屍體沒有任何病灶。驗屍團隊本來想照慣例,先做電腦斷層掃描(computed tomography),觀察內部概況後再解剖。無奈這天儀器故障,所以改照核磁共振造影(magnetic resonance imaging)。不過,塞翁失馬,焉知非福。雖然核磁共振的成本較高,費時冗長,但是影像更為細緻:神經放射科醫師指出腦部額葉與顳葉的扣帶皮質、邊緣葉,以及島葉皮質的左側,都有損傷。換句話說,可能是單純疱疹病毒腦炎(herpes simplex virus encephalitis)。[1]

男子的 T1 核磁共振影像。圖/參考資料 1,Figure 3(CC BY 4.0)
男子的 T2 核磁共振影像。圖/參考資料 1,Figure 4(CC BY 4.0)

照完醫療影像,把屍體剖開來,有肉眼和顯微鏡都可見的肺炎(pneumonia)病變。腦部切片的組織學分析,以蘇木紫(hematoxylin)和伊紅(eosin)染劑上色,顯現出少量發炎的腦幹細胞與病變的海馬體神經元;透過免疫組織化學染色,則發現腦幹內有某些類型的 T 細胞和巨噬細胞,以及活化的小神經膠質細胞等多種免疫細胞。更重要的是,在海馬體中找到單純疱疹病毒(herpes simplex virus)HSV-1 與 HSV-2,證明了根據核磁共振影像所做的推測。[1]

腦幹(米色)與海馬體(紅色)的位置。圖/Life Science Databases on Wikimedia Commons(CC-BY-SA-2.1-jp)
腦幹發炎的細胞。圖/參考資料 1,Figure 1(CC BY 4.0)
海馬體病變的神經元。圖/參考資料 1,Figure 2(CC BY 4.0)

單純疱疹病毒

單純疱疹病毒經由接觸傳播,從皮膚或黏膜進入人體,感染神經末梢,並在神經節中進行複製。[1]該病毒分為兩型:90% 的人口都得過,會造成口腔疱疹唇疱疹HSV-1,偶爾也因口交衍生出性器疱疹;不過較不普遍的 HSV-2,通常才是後者的元兇。[1, 2]另外,有些極罕見的 HSV-1 和 HSV-2 案例,是母親於生產時,傳染給嬰兒。[2]

-----廣告,請繼續往下閱讀-----

首次感染也許會發燒、頭疼、喉嚨痛、身體痠痛,或淋巴結腫大。這些症狀若難以承受,可以透過藥物緩解;但是單純疱疹病毒一旦定居神經細胞,只會一下活躍,一下沉寂,終身無法根除。生病、發燒、月經、創傷、手術、陽光曝曬與心理壓力等,都可能引起復發。好在之後的發作通常為期較短,病況也不如第一次那麼嚴重。[2]

單純疱疹病毒腦炎

儘管單純疱疹病毒只會給一般人帶來暫時的不適;遇上免疫力差的人,發作就更加嚴重且頻繁,甚至有致命的風險。[1, 2]HSV-1 感染可能併發腦炎(encephalitis)和角膜炎(keratitis);[2]HSV-2 則會導致腦膜腦炎(meningoencephalitis)與擴散至多處的瀰漫性感染(disseminated infection)。[2, 3]

單純疱疹病毒腦炎的成人發病率高,每年約有 1/250,000–1/500,000;而且就算即時診斷,並經靜脈施予抗病毒藥物 acyclovir,仍有 20% 到 30% 的死亡率。[4]其診斷方式為執行腰椎穿刺(lumbar puncture),抽取腦脊髓液來檢驗有無病毒;以及做腦部核磁共振,主要看額葉與顳葉是否病變,僅有少數病例會擴及腦幹。病毒影響腦部,展現出來就成了頭疼、癲癇、發燒、失語、個性改變或精神錯亂。[1]

腰椎穿刺示意圖:側臥或坐姿。圖/BruceBlaus on Wikimedia Commons(CC BY 3.0)

問題是這名男子生前大概缺乏明顯症狀,所以未曾就診。難怪 2023 年在《國際鑑識科學:報告》(Forensic Science International: Reports)期刊介紹此案的論文作者,只差沒抱怨如此隱蔽的疾患,要叫人怎麼猜。他們最後表示男子死於肺炎,卻通篇討論他罹患的單純疱疹病毒腦炎,並且強調多數鑑識單位頂多幫屍體照電腦斷層掃描,不太容易發現這種腦部感染,所幸他們的電腦斷層掃描儀壞掉,仰賴核磁共振才做出正確診斷。[1]

-----廣告,請繼續往下閱讀-----

   

參考資料

  1. Genet P, Merkler D, Zerlauth JB, et al. (2023) ‘Incidental discovery of herpes simplex virus encephalitis by post-mortem MRI’. Forensic Science International: Reports, 7, 100310.
  2. Herpes simplex virus’. (05 APR 2023) World Health Organization.
  3. Yetmar ZA, Khodadadi RB, Chesdachai S, et al. (2023) ‘Mortality After Nocardiosis: Risk Factors and Evaluation of Disseminated Infection’. Open Forum Infectious Diseases, 10(8):ofad409.
  4. AK AK, Mendez MD. (31 JAN 2023) ‘Herpes Simplex Encephalitis’. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
文章難易度
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

2
1

文字

分享

0
2
1
【2002 諾貝爾化學獎】質譜與核磁共振
諾貝爾化學獎譯文_96
・2022/06/01 ・5803字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自諾貝爾化學獎專題系列,原文為《【2002諾貝爾化學獎】質譜與核磁共振

