Loading [MathJax]/extensions/tex2jax.js

0

300
1

文字

分享

0
300
1

是什麼蒙蔽了我的雙眼?如何防範生成式 AI 的假資訊陷阱?——專訪中研院資訊科技創新研究中心副研究員陳駿丞

研之有物│中央研究院_96
・2023/09/24 ・5782字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|沙珮琦
  • 責任編輯|簡克志
  • 美術設計|蔡宛潔

不再是有圖有真相!深偽影像猖獗,我們該如何判別?

你看過美國前總統川普被警方逮捕的影片嗎?又或是英國女王在皇宮中大跳熱舞的片段?多年來,人們普遍相信著「有圖有真相」的道理,然而,隨著圖像與影音相關的生成式 AI 越發成熟,我們似乎再也不能輕易相信自己的雙眼。而在真假影音的差異可說是微乎其微的狀況下,我們究竟該如何判斷資訊真實性?中央研究院資訊科技創新研究中心的副研究員陳駿丞與團隊每天在尋找的,便是有效又好用的解決方案。本次,中研院「研之有物」將透過專訪,從生成式 AI 的原理開始了解,一步步為各位解開深偽影像的神秘面紗。

你已經是個成熟的 AI 了!幫我工作!

一講到生成式 AI,許多人都能立刻喊出「ChatGPT」的大名,足見這個領域之熱門程度。其實,生成式 AI 發展並不是近年才開始的事,可是為什麼直到最近,才受到社會大眾的熱烈歡迎呢?

中研院資創中心的陳駿丞副研究員認為,其中最關鍵的原因,莫過於 AI 程式的優秀表現開始讓一般人很「有感」。由於生成式 AI 的相關研究快速發展,基礎建設在近年來逐漸成熟,使用介面也設計得十分親民,讓大眾能透過極為直覺、簡單的方式去使用,實際體會到應用的效果,例如改善工作效率、處理圖像任務等,再加上大眾媒體的渲染,便帶起了 2023 前半年的 AI 風潮。

陳駿丞笑著說,雖然自己不是文字生成式 AI 的專家,但使用「ChatGPT」時,也發現到它真的能做到很多事,比早期的 Siri 效果更好、更準確。的確,對於我們來說,這款基於 OpenAI 開發的大型語言模型(Large Language Model)的聊天機器人(Chatbot),就彷彿是一個全能小秘書一般,可以整理文案、改錯字,甚至連寫程式碼都不在話下。

-----廣告,請繼續往下閱讀-----

場景轉換到影像領域,如今市面上也有同樣由 OpenAI 打造出的圖像生成平台「DALL·E 2」,或是大名鼎鼎的「Midjourney 」,都可以很有效率的將使用者文字描述轉換成圖片。雖然這些平台生成的內容偶爾還是會出現「破圖」的情況,例如頭髮少一塊,或是出現奇怪色塊等,但它們的生成速度極快,也能產生不少令人印象深刻的高品質內容;對於一般大眾而言,自然充滿吸引力。

陳駿丞解釋,過去也有許多以文字產生圖片的嘗試,但品質並不佳,而現在之所以可以顯得如此真實,便是借助了「擴散模型」(Diffusion Model)的強大威力。大約 2019 年左右,「擴散模型」逐漸超越了原本主流的「生成對抗網路」(Generative Adversarial Network,GAN),吸引大量研究人員投入,也因此衍生出「Midjourney」這類的圖片服務,打個字、按個鈕便能生成美美的圖片。進階使用者還可以輸入如同咒語般長的自訂提示詞(Prompt),生成符合需求的圖片,甚至還有人專門訓練生成提示詞的 AI,各種 AI 藝術社群也如雨後春筍般成立。

提示詞給的資訊越多,就越有機會用繪圖 AI 生成想要的客製化圖片。
圖|研之有物(資料來源|Midjourney)

神奇 AI 訓練師——「擴散模型」與「生成對抗網路」

等等等等,什麼是「擴散模型」?什麼是「生成對抗網路」?想了解兩者的不同,讓我們先從比較「資深」的那個開始說起。

所謂「生成對抗網路」,其實是由兩個網路所組成的,分別是「鑑別網路」(Discriminating Network)與「生成網路」(Generative Network)。這兩者間的關係就像是考官和學生(亦敵亦友!),學生(生成網路)要負責把圖生出來,交給考官(鑑別網路)去判斷這張圖跟真實圖片的分布究竟像不像,像就給過、不像就退回去砍掉重練。

