0

3
2

文字

分享

0
3
2

【從中國經典認識大腦系列】「朝三暮四」背後的行為經濟學:人是不理性的

YTC_96
・2023/08/18 ・3161字 ・閱讀時間約 6 分鐘

《莊子.齊物論》勞神明為一,而不知其同也,謂之朝三。何謂朝三?狙公賦芧,曰:「朝三而暮四。」眾狙皆怒。曰:「然則朝四而暮三。」眾狙皆悅。名實未虧,而喜怒為用,亦因是也。是以聖人和之以是非,而休乎天鈞。

以上是一個大家耳熟能詳的成語「朝三暮四」的原始出處,用來比喻人的心意不定、反覆無常,也可用在比喻事物變化無定。但你知道這個成語的故事也描述了行為經濟學中人們常見的認知偏誤嗎?

這個故事是這樣的,有一位養猴人告訴他的猴子們說:「我決定每天早上給你們三升橡樹果實,下午給你們四升橡樹果實。」然而,猴子們卻很不滿意,覺得早上的份量太少。於是,養猴人說:「好吧,那我們改成早上給四升,下午給三升。」聽到這個消息,猴子們都很高興,以為早上的份量增加了。

「朝三暮四」也討論了認知偏差的問題。 圖/Pixabay

事實上,「朝三暮四」和「朝四暮三」只是改變了早上和晚上給予食物的量,但猴子們卻以為獲得了更多。這個故事要給我們啟示是,人以自我中心的眼光看待事物,沒有固定不變的準則。或許「朝三暮四」和「朝四暮三」的現象一般人聽起來覺得有點離譜,應該是猴子們太笨才會有如此愚蠢的行為。但事實上,人類許多不理性的行為從旁觀者來看其實和那些猴子差不多,而這些和我們的認知偏誤有關。

展望理論與框架效應

在「朝三暮四」和「朝四暮三」的故事中,猴子們對橡樹果實分配的滿意度,完全是受到訊息的框架影響,可以發現雖然總量沒有改變,但因為參照點改變,他們態度就改變了。在早上給四升,下午給三升的情境下,因為早上比較多,這對他們來說是一種增加,因此他們感到滿意。但相對的,在早上給三升,下午給四升的情境下,猴子們認為早上怎麼變少了,因此對他們來說這是一種損失,因此感到憤怒不滿意。

-----廣告,請繼續往下閱讀-----

猴子們會出現這樣的反應和框架效應(Framing Effect)有關。框架效應是一種認知偏誤,指人們在面對邏輯意義上相同訊息時,根據訊息的呈現方式會產生不同的反應或評價。這代表著訊息的表達方式能夠影響我們的決策和判斷,就彷彿我們的思考被侷限在框架內。

猴子的反應與框架效應有關圖/GIPHY

框架效應的概念是建立在心理學家阿莫斯.特沃斯基(Amos Tversky)與丹尼爾.卡尼曼(Daniel Kahneman)在 20 世紀 70 年代和 80 年代的研究,他們在行為經濟學和決策理論有許多貢獻,並證實了人們會因為認知偏誤而產生不理性的判斷。

1979年,他們提出一種描述性模型,用來解釋人們在面對風險和不確定性時做出的選擇。當時的主流經濟學認為人的決定都是理性的,但他們提出的展望理論(Prospect Theory)挑戰了傳統的期望效用理論,證實人們在處理損失和收益時表現出不對稱的行為。

展望理論發現人們對於遭遇損失時的痛苦感受要大於同等數量的收益所帶來的快樂感受,稱作「損失厭惡性 (loss aversion)」,這狀況也和猴子們的表現是相似的,對於損失感到非常不滿意。這凸顯了個人的決策和評估是受到選擇和訊息呈現方式的影響。

-----廣告,請繼續往下閱讀-----

框架效應也對風險決策產生影響。當同一風險以不同方式呈現時,人們的反應可能有所不同。例如,若醫師說手術有「10% 會失敗」,病人可能傾向認為風險較高,而不用接受手術;但如果使用手術有「90% 成功率」的描述,病人可能會認為風險較低,而願意接受手術治療。