  • 譯者/蔡蘊明|台大化學系名譽教授

今年的諾貝爾化學獎是由三位學者所共享,他們的研究涵蓋了兩個重要領域:質譜與核磁共振。這三位得獎者是美國 Virginia Commonwealth 大學的 John B. Fenn,日本島津(Shimadzu)公司年僅四十三歲的研發工程師田中耕一(Koichi Tanaka)以及瑞士理工學院的 Kurt Wuthrich,前二者所專精的是質譜方面的研究,而後者是由於在核磁共振方面的研究而得獎。他們最主要的貢獻,是利用這些工具來解決巨大的生化分子之結構問題,他們的成就代表了一個革命性的突破,使得"化學生物"(chemical biology)成為現今的"大科學"(big science)。化學家們現在已經可以快而準確的鑑定一個試樣中含有的蛋白質為何物,他們也能夠繪出蛋白質分子在溶液中的三度空間圖像,也就是說,化學家已有能力"看到"蛋白質並瞭解它們在細胞中如何的作用。

生化分子的革命性分析方法

為什麼要研究生化的高分子

所有的生物體 ─ 細菌,植物及動物 ─ 都含有相同型態的大分子或高分子,而這些分子與我們所謂的生命是息息相關的。在細胞中所發生的現象是由核酸(例如DNA)來控制的,我們可稱之為細胞的"導演",而各種蛋白質則是細胞的"主角"。每一個蛋白質都具有一種功能,並可隨著環境而變化。例如血紅素將氧氣輸送到人體內的各個細胞。

個別蛋白質的研究並非一項新的研究領域,然而蛋白體學(proteomics),也就是研究不同的蛋白質如何相互的聯合以及合併與其它的物質在細胞中共同運作,卻是一個在過去數年間極速成長的新興領域。隨著一個個生物體的基因之定序完成,以及相關的尖端研究不斷向前挺進,新的問題亦隨之而產生:人類約三萬個左右的基因,其密碼是如何的對應到千百來種不同的蛋白質?如果一個基因損傷或缺少了,會發生什麼狀況?像阿茲海默症或狂牛症是如何發生的?上述的新化學領域是否可運用到更快速的診斷出以及醫治好這些威脅到人類的疾病?

要想解決類似這樣的問題,化學家不斷的追求有關蛋白質的更多知識,以及瞭解它們如何相互聯合或與其它的分子聯合而在細胞中運作,這是因為它們的結合將會影響其結構,而在蛋白質結構上一點點的變化,就會對其功能有決定性的影響,因此下一步就是要掌握其活動狀況:當蛋白質相互作用的那一瞬間,蛋白質分子是何長相?尤其是在那決定性的一刻又如何?若想要瞭解,那我們就必須擁有“目睹”的能力。

-----廣告,請繼續往下閱讀-----

質譜 ─ 一個鑑定分子的方法

質譜現在能讓我們利用分子的質量快速的鑑定出一個試樣中的化合物結構,這項技術早就被化學家運用在小型與中型的分子鑑定工作上,這項工具靈敏到能探察非常少量的分子。例如在吸毒以及藥物濫用的檢查,食品的控管以及環境的檢測等方面,質譜的運用在現今已是如例行公事般的尋常。

其實早在十九世紀末頁,質譜就已奠下了基礎,在 1912 年,湯木森(Joseph J. Thompson)就報告了第一例的小分子結構分析。好幾個二十世紀的諾貝爾獎工作就是直接倚賴質譜分析,例如 Harold Urey 發現氘(1934年諾貝爾獎),以及"碳足球"富勒烯(fullerenes 又稱碳六十)的發現,導致 Robert Curl、Harold Kroto 與 Richard Smalley 得到 1996 年的諾貝爾獎。

當然將質譜運用在高分子上的目標早就吸引了許多的科學家,在 1970 年代已經能成功的將高分子轉化成氣相的離子,稱為脫附技術(desorption technology),這成為過去二十年間在此領域中革命性進展之基礎。

雖然與其它的小分子比較,高分子的確很大,但實際上一個單一的高分子仍然是極為渺小的,例如血紅素的一個分子的質量只不過是10-19克左右,那麼要如何量度這麼小的質量呢?關鍵就在於如何讓蛋白質分子相互分開,並形成一片可自由飛翔,並且攜帶電荷的蛋白質離子雲霧,緊接著量度這些離子質量(因之而能鑑定蛋白質)的常用方法,就是在一個真空室中將它們加速,然後量度其飛行時間(Time Of Flight, TOF),它們達到目的地的先後與其質量以及電荷有關,越輕而且電荷越高者,越快抵達。

-----廣告,請繼續往下閱讀-----

現今有兩種做法能使得蛋白質轉變為氣態離子而不會改變其結構與形體,這兩種方法背後的發明者就是今年共享一半諾貝爾獎的兩位學者。其中由 John B. Fenn 所發展的方法是運用一個很強的電場將試樣噴灑出去(稱為電灑法,見圖一),而產生一個個帶電荷並能自由飛翔的離子。另一種方式是運用一個強烈的雷射脈衝,在適當的條件下(視能量,與試樣的結構和化學環境而定)運作,試樣可接受雷射脈衝的能量而被釋放成為自由的離子(見圖二),頭一個展示這種"輕雷射脫附"(soft laser desorption)現象可運用在蛋白質這種大分子的人就是田中耕一(Koichi Tanaka)。