-----廣告,請繼續往下閱讀-----

至於考官(鑑別網路)為什麼能如此精確呢?因為研究員會預先餵給它真實的圖片,好協助鑑別網路做出足夠專業的判斷、給予精準回饋。而學生(生成網路)則在這一次次「交作業、修正、交作業、修正」的過程中,畫出越來越接近真實模樣的圖片。

生成對抗網路的概念比喻圖,生成網路與鑑別網路這兩組神經網路會相互訓練,生成網路所產出的圖片會越來越接近鑑別網路的目標,差異越來越小。
圖|研之有物(資料來源|李宏毅

相比起 GAN 對錯分明、馬上定生死的特點,「擴散模型」採取的路徑相對而言非常迂迴,但是結果更為精準,如果採用知名電腦科學家臺大電機系李宏毅教授的比喻,擴散模型就像是從一塊大石頭裡面刻出大衛像,圖片就在雜訊當中!

「擴散模型」在訓練期間的第一步是加噪(add noise),以貓為案例來說,擴散模型的原理就是將一張正常的貓咪圖片,用統計方法取樣出一張特定大小的雜訊圖(例如 512*512),過程中研究人員會控制參數去加上高斯雜訊。第二步是去噪(denoise),透過減去預測的高斯噪聲,得到乾淨的原貓圖。模型訓練的越好,預測的高斯噪聲量越準。

訓練好之後,「擴散模型」在輸出的時候,為了輸出符合使用者文字指令的貓咪圖片,模型會從隨機的雜訊圖開始,應用訓練過程的去噪器,像物理的擴散過程一樣,逐漸改變每個像素點的值,反覆去掉噪點,得到最後新的貓咪圖。

-----廣告,請繼續往下閱讀-----

如果有用過 Midjourney 的人,應該也會發現 AI 收到文字指令開始產圖的時候,是從一張模糊不清的圖片,一顆顆像素逐漸改變,變成你要的圖。

擴散模型透過加噪和去噪來訓練模型,利用去噪來生成圖片。實際生成圖片的過程,就是逐步去除噪聲的過程。
圖|研之有物(資料來源|李宏毅

陳駿丞指出,由於這些噪聲都是研究員自己加的,所以控制度極高,也可以掌握其中細部的變化過程。而這種「保姆式」訓練法,最大的好處就在於:擴散模型是一種漸進式學習的過程,因此對於細節的掌握度將會更高。

陳駿丞提到,兩種方式的訓練時間其實差不多,但以執行時間來說,「擴散模型」會比較久一點,因為需要慢慢摸索,而 GAN 則是幾乎一步到位。不過,雖說處理時間可能較長,「擴散模型」卻也因為訓練比 GAN 更穩定與更全面這份特質,可以訓練很大的資料集,也能生出較為豐富多元的成果。

侵權與假消息——生成式 AI 的負面影響

能生出細膩而接近真實的圖乍聽之下是好事,但它同時也是一把雙面刃,可能伴隨著侵害智財權、製造假消息等等負面效應。

-----廣告,請繼續往下閱讀-----

在訓練生成式 AI 相關模型時,必定需要大量的資料做為參考,而以 AI 繪圖來說,許多資料其實是未經授權的網路圖片;假設宮崎駿的圖片被盜用去訓練開源模型,那這些生成式 AI 後來生出的圖可能就會帶有宮崎駿的風格或曾經畫過的元素,這樣是否會帶來侵權或抄襲的問題?是我們必須思考的重要課題。

而說到假消息,就一定得談到值得關注的「深偽」(Deepfake)技術。雖然這個詞很容易讓人聯想到一些負面的事件,比如新聞報導網紅小玉用深偽技術製作不雅影片。然而,陳駿丞澄清,深偽技術最常出現的場域其實是在電影工業中。其中,最知名的應用,莫過於《玩命關頭》系列電影,在拍攝期間主角保羅沃克不幸意外離世,劇組便透過電腦合成影像技術,讓主角的弟弟替身上陣,主角身影得以再次與觀眾相見。

用你的魔法對付你!反制深偽影像的 AI

深偽技術若運用得宜,便是賺人熱淚的神器,反之,卻也可能成為萬人唾罵的幫兇,面對這樣強大的工具,難道我們只能乖乖束手就擒嗎?才不!既然 AI 如此強大,那我們就訓練 AI 來對付它!