雖然在「朝三暮四」的故事中,猴子們並不用考量收益獲得的機率來做出相對應的風險決策,但事實上,科學家們會使用猴子作為實驗動物,紀錄他們的行為以及特定腦區神經細胞反應來了解人們行為決策的本質,並幫助我們未來規劃更完善的經濟學理論來制定國家政策。

初始效應與錨定效應

錨定效應是什麼呢? 圖/Pixabay

除了框架效應,心理學的初始效應和錨定效應的結合也能解釋猴子「朝四暮三」而感到滿意的原因。

初始效應(Primacy Effect)是指在記憶和印象形成過程中,人們對於最早接收到的訊息更容易保持和記憶,並且更重視和注意這些訊息,而對整體印象具有更大的影響力。這可能是因為在一開始時,人們的注意力和認知資源是最充沛的,所以他們對於最早接收到的訊息進行更深入的處理和編碼,導致這些訊息更容易被記憶。

-----廣告,請繼續往下閱讀-----

從「朝三暮四」例子來看,因為初始效應的關係,早上的橡樹果實數量對猴子來說印象可能更深刻。也因為如此,猴子們只關心早上獲得的數量而可能忽略下午的數量。猴子們進而將早上的橡樹果實數量當作錨點,過度偏重此訊息。當飼主把早上的數量從三升增加為四升,猴子們就以為獲得較多,並非常高興。反之,若早上只給三升則猴子誤以為減少,並非常生氣。猴子們的問題是,他們忽略了真正重要的是一整天獲得的橡樹果實總量,而不是只有早上的數量。

這樣過度依賴最初呈現的訊息並將其錨定的現象也稱作錨定效應(Anchoring Effect),和框架效應一樣屬於認知偏誤的一種。最早也是由心理學家阿莫斯.特沃斯基(Amos Tversky)與丹尼爾.卡尼曼(Daniel Kahneman)觀察到並將其理論化。

1974 年,他們撰寫的不確定狀況下的判斷:啟發式和偏差(Judgment Under Uncertainty : Heuristics and Biases)一書中,首次提及錨定概念並分享了一個實驗。他們要求受試者在 5 秒內計算 1 × 2 × 3 × 4 × 5 × 6 × 7 × 8,或者 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1。

由於受試者沒有足夠的時間計算完整的答案,他們必須在進行了幾次乘法運算後做出預估。當序列以較小的數字開始(1 × 2 × 3 × 4 × 5 × 6 × 7 × 8),他們給出的答案中位數估計值為512;而當序列以較大的數字開始時(8 × 7 × 6 × 5 × 4 × 3 × 2 × 1),中位數估計值為 2,250(而正確答案是 40,320)。

-----廣告,請繼續往下閱讀-----

這說明了,只因為兩個序列的數字大小排序不同,則讓受試者產生了不同的錨點,進而估算出不同的答案,雖然兩序列的估計值都離正確答案有段距離,但可以發現以數字較小為開頭的序列估算出較小的可能答案。

結論

我們必須跳脫框架的影響。圖/Pixabay

「朝三暮四」這個寓言讓我們知道人世間沒有永恆不變的道理,不同的準則和觀點之下會產生不一樣想法。莊子希望人們能超越人世間紛擾,回歸自然,在自然的境界中找到永恆不變的道理。也就是原文中提到「休乎天鈞」的境界,齊物論的核心思想。

框架效應的存在顯示了人們對訊息呈現方式的敏感度和評價的相對性。這提醒我們在面對決策時要謹慎思考,並注意訊息的呈現方式對我們的判斷和行為的影響。

參考資料

文章難易度
YTC_96
11 篇文章 ・ 19 位粉絲
從大學部到博士班,在神經科學界打滾超過十年,研究過果蠅、小鼠以及大鼠。在美國取得神經科學博士學位之後,決定先沉澱思考未來的下一步。現在於加勒比海擔任志工進行精神健康知識以及大腦科學教育推廣。有任何問題,歡迎來信討論 ytc329@gmail.com。

0

1
0

文字

分享

0
1
0
揭密突破製程極限的關鍵技術——原子層沉積
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/30 ・3409字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文由 ASM 委託,泛科學企劃執行。 

以人類現在的科技,我們能精準打造出每一面牆只有原子厚度的房子嗎?在半導體的世界,我們做到了!