(圖一)電灑法
(圖二)雷射脫附法

Fenn 的貢獻 ─ 透過噴灑的飛翔

在 1988 年 John B. Fenn 發表了兩篇後來被視為突破性的質譜論文,那是有關電灑高分子的研究。在第一篇論文中,他研究具有未知質量的聚乙二醇(polyethylene glycol)的質譜,發現可以運用他的方法處理具有高分子質量及高電荷的大分子。他的第二篇論文顯示這個方法亦可運用在中等大小的蛋白質上。離子的釋出是藉由一個電場將試樣噴灑出去,形成許多帶電荷的水滴,當水滴中的水蒸發之後就剩下了帶電而且可自由翱翔的赤裸裸蛋白質分子,這個方法被稱為電灑游離法(electrospray ionization , ESI)。

當這些分子具有很高的電荷時,質量/電荷的比值就會小到可用普通的質譜儀來分析。另一個好處就是相同的分子可能攜帶不同的電荷,因此會得到一系列的訊號,雖然這個現象使得圖譜變得複雜,甚至對早先的研究者造成困擾,但這也產生了更多的資訊,使得鑑定的工作變得較容易。

田中耕一的貢獻 ─ 透過轟擊的翱翔

在同時,於世界的另一端也正進行著另一份精采的工作,在日本東京的島津儀器公司,有一位年輕的日本工程師田中耕一,發表了另一種截然不同的技術來解決那最重要的第一步。在 1987 年的一項學術會議中(並於一年後發表論文),田中耕一展示蛋白質分子可藉由輕雷射脫附(soft laser desorption , SLD)的技術而游離。有別於電灑法,一個處於固相或粘稠的液相狀態的試樣以一束雷射脈衝撞擊,試樣接受能量之後被炸成許多小塊塊,然後分子相互分離,釋出自由翱翔的完整離子,其電荷不高,然後藉由一個電場加速,並透過其飛行時間的長短探測之。田中耕一是展示可運用雷射的技術於生化高分子上的第一人,其原理是現今許多極為有用的雷射脫附技術的基礎,特別是簡稱為 MALDI(Matrix-Assisted Laser Desorption Ionization,基質輔助雷射脫附游離),SELDI(Surface Enhanced Laser Desorption Ionization,表面強化雷射脫附游離),以及 DIOS(Direct Ionization On Silicon)等三種方法。

-----廣告,請繼續往下閱讀-----

質譜的應用

電灑游離法(ESI)與輕雷射脫附法(SLD)可運用在許多領域。這個在現在生化分析中已經成熟的方法,在數年前還不過是個夢想。研究蛋白質之間的作用對瞭解生命體中的訊號系統是非常重要的,這些以非共價鍵結合的生化分子錯合體,可以運用 ESI 來研究,這種方法優於其它方法的原因,在於具有快速,靈敏以及能發現作用機制的多項好處。質譜分析的方法相對而言算是便宜的,這也使得此項技術迅速的擴散到世界上各各角落的實驗室中。現在輕雷射脫附法(MALDI 的形式)與電灑游離法已成為分析胜肽,蛋白質與碳水化合物的標準方法,它們可以迅速的分析出一個完整的細胞或活組織中的蛋白質成分。從下面所列現今的一些研究領域之例子,就可看出今年的諾貝爾獎工作所衍生的運用之廣泛:

  • 製藥的發展:先期的藥物研發已進行了型態的改變。搭配分離的技術,ESI-MS 可以做到每天分析好幾百個化合物。
  • 瘧疾:科學家最近發現了新的方法來研究瘧疾的擴散。借助輕雷射脫附法,現在已可進行早期診斷,人類血紅素上攜帶氧的部份在此處用來吸收雷射脈衝的能量。
  • 卵巢癌,乳癌與攝護腺癌:過去這一年中對於各種不同的癌症之早期診斷方法,以更快的速度被發表出來。只要能取得癌細胞所附著的表面,然後以輕雷射脫附法分析,化學家能比醫生更迅速的發現癌症。
  • 食物的品管:ESI 技術也在小分子的分析上有所進展。在過去這幾個月,我們發現某些製備食物的方法會產生一些有害人體健康的分子,例如可導致癌症的丙烯醯胺(acrylamide),藉著質譜,食物可以在不同的階段接受迅速的分析,藉著溫度以及材料的改變,有害物質的產生可以避免或減少。

生化高分子的核磁共振

質譜可針對譬如說蛋白質所提出的"哪一種?"與"有多少?"的問題給予答案。簡言之,核磁共振則可回答"長相如何?"。即使是最大的蛋白質在任何顯微鏡底下的解析度仍然很低,因為它仍然太小了,為了要能得到一張蛋白質真正長相的圖片,就必須用其它的方法,核磁共振(NMR,nuclear magnetic resonance)的技術就是其中之一。透過核磁共振光譜訊號的解釋,我們就可以對所研究的分子繪出一張三度空間的圖像。其巧妙之處在於試樣可以是一種溶液態,如果是蛋白質的話,那正是細胞中的自然情況。

在核磁共振發展之前,以晶體的 X 光繞射光譜來決定蛋白質分子的三度空間結構是唯一的方法,在 1957 年發表了第一個真正的蛋白質(肌紅蛋白)之三維結構,這使得 Max Perutz 因此於 1962 年得到諾貝爾化學獎。這種結晶學是基於 X 光在蛋白質晶體中的繞射現象,導致了更進一步的一些諾貝爾獎工作之發展。化學家一直在尋求另一種與 X 光結晶學互補的方法,能夠決定分子在溶液相中之結構,因為這較能模擬生化分子在自然界中存在的狀態。