陳駿丞分享道,反制深偽影像常用的方法便是訓練「二元偵測器」,藉由蒐集大量真實與偽造影像資料去訓練 AI,讓它得以判斷影像的真偽。然而,深偽有很多種,而二元偵測器對於沒有看過的資料,表現會大打折扣。

-----廣告,請繼續往下閱讀-----

過去人們是用 GAN 來生圖,現在是用擴散模型來產圖,未來也有可能出現新的方式,想要找出一個一勞永逸的方法,其實並不容易。

陳駿丞認真地說,深偽偵測的過程,其實很像在研發一套「防毒軟體」,防毒軟體很難永遠跑在病毒前面,大多是遇到病毒再往下思考解方。但是,面對這樣的情況也不用完全悲觀,因為訓練偵測模型可以透過「非監督式」和「自監督式」等方式去進行模擬,進而得出比較能廣泛應用的工具。

除了偵測深偽的錯處之外,我們也可以針對訓練資料動點手腳,像是加上一些「浮水印」。許多生成式 AI 的訓練資料來自圖庫圖片,其中許多圖片自帶防盜浮水印,假設 AI 蒐集了這些素材,往後生成的圖片中可能就會出現「版權所X」等等字樣。

而我們能做的,便是為訓練資料加上肉眼看不見的浮水印。比如說,在影像領域中,伽碼(gamma)指的是用來編(解)碼照度的非線性曲線,我們可以偷偷將浮水印藏在人眼看不見的伽碼範圍中,唯有調整到特定區域,才能看見浮水印。聽起來是不是很像我們小時候用檸檬汁玩的隱形墨水呢?

-----廣告,請繼續往下閱讀-----

同樣是浮水印,我們也可以將它藏在人眼比較不敏感的頻率中,然後偷偷放去圖片中邊邊角角的地方,讓人眼看不出來。 加入浮水印後,我們就可以進一步訓練偵測器去尋找浮水印。假設偵測器能在圖上面找到浮水印,那就可以藉此推斷圖的真偽。

而相對偵測、加浮水印等等「補救」的方式,假設我們已經掌握了一些模型的架構,便能透過添加「對抗樣本」(Adversarial Examples),直接攻入生成式 AI 的大本營,讓這些深偽 AI 只能生出一些亂七八糟、毫無邏輯的圖片,或是強迫生成特定的圖案。例如找出幾個常用、能進行臉部特徵操作的 GAN,針對它們研發相關對抗樣本,如此一來,只要加入了團隊開發的噪聲,便能同時打壞這幾種 GAN 的生成。

對抗樣本是防禦深偽模型的有效手段,干擾深偽模型的影像生成。
圖|研之有物

假消息滿天飛怎麼辦?交給深偽影像偵測器!

這麼看下來,深偽偵測若想做得好,需包含的面向又多又廣、還很複雜,但請各位別緊張,陳駿丞與中研院、臺灣大學、臺灣科技大學、成功大學、中央大學以及國家高速網路與計算中心其他教授與研究員共同組成的研究團隊,最近才剛打造出一款泛用性相對較佳的「深偽影像偵測器」,團隊其他研究成員包括王新民研究員、曹昱研究員、花凱龍教授、許志仲教授、許永真教授、蔡宗翰教授與國網的郭嘉真研究員。

這款偵測器以慕尼黑工業大學和義大利拿坡里費德里克二世大學共同提出的偽造人臉資料庫「Face Forensic++」為基礎,透過自監督的方式去產生出深偽的各式可能形式。

-----廣告,請繼續往下閱讀-----

團隊是如何訓練偵測器的呢?具體的運作方式是:先偵測輪廓、產生一個「面罩」去界定人臉的位置;接著,再讓偵測器透過些許微調去模擬深偽影像的特徵;再來,將這些「模擬的深偽影像」丟回去當作訓練資料。經過訓練的偵測器便能大幅升級,可以根據顏色、頻率、邊緣特徵等等參數,去判斷影像的真偽,甚至可以幫這些深偽影像區分難度呢!