如果將半導體製程比喻為蓋房子,「薄膜製程」就像是在晶片上堆砌層層疊疊的磚塊,透過「微影製程」映照出房間布局 — 也就是電路,再經過蝕刻步驟雕出一格格的房間 — 電晶體,最終形成我們熟悉的晶片。為了打造出效能更強大的晶片,我們必須在晶片這棟「房子」大小不變的情況下,塞進更多如同「房間」的電晶體。

因此,半導體產業內的各家大廠不斷拿出壓箱寶,一下發展環繞式閘極、3D封裝等新設計。一下引入極紫外曝光機,來刻出更微小的電路。但別忘記,要做出這些複雜的設計,你都要先有好的基底,也就是要先能在晶圓上沉積出一層層只有數層原子厚度的材料。

-----廣告,請繼續往下閱讀-----

現在,這道薄膜製程成了電晶體微縮的一大關鍵。原子是物質組成的基本單位,直徑約0.1奈米,等於一根頭髮一百萬分之一的寬度。我們該怎麼精準地做出最薄只有原子厚度,而且還要長得非常均勻的薄膜,例如說3奈米就必須是3奈米,不能多也不能少?

這唯一的方法就是原子層沉積技術(ALD,Atomic Layer Deposition)。

蓋房子的第一步是什麼?沒錯,就是畫設計圖。只不過,在半導體的世界裡,我們不需要大興土木,就能將複雜的電路設計圖直接印到晶圓沉積的材料上,形成錯綜複雜的電路 — 這就是晶片製造的最重要的一環「微影製程」。

首先,工程師會在晶圓上製造二氧化矽或氮化矽絕緣層,進行第一次沉積,放上我們想要的材料。接著,為了在這層材料上雕出我們想要的電路圖案,會再塗上光阻劑,並且透過「曝光」,讓光阻劑只留下我們要的圖案。一次的循環完成後,就會換個材料,重複沉積、曝光、蝕刻的流程,這就像蓋房子一樣,由下而上,蓋出每個樓層,最後建成摩天大樓。

-----廣告,請繼續往下閱讀-----

薄膜沉積是關鍵第一步,基底的品質決定晶片的穩定性。但你知道嗎?不只是堆砌磚塊有很多種方式,薄膜沉積也有多樣化的選擇!在「薄膜製程」中,材料學家開發了許多種選擇來處理這項任務。薄膜製程大致可分為物理和化學兩類,物理的薄膜製程包括蒸鍍、濺鍍、離子鍍、物理氣相沉積、脈衝雷射沉積、分子束磊晶等方式。化學的薄膜製程包括化學氣相沉積、化學液相沉積等方式。不同材料和溫度條件會選擇不同的方法。

二氧化矽、碳化矽、氮化矽這些半導體材料,特別適合使用化學氣相沉積法(CVD, Chemical Vapor Deposition)。CVD 的過程也不難,氫氣、氬氣這些用來攜帶原料的「載氣」,會帶著要參與反應的氣體或原料蒸氣進入反應室。當兩種以上的原料在此混和,便會在已被加熱的目標基材上產生化學反應,逐漸在晶圓表面上長出我們的目標材料。

如果我們想增強半導體晶片的工作效能呢?那麼你會需要 CVD 衍生的磊晶(Epitaxy)技術!磊晶的過程就像是在為房子打「地基」,只不過這個地基的每一個「磚塊」只有原子或分子大小。透過磊晶,我們能在矽晶圓上長出一層完美的矽晶體基底層,並確保這兩層矽的晶格大小一致且工整對齊,這樣我們建造出來的摩天大樓就有最穩固、扎實的基礎。磊晶技術的精度也是各公司技術的重點。

雖然 CVD 是我們最常見的薄膜沉積技術,但隨著摩爾定律的推進,發展 3D、複雜結構的電晶體構造,薄膜也開始需要順著結構彎曲,並且追求精度更高、更一致的品質。這時 CVD 就顯得力有未逮。

-----廣告,請繼續往下閱讀-----

並不是說 CVD 不能用,實際上,不管是 CVD 還是其他薄膜製程技術,在半導體製程中仍占有重要地位。但重點是,隨著更小的半導體節點競爭愈發激烈,電晶體的設計也開始如下圖演變。

圖/Shutterstock

看出來差別了嗎?沒錯,就是構造越變越複雜!這根本是對薄膜沉積技術的一大考驗。

舉例來說,如果要用 CVD 技術在如此複雜的結構上沉積材料,就會出現像是清洗杯子底部時,有些地方沾不太到洗碗精的狀況。如果一口氣加大洗碗精的用量,雖然對杯子來說沒事,但對半導體來說,那些最靠近表層的地方,就會長出明顯比其他地方厚的材料。

該怎麼解決這個問題呢?