物理學家 Felix Bloch 與 Edward Purcell 早在 1945 年就發現,將某些原子核置於一個強大的磁場中時,透過所謂的核轉量(nuclear spin),會吸收無線電波的頻率,這個發現導致他們得到了 1952 年的諾貝爾物理獎。在這之前幾年也已發現核磁共振的頻率不但與磁場的強度以及核種有關,同時也與這個原子週遭的化學環境有關,更進一步的,不同的核之核轉量會相互影響而在光譜中產生一些細部結構,換言之會因此在核磁共振光譜中產生更多的訊號。

-----廣告,請繼續往下閱讀-----

早期 NMR 的運用受限於其低靈敏度:它需要非常濃的溶液,不過在 1966 年,瑞士的化學家 Richard Ernst(1991年諾貝爾化學獎)的研究顯示,若改變過去慢慢改變掃描頻率的做法,而以一個短而強的無線電波脈衝施於樣品,則可以大幅提昇其靈敏度。他的貢獻也包括了在 1970 年代所發展的方法,能決定在一個分子中每一個核的相鄰關係,因此透過 NMR 光譜的判讀就可以推導出該分子的長相,也就是它的結構。這種方法對於相當小的分子是很成功的,然而對於大的分子就很難分辨不同的核之訊號,這種分子的光譜就好像一塊草皮一般(每一根草代表一根訊號),含有上千根的訊號,造成無法區辨哪一個訊號是屬於哪一個核的。最後解決了這個問題的科學家就是瑞士的化學家 Kurt Wuthrich。

Kurt Wuthrich ─ 顯示NMR可運用在蛋白質上

在 1980 年代初期,Kurt Wuthrich 發展了一個如何將 NMR 運用到像蛋白質這樣的生化分子的想法,他發明了一種系統化的方法將訊號與正確的氫核配對,此法稱為循序指認法(sequential assignment),堪稱為現今所有 NMR 結構分析的基石。他又展示接著如何找出許多對氫核之間的距離,然後運用一個基於距離與幾何結構的數學方法,搭配以上的資訊,計算出該分子的三維結構。

在 1985 年 Wuthrich 的方法第一次成功的解出了一個蛋白質的完整三維結構,到目前為止,在所有上千已知的蛋白質結構中約有 15-20% 是透過 NMR 決定的,其它的則主要是利用 X 光結晶學而定的,加上少數幾個是運用電子繞射或中子繞射的方法。

NMR運用於生化分子的領域

在許多方面,NMR 與 X 光結晶學的方法在結構的決定上是互補的,如果一個蛋白質用這兩種方法都分析一遍,前者在溶液中後者則是晶體的形式,通常會得到一致的結果,例外常是發生在一些表面較易受到環境影響的區域 ─ 在晶體中緊密堆積的蛋白質分子相互的影響,在溶液中包圍著分子的溶劑分子的影響。雖然 X 光結晶學的方法強在能非常準確的決定非常大的三維結構,NMR 的方法也有其獨到之處,因為它可以決定在溶液中的結構,代表我們可以模擬真正的生理條件。它最強的地方在於顯示出分子中沒有結構性或動態最高的區域,它可探知其游動性與活動狀況,以及瞭解在蛋白質的鏈上這些運作如何變化。利用同位素的標籤,亦有助我們對結構的鑑定。

-----廣告,請繼續往下閱讀-----

一個利用 NMR 決定蛋白質結構的例子是有關一種稱為 prion 的蛋白質,這個蛋白質攸關好幾種危險的疾病,例如狂牛症(1997年 Stanley Prusiner 所得的諾貝爾醫學獎)的發生。Wuthrich 與其工作夥伴運用 NMR 的技術顯示一個正常的 prion 蛋白質具有兩個部份:此一蛋白質約有一半在水溶液中具有一個整齊而且相當堅固的三維結構,而另一半則不具結構性而且游動性很高。

NMR 亦可以運用在其它的生化高分子的結構與動力研究上,例如 DNA 或 RNA。

NMR 也運用在製藥工業中,解決一些蛋白質以及其它可能可以作為新藥目標的高分子的結構,以及瞭解進一步的性質問題。藥物分子的設計就是要能與蛋白質結合 ─ 就像鑰匙與鎖的關係。NMR 或許在工業上面最重要的運用就是在尋找具有潛力,能與特定生化高分子作用的藥物分子,如果一個小分子與一個大的分子結合時,那個大分子的 NMR 光譜通常會有所改變,因而此法可用在發展新藥時,迅速的在早期篩選大量的可能候選者。

結語

在過去這五年,我們看到了在生命科學領域中所出現的"全像"概念,例如基因體學,蛋白質體學以及代謝體學的興起,這種思維主要的觀念是採取一種整體而大規模的研究策略,而非如早期的研究般,採取簡化策略,以解決問題為出發點。現在我們已經可以描述一個生命體中的整個基因體,同樣的,現在也已經可以開始考慮,在一個活的細胞中某一階段所參與的整組蛋白質的運作,只不過尚未能達到定量的階段。這個概念也同樣的運用在整個代謝物流上。這些新的可能性,有一部份是源自於新方法的發展,其中質譜與 NMR 在生物高分子上的運用應為重要的例子。不過隨伴著以企業化方式大幅度的繪製生命體中分子性質的圖譜之時,我們仍有更殷切的需求,深入的瞭解在分子的層次,生化過程是如何發生的。在這個由基本的生化科學所構成的世界裡,質譜及 NMR 在生物高分子上的運用,已成為增進對生命的瞭解之過程中,重要的基石。

-----廣告,請繼續往下閱讀-----

參考資料

蔡蘊明譯自諾貝爾化獎委員會公佈給大眾的新聞稿:

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2002/popular.html

若需要進一步的資訊,請至以下網頁點選:

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2002/advanced-chemistryprize2002.pdf

-----廣告,請繼續往下閱讀-----
諾貝爾化學獎譯文_96
15 篇文章 ・ 23 位粉絲
「諾貝爾化學獎專題」系列文章,為臺大化學系名譽教授蔡蘊明等譯者,依諾貝爾化學獎委員會的新聞稿編譯而成。泛科學獲得蔡蘊明老師授權,將多年來的編譯文章收錄於此。 原文請參見:諾貝爾化學獎專題系列

0

0
1

文字

分享

0
0
1
不只是武漢「肺炎」!心血管、腎、腦、肝、腸等器官也可能出問題
寒波_96
・2020/04/22 ・2948字 ・閱讀時間約 6 分鐘 ・SR值 562 ・九年級

-----廣告,請繼續往下閱讀-----

全世界已經超過 200 萬人確診 COVID-19(俗名:武漢肺炎、新冠肺炎),這種疾病是由 SARS-Cov-2 冠狀病毒所致,本文之後稱之為「SARS二世」。儘管已經累積這麼多病例,醫學界至今仍然不太清楚病毒到底怎麼殺死患者,只知道病毒可能影響的範圍很廣,也影響到治療方法與藥物的使用。

不同人感染病毒以後的症狀差異非常大,有些人外觀看來毫無症狀,比較嚴重的往往會發展成肺炎,但是一些患者也產生腎衰竭,心律不整、腦炎等其他較為嚴重的問題,可能受害的器官已經知道有:肺、心、血管、肝、腎、腸、腦、中樞神經、鼻、眼睛等等,另外病毒也會感染 T細胞。1

不過倒是不需要過度擔心,SARS二世感染者重症的比例占整體很低,而且可能引發的症狀雖多,絕大多數病患卻不會同時出現太多狀況。

感染 SARS二世病毒後,可能受到影響的各部位。圖/取自 ref 1

-----廣告,請繼續往下閱讀-----

肺部主戰場的免疫風暴

人體被 SARS二世入侵以後,最普遍、最合理的受害器官自然是肺,許多患者的直接死因是肺部喪失功能。肺之所以會壞掉,一個解釋是免疫系統在肺部和入侵者大戰,導致細胞激素風暴(cytokine storm),過度反應而摧毀肺的功能。

有些醫師主張,人為抑制細胞激素也許能阻止肺部被摧毀,是有效的治療方式。卻也有人擔心抑制免疫反應會造成反效果,因為人體仍然要靠自己的免疫力對抗病毒,貿然抑制免疫反倒會讓病毒得勢。該如何拿捏,非常關鍵。

病毒感染後引發的細胞激素風暴。圖/取自 ref 3

心血管與腎

病毒也會影響心臟與血管,殺傷力不見得比肺小。有些病患心律不整(arrhythmia),也有病患出現凝血,造成血栓,產生組織壞死或血管阻塞的危險。也有些患者的血氧濃度很低,一種猜測是:病毒或許會影響賀爾蒙的調節,使得人體無法正常控制血氧。

-----廣告,請繼續往下閱讀-----

由很多病例歸納得知,感染病毒的高風險群包括高齡、糖尿病、高血壓、肥胖等特徵。有些專家懷疑這群人是因為心血管特別脆弱,所以才會那麼危險。

心臟與血管。圖/取自 ref 1

肺與心血管之外,SARS二世病毒也可能影響腎功能。大眾普遍知道,不少重症患者需要呼吸機維生,但是也有些病患出現嚴重的腎衰竭,需要透析機。病毒透過人體細胞的 ACE2 蛋白質作為受器,而腎細胞也會表現 ACE2,可以被病毒直接攻擊;但是病毒似乎也能走間接路線,摧毀腎的作用。

腦部與神經系統

也有一些病患是在大腦和中樞神經系統發生問題。某些病患產生腦炎, 一些腦炎病患出現癲癇的症狀,伴隨腦部版本的細胞激素風暴:交感神經風暴(sympathetic storm)。還有些重症患者失去意識,或是中風。

-----廣告,請繼續往下閱讀-----

神經細胞有 ACE2,病毒理論上可以感染。而且病毒似乎可以直接入侵中樞神經系統和腦脊髓液。有專家懷疑,病毒感染鼻子以後會進入嗅球,再藉此入侵腦部;如此就能解釋為什麼許多患者喪失嗅覺。不過這點仍是猜測,目前缺乏明確的證據。

不少患者失去嗅覺味覺。圖/取自 TVBS <拉麵味道太淡!20歲男急跑醫院 確診新冠肺炎>

腸道,眼睛,肝臟

SARS二世病毒也會感染腸道,糞便中能偵測到病毒的 RNA,還有一些患者腹瀉。能感染不等於能複製,不過不少專家懷疑,病毒感染下消化道的細胞後可以複製,因此糞便也會是傳染源,類似 SARS 的狀況。也許風險比較低,可是還是有機會。

一些病患則出現結膜炎,尤其是嚴重的重症病患。病毒如何影響眼睛,目前資訊不明。

-----廣告,請繼續往下閱讀-----

還有些人肝臟受損,似乎不是被病毒直接攻擊,而是身體其他部位與病毒大戰,間接影響肝功能所致。

沒有ACE2受器的T細胞,病毒也能入侵

有些病患出現淋巴球減少症 (lymphocytopenia),也就是淋巴球含量過低的狀況。SARS二世的兩位冠狀病毒前輩,MERS 會感染智人的初級T細胞(primary T cell),但是親緣關係和 SARS二世比較接近的 SARS一世不會。