影片是陳駿丞與團隊的深偽辨識成果,這裡設定為辨識 Deepfake 模型。看到紅框了嗎?數值越小,就表示圖片是深偽的可能越高,這個工具不僅能告訴你影像的真假,甚至能針對顏色、頻率、調整程度做出判斷。
圖│研之有物(資料來源│陳駿丞)

聽起來,這樣的偵測器已經很完美了?陳駿丞笑著說,這樣的內容一經發表,偽造資訊的一方可能又會想辦法繞過這些地方,對雙方來說,這就是場永無止盡的攻防戰,對此,陳駿丞表示,團隊想要完成的,便是:

盡量提供一個比較完整的解決方案,提供普羅大眾各種可能的工具,盡可能讓大家的資料不會被偽造,並幫助他們偵測。

陳駿丞笑著說,在發表深偽偵測的研究內容之後,偽造資訊的一方肯定又會想辦法繞過,這是一場永無止盡的攻防戰。
圖|研之有物

深偽技術防護罩——對所有事保持懷疑

這一份深偽影像偵測器凝結了眾人的心血,陳駿丞很期待未來偵測器正式上線後,能透過國家高速網路與計算中心設計的好用介面讓大家方便操作,在詐騙防治方面盡一份心力。同時,也期待各界看到這個工具的潛力,願意成為堅強的支持力量。

那在這麼好用的工具正式上線之前,我們又該如何去判斷影片的真假呢?陳駿丞傳授了我們一些獨家小絕招:首先:注意「姿勢」,深偽影片可能會出現一些不自然的怪異姿勢;其次,可以關注「背景」,比如突然出現裂痕之類的;再來,也要看看「衣服」等等細節,可能會發現破圖的蹤跡。而影片若是出現側臉時,也比較容易發現瑕疵,比如說頭髮動得很怪、眼神不對、牙齒沒牙縫等等。

另一方面,如果影像的解析度太低,也會影響深偽偵測的準確性,所以,對於太過模糊的圖片、影片,都應該格外小心。

陳駿丞也提醒,隨著相關造假技術日臻成熟,圖片、影片中的細微瑕疵將會越來越難以察覺,這時候,一定要謹記以下原則:

不能像以前一樣看到影片就覺得是真的,還是要抱持懷疑的態度。

假設看到一些違反常理或「怪怪」的內容,一定要多方查證,絕不可以馬上就相信。

讀到這裡的各位,想必已經被陳駿丞裝上了一套強而有力的「深偽防毒軟體」,希望大家帶著這層防護罩,在生活中遠離虛假、靠近真相!(p.s. 要記得定期更新啊!)

陳駿丞與實驗室成員合影。未來他們將和國網中心合作,正式推出深偽偵測辨識平台。
圖|研之有物
-----廣告,請繼續往下閱讀-----
文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3650 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

0
0

文字

分享

0
0
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
數智驅動未來:從信任到執行,AI 為企業創新賦能
鳥苷三磷酸 (PanSci Promo)_96
・2025/01/13 ・4938字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文由 鼎新數智 與 泛科學 共同規劃與製作

你有沒有想過,當 AI 根據病歷與 X 光片就能幫你診斷病症,或者決定是否批准貸款,甚至從無人機發射飛彈時,它的每一步「決策」是怎麼來的?如果我們不能知道 AI 的每一個想法步驟,對於那些 AI 輔助的診斷和判斷,要我們如何放心呢?

馬斯克與 OpenAI 的奧特曼鬧翻後,創立了新 AI 公司 xAI,並推出名為 Grok 的產品。他宣稱目標是以開源和可解釋性 AI 挑戰其他模型,而 xAI 另一個意思是 Explainable AI 也就是「可解釋性 AI」。

如今,AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?

-----廣告,請繼續往下閱讀-----
AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?圖/pexels

黑盒子模型背後的隱藏秘密

無法解釋的 AI 究竟會帶來多少問題?試想,現在許多銀行和貸款機構已經使用 AI 評估借貸申請者的信用風險,但這些模型往往如同黑箱操作。有人貸款被拒,卻完全不知原因,感覺就像被分手卻不告訴理由。更嚴重的是,AI 可能擅自根據你的住所位置或社會經濟背景給出負面評價,這些與信用風險真的相關嗎?這種不透明性只會讓弱勢群體更難融入金融體系,加劇貧富差距。這種不透明性,會讓原本就已經很難融入金融體系的弱勢群體,更加難以取得貸款,讓貧富差距越來越大,雪上加霜。

AI 不僅影響貸款,還可能影響司法公正性。美國部分法院自 2016 年起使用「替代性制裁犯罪矯正管理剖析軟體」 COMPAS 這款 AI 工具來協助量刑,試圖預測嫌犯再犯風險。然而,這些工具被發現對有色人種特別不友好,往往給出偏高的再犯風險評估,導致更重的刑罰和更嚴苛的保釋條件。更令人擔憂的是,這些決策缺乏透明度,AI 做出的決策根本沒法解釋,這讓嫌犯和律師無法查明問題根源,結果司法公正性就這麼被悄悄削弱了。