SARS二世感染人體的方式,是用自己的 S蛋白質(spike protein)和人體細胞的 ACE2 受器結合。以細胞株實際測試發現,SARS二世病毒也能感染 T細胞,而且感染時 S蛋白質與細胞的融合應該也是關鍵。

問題在於:T細胞不太會表現 ACE2 基因。人體是否有別的受器也能讓 SARS二世結合,目前還不清楚,只能確認 SARS二世也可以感染初級T細胞。3

-----廣告,請繼續往下閱讀-----

能入侵 T細胞的 MERS 無法在 T細胞內複製,感染後會促使細胞發生細胞凋亡,驅使 T細胞走上自殺之路。SARS二世進入 T細胞後,似乎也和 MERS 一樣無法複製,或許也會啟動自殺機制,導致細胞凋亡,如此便能解釋感染者的淋巴球含量偏低。然而,具體上發生什麼狀況,仍然需要研究釐清。

圖/取自 ref 6

到處感染,缺乏大絕招的病毒?

需要提醒各位讀者,人類感染 SARS二世後產生重症的比例不高,而且出現很多症狀的患者很少,不需要太過緊張。

但是不同患者身上,普遍出現兩種以上症狀的組合;這些症狀的殺傷力以及後遺症,目前了解仍然十分不足。不同病患的症狀如此多變,也難怪至今依舊無法找到有效的藥物,以及令人滿意的治療方法。4, 5, 6

-----廣告,請繼續往下閱讀-----

我個人的看法是,不同人感染後的差異很大,不一樣症狀的病患很可能要採用不同的治療方法與藥物,才能對症下藥。假如把不同性質的病患混在一起,將混淆藥物與治療的效果,這是臨床試驗需要考慮的關鍵之一。

SARS二世會影響這麼多器官、組織、人體的功能,乍看很可怕,可是意義搞不好要反過來看。之所以觀察到病毒導致這麼多症狀,也許是由於病毒的主要殺招不夠強,病患死不掉又好不了,感染以後時間拖很久,這才能見到一大堆奇怪的衍生症狀。否則像是 MERS、伊波拉這類致死率高,殺傷力強大的病毒,根本沒有機會見到這麼多狀況。

感染者在肺炎以外,心血管、腦部與神經、腎等部位出現嚴重問題的比例,其實都非常低,病毒攻擊產生明顯效果的機率不高,殺傷性很不專一。這些現象究竟有什麼意義,仍然有待研究。而這麼廣泛的影響,痊癒後是否會導致後遺症,不只生理方面,也包括心理方面,例如罹患憂鬱症的機率會不會增加,也需要追蹤注意。

延伸閱讀

參考文獻

  1. How does coronavirus kill? Clinicians trace a ferocious rampage through the body, from brain to toes
  2. Cytokine release syndrome in severe COVID-19
  3. SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion
  4. For survivors of severe COVID-19, beating the virus is just the beginning
  5. How does COVID-19 kill? Uncertainty is hampering doctors’ ability to choose treatments
  6. Antibiotic treatment for COVID-19 complications could fuel resistant bacteria

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
寒波_96
193 篇文章 ・ 1019 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

0
0

文字

分享

0
0
0
該害怕茲卡病毒來台灣嗎?茲卡病毒感染症的全球流行病學
活躍星系核_96
・2016/02/03 ・2364字 ・閱讀時間約 4 分鐘 ・SR值 571 ・九年級

文 / 金傳春教授防疫先鋒資料,由台大公共衛生學院流行病學與預防醫學研究所病毒傳染病研究室提供)

Source: bubblear
Source: bubblear

在認識茲卡病毒之前……

茲卡病毒(Zika Virus)是屬於蟲媒病毒(arthropod-borne virus, 簡稱為arbovirus):是藉由節枝動物(蚊子、蜱)傳播的病毒傳染病。在傳染病史上,自黃熱病毒開始就明瞭蟲媒傳染病的流行病學與當地生態息息相關,包括:

  • 猴—蚊—猴的森林循環
  • 人—白線斑蚊—人的郊區循環
  • 人—埃及斑蚊—人的都市循環

在不同的生態環境,有不同的病媒蚊扮演傳播的角色。如此環環相扣,讓病毒在自然界生生不息,此也是公共衛生所防控的。

-----廣告,請繼續往下閱讀-----
  • 美洲在1950-70年代,深受美國東部馬腦炎、美國中部與南部聖路易腦炎、美國西部馬腦炎及南美的委內瑞拉腦炎等等,均是蟲媒病毒所引起。由於當時不少美國的國會議員養心愛的馬,所以蟲媒病毒的研究在癌症起飛前深受重視。
  • 亞洲早期曾受蟲媒病毒中的日本腦炎病毒襲擊,由於我國1968年全面性針對幼童大量施打疫苗,近年許多小兒科醫師以看不到日本腦炎的兒童病例。
  • 1940-50年代,屈公病毒在亞洲造成流行,二次大戰期間與其後因日軍感染登革病毒及防空儲水之需,促成斑蚊與登革病毒的擴散。
  • 1954菲律賓馬尼拉首次出現第1、2型登革嚴重流行,1956年第3、4型登革流行,1958年泰國亦出現4型登革病毒的流行,即1950-60年代登革病毒在亞洲橫行,臺灣因戒嚴而自1987-88年首次本島南部的流行,主因埃及斑蚊分布在嘉義布袋以南。
  •  2002年由尖音家蚊傳播的西尼羅腦炎造成美國大流行。
  • 2005年由白線斑蚊傳播的屈公病在美國與歐洲流行。
  • 2015年茲卡病毒在中南美洲、加勒比海等地流行。