此外,AI 在醫療、社交媒體、自駕車等領域的應用,也充滿類似挑戰。例如,AI 協助診斷疾病,但若原因報告無法被解釋,醫生和患者又怎能放心?同樣地,社群媒體或是 YouTube 已經大量使用 AI 自動審查,以及智慧家居或工廠中的黑盒子問題,都像是一場越來越複雜的魔術秀——我們只看到結果,卻無法理解過程。這樣的情況下,對 AI 的信任感就成為了一個巨大的挑戰。

為什麼人類設計的 AI 工具,自己卻無法理解?

原因有二。首先,深度學習模型結構複雜,擁有數百萬參數,人類要追蹤每個輸入特徵如何影響最終決策結果,難度極高。例如,ChatGPT 中的 Transformer 模型,利用注意力機制(Attention Mechanism)根據不同詞之間的重要性進行特徵加權計算,因為機制本身涉及大量的矩陣運算和加權計算,這些數學操作使得整個模型更加抽象、不好理解。

-----廣告,請繼續往下閱讀-----

其次,深度學習模型會會從資料中學習某些「特徵」,你可以當作 AI 是用畫重點的方式在學習,人類劃重點目的是幫助我們加速理解。AI 的特徵雖然也能幫助 AI 學習,但這些特徵往往對人類來說過於抽象。例如在影像辨識中,人類習慣用眼睛、嘴巴的相對位置,或是手指數量等特徵來解讀一張圖。深度學習模型卻可能會學習到一些抽象的形狀或紋理特徵,而這些特徵難以用人類語言描述。

深度學習模型通常採用分佈式表示(Distributed Representation)來編碼特徵,意思是將一個特徵表示為一個高維向量,每個維度代表特徵的不同方面。假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。對 AI 而言,這是理解世界的方式,但對人類來說,卻如同墨跡測驗般難以解讀。

假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。圖/unsplash

試想,AI 協助診斷疾病時,若理由是基於醫生都無法理解的邏輯,患者即使獲得正確診斷,也會感到不安。畢竟,人們更相信能被理解的東西。

打開黑盒子:可解釋 AI 如何運作?我們要如何教育 AI?

首先,可以利用熱圖(heatmap)或注意力圖這類可視化技術,讓 AI 的「思維」有跡可循。這就像行銷中分析消費者的視線停留在哪裡,來推測他們的興趣一樣。在卷積神經網絡和 Diffusion Models 中 ,當 AI 判斷這張照片裡是「貓」還是「狗」時,我需要它向我們展示在哪些地方「盯得最緊」,像是耳朵的形狀還是毛色的分布。

-----廣告,請繼續往下閱讀-----

其次是局部解釋,LIME 和 SHAP 是兩個用來發展可解釋 AI 的局部解釋技術。

SHAP 的概念來自博弈,它將每個特徵看作「玩家」,而模型的預測結果則像「收益」。SHAP 會計算每個玩家對「收益」的貢獻,讓我們可以了解各個特徵如何影響最終結果。並且,SHAP 不僅能透過「局部解釋」了解單一個結果是怎麼來的,還能透過「全局解釋」理解模型整體的運作中,哪些特徵最重要。

以實際的情景來說,SHAP 可以讓 AI 診斷出你有某種疾病風險時,指出年齡、體重等各個特徵的影響。

LIME 的運作方式則有些不同,會針對單一個案建立一個簡單的模型,來近似原始複雜模型的行為,目的是為了快速了解「局部」範圍內的操作。比如當 AI 拒絕你的貸款申請時,LIME 可以解釋是「收入不穩定」還是「信用紀錄有問題」導致拒絕。這種解釋在 Transformer 和 NLP 應用中廣泛使用,一大優勢是靈活且計算速度快,適合臨時分析不同情境下的 AI 判斷。比方說在醫療場景,LIME 可以幫助醫生理解 AI 為何推薦某種治療方案,並說明幾個主要原因,這樣醫生不僅能更快做出決策,也能增加患者的信任感。

-----廣告,請繼續往下閱讀-----

第三是反事實解釋:如果改變一點點,會怎麼樣?