綜言之,登革病毒、茲卡病毒、黃熱病毒、日本腦炎病毒、西尼羅腦炎病毒均屬於黃質病毒(flaviviruses),前三種均與斑蚊傳播有關,且有流行壯大之勢。(參考資料: 金傳春 聯合報 2016/01/21)

茲卡病毒的流行史

  • 1947年於非洲烏干達森林的猴子與蚊子偵測中,首先察覺此新病毒。
  • 1954年奈及利亞出現首例人病例。
  • 1978年印尼發生首次群聚事件。
  • 2007年法屬玻里尼西亞流行,同時有73例格林-巴利綜合症(Guillain-Barré syndrome)被通報及部分患者神經系統疾病被確診,可能與茲卡病毒感染相關,但其神經異常與感染茲卡病毒之關聯性仍待證實。
  • 2013~14年於太平洋島國流行。

2015年茲卡病毒國際疫情

  • 巴西:2015年2月即有實驗診斷陽性病例。
  • 維德角(Cape Verde):2015年10月首發病例。
  • 中美洲:2015年11月首發病例。
  • 加勒比海各國:2015年12月首發病例。
  • 隨後南美諸國有斑蚊出沒的地區均發現病例,如:哥倫比亞、薩爾瓦多、法屬圭亞那、 瓜地馬拉、海地、宏都拉斯、法屬馬丁尼克、墨西哥、巴拿馬 、美屬波多黎各、巴拉圭、蘇利南、委內瑞拉、法屬聖馬丁、蓋亞那、厄瓜多、玻利維亞、巴貝多、法屬瓜地洛普、多明尼加等21國均有流行。
  • 東南亞等地區亦有流行。

茲卡病毒的跨國流行之地理分布

血清偵測區(粉紅)仍可查出病毒活躍的範圍較通報的確診病例(紫紅)更廣:

Fauci and Morens (2016) N. Engl. J. Med. 2016 Jan 13

茲卡病毒在中南美洲的流行

Fauci and Morens (2016) N. Engl. J. Med. 2016 Jan 13

-----廣告,請繼續往下閱讀-----

為何茲卡病毒會如此快速在南美洲傳播?

  1. 新興傳染病:民眾大多無抗體,難以抵擋傳播。
  2. 氣候適合病媒蚊生長。
  3. 當地已有未滅絕的斑蚊。
  4. 有部分感染者為不顯性症狀感染而不自覺。

2015年茲卡病毒境外移入病例

  • 歐洲:荷蘭、芬蘭、德國、義大利、英國、西班牙、瑞士、丹麥
  • 美洲:美國、加拿大
  • 亞洲:臺灣
  • 其他地區:以色列及紐西蘭

臨床症狀

僅20%感染者出現症狀,但症狀輕微。常見症狀為發燒(低溫)、肌肉骨骼痠痛、結膜炎等與登革熱、屈公病類似症狀。巴西在2015年新生兒小頭畸形發生率較往年增加,孕婦感染茲卡病毒可能與其相關,但尚待釐清。

茲卡病毒特徵

  1. RNA病毒
  2. 黃質病毒屬(Flaviviridae)
  3. 蟲媒病毒:主要經由斑蚊傳播,尤其是埃及斑蚊(Aedes aegypti
  4. 病毒演化分為兩大群:
    • 亞洲品系病毒株
    • 非洲品系病毒株

茲卡病毒的流行病學特徵

  1. 高危險族群:孕婦在懷孕的任何時期均有其危險性
  2. 高傳播族群:若當地人口密度高,又有斑蚊及環境有利斑蚊孳生處,造成連續不斷的傳播,將有助於病毒適應人宿主而增加發病機會。
  3. 其他高危險群:目前仍在收集數據中
  4. 與登革病毒的重症病例高危險群似乎有所不同

傳播途徑

  1. 主要傳播途徑:被含有茲卡病毒的斑蚊叮咬
  2. 次要傳播途徑:輸血感染
  3. 再次要傳播途徑:性傳播
  4. 少數傳播途徑:母子垂直傳染

公共衛生防控作為

  1. 強化病媒蚊偵測:須培養蚊子專業人才。
  2. 類似登革症狀,醫護人員需注意旅遊史、接觸史與群聚狀況。
  3. 婦產科若遇小頭畸形新生兒,應主動通報。
  4. 減少住家、工作場所與學校環境的斑蚊孳生場所(例如花盆、瓶罐、水桶、甕、馬桶、塑膠與其他廢棄物容器)。
  5. 出外旅行需要了解目的地、轉接地是否已有茲卡病毒疫情,若有需穿著長袖長褲與攜帶防蚊液。
  6. 住家應裝紗門紗窗。
  7. 高危險群與患者應睡在蚊帳內。

結論:該害怕茲卡病毒來台灣嗎?

沒有斑蚊就沒有登革熱,沒有登革熱就不用怕茲卡病毒的挑戰,充分的防疫準備,就無後顧之憂。臺灣中北部地區較少埃及斑蚊,所以茲卡病毒的挑戰是在臺灣南部埃及斑蚊分布較高處須特別留意。

本文轉載自防疫先鋒

活躍星系核_96
752 篇文章 ・ 122 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

4
0

文字

分享

0
4
0
鑑識故事系列:MRI 才看得到單純疱疹腦炎?
胡中行_96
・2023/09/25 ・2010字 ・閱讀時間約 4 分鐘

在瑞士有個 61 歲的男子,4 天前還被看到好端端的,眼下卻沒來由地在家裡掛了。目擊證人、已知疾病、就診紀錄,或是感染相關的線索,例如:升高的肛溫、皮膚的瘀點、退燒藥、止痛劑等,要什麼沒什麼。驗屍團隊推估男子死亡超過 24 小時,其他所知無多。[1]