如果 AI 告訴你:「這家銀行不會貸款給你」,這時你可能會想知道:是收入不夠,還是年齡因素?這時你就可以問 AI:「如果我年輕五歲,或者多一份工作,結果會怎樣?」反事實解釋會模擬這些變化對結果的影響,讓我們可以了解模型究竟是如何「權衡利弊」。

最後則是模型內部特徵的重要性排序。這種方法能顯示哪些輸入特徵對最終結果影響最大,就像揭示一道菜中,哪些調味料是味道的關鍵。例如在金融風險預測中,模型可能指出「收入」影響了 40%,「消費習慣」占了 30%,「年齡」占了 20%。不過如果要應用在像是 Transformer 模型等複雜結構時,還需要搭配前面提到的 SHAP 或 LIME 以及可視化技術,才能達到更完整的解釋效果。

講到這裡,你可能會問:我們距離能完全信任 AI 還有多遠?又或者,我們真的應該完全相信它嗎?

-----廣告,請繼續往下閱讀-----

我們終究是想解決人與 AI 的信任問題

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。因此,AI 既要「可解釋」,也要「能代理」。

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。圖/unsplash

舉例來說,當一家公司要做一個看似「簡單」的決策時,背後的過程其實可能極為複雜。例如,快時尚品牌決定是否推出新一季服裝,不僅需要考慮過去的銷售數據,還得追蹤熱門設計趨勢、天氣預測,甚至觀察社群媒體上的流行話題。像是暖冬來臨,厚外套可能賣不動;或消費者是否因某位明星愛上一種顏色,這些細節都可能影響決策。

這些數據來自不同部門和來源,龐大的資料量與錯綜關聯使企業判斷變得困難。於是,企業常希望有個像經營大師的 AI 代理人,能吸收數據、快速分析,並在做決定時不僅給出答案,還能告訴你「為什麼要這麼做」。

傳統 AI 像個黑盒子,而可解釋 AI (XAI)則清楚解釋其判斷依據。例如,為什麼不建議推出厚外套?可能理由是:「根據天氣預測,今年暖冬概率 80%,過去三年數據顯示暖冬時厚外套銷量下降 20%。」這種透明解釋讓企業更信任 AI 的決策。

-----廣告,請繼續往下閱讀-----

但會解釋還不夠,AI 還需能真正執行。這時,就需要另一位「 AI 代理人」上場。想像這位 AI 代理人是一位「智慧產品經理」,大腦裝滿公司規則、條件與行動邏輯。當客戶要求變更產品設計時,這位產品經理不會手忙腳亂,而是按以下步驟行動:

  1. 檢查倉庫物料:庫存夠不夠?有沒有替代料可用?
  2. 評估交期影響:如果需要新物料,供應商多快能送到?
  3. 計算成本變化:用新料會不會超出成本預算?
  4. 做出最優判斷,並自動生成變更單、工單和採購單,通知各部門配合執行。

這位 AI 代理人不僅能自動處理每個環節,還會記錄每次決策結果,學習如何變得更高效。隨時間推移,這位「智慧產品經理」的判斷將更聰明、決策速度更快,幾乎不需人工干預。更重要的是,這些判斷是基於「以終為始」的原則,為企業成長目標(如 Q4 業績增長 10%)進行連續且動態地自我回饋,而非傳統系統僅月度檢核。

這兩位 AI 代理人的合作,讓企業決策流程不僅透明,還能自動執行。這正是數智驅動的核心,不僅依靠數據驅動決策,還要能解釋每一個選擇,並自動行動。這個過程可簡化為 SUPA,即「感知(Sensing)→ 理解(Understanding)→ 規劃(Planning)→ 行動(Acting)」的閉環流程,隨著數據的變化不斷進化。

偉勝乾燥工業為例,他們面臨高度客製化與訂單頻繁變更的挑戰。導入鼎新 METIS 平台後,偉勝成功將數智驅動融入業務與產品開發,專案準時率因此提升至 80%。他們更將烤箱技術與搬運機器人結合,開發出新形態智慧化設備,成功打入半導體產業,帶動業績大幅成長,創造下一個企業的增長曲線。