非本案使用的核磁共振掃描儀。圖/Jan Ainali on Wikimedia Commons(CC BY 3.0)

驗屍

就外觀而言,男子的屍體沒有任何病灶。驗屍團隊本來想照慣例,先做電腦斷層掃描(computed tomography),觀察內部概況後再解剖。無奈這天儀器故障,所以改照核磁共振造影(magnetic resonance imaging)。不過,塞翁失馬,焉知非福。雖然核磁共振的成本較高,費時冗長,但是影像更為細緻:神經放射科醫師指出腦部額葉與顳葉的扣帶皮質、邊緣葉,以及島葉皮質的左側,都有損傷。換句話說,可能是單純疱疹病毒腦炎(herpes simplex virus encephalitis)。[1]

男子的 T1 核磁共振影像。圖/參考資料 1,Figure 3(CC BY 4.0)
男子的 T2 核磁共振影像。圖/參考資料 1,Figure 4(CC BY 4.0)

照完醫療影像,把屍體剖開來,有肉眼和顯微鏡都可見的肺炎(pneumonia)病變。腦部切片的組織學分析,以蘇木紫(hematoxylin)和伊紅(eosin)染劑上色,顯現出少量發炎的腦幹細胞與病變的海馬體神經元;透過免疫組織化學染色,則發現腦幹內有某些類型的 T 細胞和巨噬細胞,以及活化的小神經膠質細胞等多種免疫細胞。更重要的是,在海馬體中找到單純疱疹病毒(herpes simplex virus)HSV-1 與 HSV-2,證明了根據核磁共振影像所做的推測。[1]

腦幹(米色)與海馬體(紅色)的位置。圖/Life Science Databases on Wikimedia Commons(CC-BY-SA-2.1-jp)
腦幹發炎的細胞。圖/參考資料 1,Figure 1(CC BY 4.0)
海馬體病變的神經元。圖/參考資料 1,Figure 2(CC BY 4.0)

單純疱疹病毒

單純疱疹病毒經由接觸傳播,從皮膚或黏膜進入人體,感染神經末梢,並在神經節中進行複製。[1]該病毒分為兩型:90% 的人口都得過,會造成口腔疱疹唇疱疹HSV-1,偶爾也因口交衍生出性器疱疹;不過較不普遍的 HSV-2,通常才是後者的元兇。[1, 2]另外,有些極罕見的 HSV-1 和 HSV-2 案例,是母親於生產時,傳染給嬰兒。[2]

-----廣告,請繼續往下閱讀-----

首次感染也許會發燒、頭疼、喉嚨痛、身體痠痛,或淋巴結腫大。這些症狀若難以承受,可以透過藥物緩解;但是單純疱疹病毒一旦定居神經細胞,只會一下活躍,一下沉寂,終身無法根除。生病、發燒、月經、創傷、手術、陽光曝曬與心理壓力等,都可能引起復發。好在之後的發作通常為期較短,病況也不如第一次那麼嚴重。[2]

單純疱疹病毒腦炎

儘管單純疱疹病毒只會給一般人帶來暫時的不適;遇上免疫力差的人,發作就更加嚴重且頻繁,甚至有致命的風險。[1, 2]HSV-1 感染可能併發腦炎(encephalitis)和角膜炎(keratitis);[2]HSV-2 則會導致腦膜腦炎(meningoencephalitis)與擴散至多處的瀰漫性感染(disseminated infection)。[2, 3]

單純疱疹病毒腦炎的成人發病率高,每年約有 1/250,000–1/500,000;而且就算即時診斷,並經靜脈施予抗病毒藥物 acyclovir,仍有 20% 到 30% 的死亡率。[4]其診斷方式為執行腰椎穿刺(lumbar puncture),抽取腦脊髓液來檢驗有無病毒;以及做腦部核磁共振,主要看額葉與顳葉是否病變,僅有少數病例會擴及腦幹。病毒影響腦部,展現出來就成了頭疼、癲癇、發燒、失語、個性改變或精神錯亂。[1]

腰椎穿刺示意圖:側臥或坐姿。圖/BruceBlaus on Wikimedia Commons(CC BY 3.0)

問題是這名男子生前大概缺乏明顯症狀,所以未曾就診。難怪 2023 年在《國際鑑識科學:報告》(Forensic Science International: Reports)期刊介紹此案的論文作者,只差沒抱怨如此隱蔽的疾患,要叫人怎麼猜。他們最後表示男子死於肺炎,卻通篇討論他罹患的單純疱疹病毒腦炎,並且強調多數鑑識單位頂多幫屍體照電腦斷層掃描,不太容易發現這種腦部感染,所幸他們的電腦斷層掃描儀壞掉,仰賴核磁共振才做出正確診斷。[1]

-----廣告,請繼續往下閱讀-----

   

參考資料

  1. Genet P, Merkler D, Zerlauth JB, et al. (2023) ‘Incidental discovery of herpes simplex virus encephalitis by post-mortem MRI’. Forensic Science International: Reports, 7, 100310.
  2. Herpes simplex virus’. (05 APR 2023) World Health Organization.
  3. Yetmar ZA, Khodadadi RB, Chesdachai S, et al. (2023) ‘Mortality After Nocardiosis: Risk Factors and Evaluation of Disseminated Infection’. Open Forum Infectious Diseases, 10(8):ofad409.
  4. AK AK, Mendez MD. (31 JAN 2023) ‘Herpes Simplex Encephalitis’. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
文章難易度
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。