-----廣告,請繼續往下閱讀-----

值得一提的是,數智驅動不僅帶動業務增長,還讓員工擺脫繁瑣工作,讓工作更輕鬆高效。

數智驅動的成功不僅依賴技術,還要與企業的商業策略緊密結合。為了讓數智驅動真正發揮作用,企業首先要確保它服務於具體的業務需求,而不是為了技術而技術。

這種轉型需要有策略、文化和具體應用場景的支撐,才能讓數智驅動真正成為企業持續增長的動力。

還在猶豫數智驅動的威力?免費上手企業 AI 助理!👉 企業 AI 體驗
現在使用專屬邀請碼《 KP05 》註冊就享知:https://lihi.cc/EDUk4
訂閱泛科學獨家知識頻道,深入科技趨勢與議題內容。

👉立即免費加入

-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
224 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
從遊戲到量子計算:NVIDIA 憑什麼在 AI 世代一騎絕塵?
PanSci_96
・2025/01/09 ・2941字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

AI 與 GPU 的連結:為什麼 NVIDIA 股價一路飆?

2023 年至今,人工智慧(AI)熱潮引爆全球科技圈的競爭與創新,但最受矚目的企業,莫過於 NVIDIA。它不僅長期深耕遊戲顯示卡市場,在近年來卻因為 AI 應用需求的飆升,一舉躍居市值龍頭。原因何在?大家可能會直覺認為:「顯示卡性能強,剛好給 AI 訓練用!」事實上,真正的關鍵並非只有強悍的硬體,而是 NVIDIA 打造的軟硬體整合技術──CUDA

接下來將為你剖析 CUDA 與通用圖形處理(GPGPU)的誕生始末,以及未來 NVIDIA 持續看好的量子計算與生醫應用,一窺這家企業如何從「遊戲顯示卡大廠」蛻變為「AI 世代的領航者」。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

CPU vs. GPU:為何顯示卡能成為 AI 領跑者?

在電腦運作中,CPU(中央處理器)向來是整個系統的「大腦」,負責執行指令、邏輯判斷與多樣化的運算。但是,AI 模型訓練需要面對的是龐大的數據量與繁複的矩陣或張量運算。這些運算雖然單一步驟並不複雜,但需要進行「海量且重複性極高」的計算,CPU 難以在短時間內完成。

反觀 GPU(圖形處理器),原先是用來處理遊戲畫面渲染,內部具有 大量且相對簡單的算術邏輯單元。GPU 可以同時在多個核心中進行平行化運算,就像一座「高度自動化、流水線式」的工廠,可一次處理大量像素、頂點或是 AI 訓練所需的運算。這讓 GPU 在大量數值計算上遠遠超越了 CPU 的處理速度,也讓「顯示卡算 AI」成了新時代的主流。

-----廣告,請繼續往下閱讀-----

顯示卡不只渲染:GPGPU 與 CUDA 的誕生

早期,GPU 只被視為遊戲繪圖的利器,但 NVIDIA 的創辦人黃仁勳很快察覺到:這種多核心平行化的結構,除了渲染,也能用來處理科學運算。於是,NVIDIA 在 2007 年正式推出了名為 CUDA(Compute Unified Device Architecture) 的平台。這是一套讓開發者能以熟悉的程式語言(如 C、C++、Python)來調用 GPU 資源的軟體開發工具套件,解決了「人類要如何對 GPU 下指令」的問題。

在 CUDA 出現之前,若要把 GPU 用於渲染以外的用途,往往必須透過「著色器語言」或 OpenGL、DirectX 等繪圖 API 進行繁瑣的間接操作。對想用 GPU 加速數學或科學研究的人來說,門檻極高。然而,有了 CUDA,開發者不需理解圖像著色流程,也能輕鬆呼叫 GPU 的平行運算能力。這代表 GPU 從遊戲卡一躍成為「通用圖形處理單元」(GPGPU),徹底拓展了它在科學研究、AI、影像處理等領域的應用版圖。

AI 崛起的臨門一腳:ImageNet 大賽的關鍵一擊

如果說 CUDA 是 NVIDIA 邁向 AI 領域的踏腳石,那麼真正讓 GPU 與 AI 完美結合的轉捩點,發生在 2012 年的 ImageNet 大規模視覺辨識挑戰賽(ILSVRC)。這場由李飛飛教授創辦的影像辨識競賽中,參賽團隊需要對龐大的影像數據進行訓練、分類及辨識。就在那一年,名為「AlexNet」的深度學習模型橫空出世,利用 GPU 進行平行運算,大幅減少了訓練時間,甚至比第二名的辨識率高出將近 10 個百分點,震撼了全球 AI 研究者。

AlexNet 的成功,讓整個學界與業界都注意到 GPU 在深度學習中的強大潛力。CUDA 在此時被奉為「不二之選」,再加上後來發展的 cuDNN 等深度學習函式庫,讓開發者不必再自行編寫底層 GPU 程式碼,建立 AI 模型的難度與成本大幅降低,NVIDIA 的股價也因此搭上了 AI 波浪,一飛沖天。

-----廣告,請繼續往下閱讀-----
AlexNet 的成功凸顯 GPU 在深度學習中的潛力。圖/unsplash

為什麼只有 NVIDIA 股價衝?對手 AMD、Intel 在做什麼?

市面上有多家廠商生產 CPU 和 GPU,例如 AMD 與 Intel,但為什麼只有 NVIDIA 深受 AI 市場青睞?綜觀原因,硬體只是其一,真正不可或缺的,是 「軟硬體整合」與「龐大的開發者生態系」

硬體部分 NVIDIA 長年深耕 GPU 技術,產品線完整,且數據中心級的顯示卡在能耗與性能上具領先優勢。軟體部分 CUDA 及其相關函式庫生態,涵蓋了影像處理、科學模擬、深度學習(cuDNN)等多方面,讓開發者易於上手且高度依賴。

相比之下,雖然 AMD 也推行了 ROCm 平台、Intel 有自家解決方案,但在市場普及度與生態支持度上,依舊與 NVIDIA 有相當差距。

聰明的管理者

GPU 的優勢在於同時有成百上千個平行運算核心。當一個深度學習模型需要把數據切分成無數個小任務時,CUDA 負責將這些任務合理地排班與分配,並且在記憶體讀寫方面做出最佳化。

-----廣告,請繼續往下閱讀-----
  • 任務分類:同性質的任務集中處理,以減少切換或等待。
  • 記憶體管理:避免資料在 CPU 與 GPU 之間頻繁搬移,能大幅提升效率。
  • 函式庫支援:如 cuDNN,針對常見的神經網路操作(卷積、池化等)做進一步加速,使用者不必從零開始撰寫平行運算程式。

結果就是,研究者、工程師甚至學生,都能輕鬆把 GPU 能力用在各式各樣的 AI 模型上,訓練速度自然飛漲。

從 AI 到量子計算:NVIDIA 對未來的佈局

當 AI 波浪帶來了股價與市值的激增,NVIDIA 並沒有停下腳步。實際上,黃仁勳與團隊還在積極耕耘下一個可能顛覆性的領域──量子計算

2023 年,NVIDIA 推出 CUDA Quantum 平台,嘗試將量子處理器(QPU)與傳統 GPU / CPU 整合,以混合式演算法解決量子電腦無法單獨加速的部分。就像為 AI 量身打造的 cuDNN 一樣,NVIDIA 也對量子計算推出了相對應的開發工具,讓研究者能在 GPU 上模擬量子電路,或與量子處理器協同運算。

NVIDIA 推出 CUDA Quantum 平台,整合 GPU 與 QPU,助力混合量子運算。圖/unsplash

這項新布局,或許還需要時間觀察是否能孕育出市場級應用,但顯示 NVIDIA 對「通用運算」的野心不只停留於 AI,也想成為「量子時代」的主要推手。

-----廣告,請繼續往下閱讀-----

AI 熱潮下,NVIDIA 凭什麼坐穩王座?

回到一開始的疑問:「為什麼 AI 熱,NVIDIA 股價就一定飛?」 答案可簡化為兩點:

  1. 硬體領先 + 軟體生態:顯示卡性能強固然重要,但 CUDA 建立的開發者生態系才是關鍵。
  2. 持續布局未來:當 GPU 為 AI 提供高效能運算平台,NVIDIA 亦不斷將資源投入到量子計算、生醫領域等新興應用,為下一波浪潮預先卡位。

或許,正因為不斷探索新技術與堅持軟硬整合策略,NVIDIA 能在遊戲市場外再創一個又一個高峰。雖然 AMD、Intel 等競爭者也全力追趕,但短期內想撼動 NVIDIA 的領先地位,仍相當不易。

未來,隨著 AI 技術持續突破,晶片性能與通用運算需求只會節節攀升。「AI + CUDA + GPU」 的組合,短時間內看不出能被取代的理由。至於 NVIDIA 是否能繼續攀向更驚人的市值高峰,甚至在量子計算跑道上再拿下一座「王者寶座」,讓我們拭目以待。

歡迎訂閱 Pansci Youtube 頻道 鎖定每一個科學大事件!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。