-----廣告,請繼續往下閱讀-----
CVD 容易在複雜結構出現薄膜厚度不均的問題。圖/ASM

材料學家的思路是,要找到一種方法,讓這層薄膜長到特定厚度時就停止繼續生長,這樣就能確保各處的薄膜厚度均勻。這種方法稱為 ALD,原子層沉積,顧名思義,以原子層為單位進行沉積。其實,ALD 就是 CVD 的改良版,最大的差異在所選用的化學氣體前驅物有著顯著的「自我侷限現象」,讓我們可以精準控制每次都只鋪上一層原子的厚度,並且將一步驟的反應拆為兩步驟。

在 ALD 的第一階段,我們先注入含有 A 成分的前驅物與基板表面反應。在這一步,要確保前驅物只會與基板產生反應,而不會不斷疊加,這樣,形成的薄膜,就絕對只有一層原子的厚度。反應會隨著表面空間的飽和而逐漸停止,這就稱為自我侷限現象。此時,我們可以通入惰性氣體將多餘的前驅物和副產物去除。在第二階段,我們再注入含有 B 成分的化學氣體,與早已附著在基材上的 A 成分反應,合成為我們的目標材料。

透過交替特殊氣體分子注入與多餘氣體分子去除的化學循環反應,將材料一層一層均勻包覆在關鍵零組件表面,每次沉積一個原子層的薄膜,我們就能實現極為精準的表面控制。

你知道 ALD 領域的龍頭廠商是誰嗎?這個隱形冠軍就是 ASM!ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商,自 1968 年,Arthur del Prado 於荷蘭創立 ASM 以來,ASM 一直都致力於推進半導體製程先進技術。2007 年,ASM 的產品 Pulsar ALD 更是成為首個運用在量產高介電常數金屬閘極邏輯裝置的沉積設備。至今 ASM 不僅在 ALD 市場佔有超過 55% 的市佔率,也在 PECVD、磊晶等領域有著舉足輕重的重要性。

-----廣告,請繼續往下閱讀-----

ASM 一直持續在快速成長,現在在北美、歐洲、及亞洲等地都設有技術研發與製造中心,營運據點廣布於全球 15 個地區。ASM 也很看重有「矽島」之稱的台灣市場,目前已在台灣深耕 18 年,於新竹、台中、林口、台南皆設有辦公室,並且在 2023 年於南科設立培訓中心,高雄辦公室也將於今年年底開幕!

當然,ALD 也不是薄膜製程的終點。

ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商。圖/ASM

最後,ASM 即將出席由國際半導體產業協會主辦的 SEMICON Taiwan 策略材料高峰論壇和人才培育論壇,就在 9 月 5 號的南港展覽館。如果你想掌握半導體產業的最新趨勢,絕對不能錯過!

圖片來源/ASM

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
3

文字

分享

0
2
3
大家都認為自己值得更多的薪水!給你更多錢會提升工作表現嗎?——《超越直覺》
一起來
・2024/05/02 ・1949字 ・閱讀時間約 4 分鐘

框架問題理應提醒我們,我們只要自動腦補就一定會犯錯。我們確實向來如此。不過「人類」這個對象不同於 AI 研究人員開發的機器人或電腦,並不會讓我們訝異到必須被迫改寫思考時的整個心智模式。相反地,一旦我們知道答案,就似乎總能找出先前被忽略、後來明顯相關的面向,就像拉扎斯菲爾德假想的《美國士兵》讀者——他們在事後發現,每一個對立的結果都同樣理所當然。

也許我們原本預期自己中了樂透之後會超級開心,結果中獎之後,卻發現自己很鬱悶,這個預測顯然很糟糕。但當我們意識到自己預測錯誤時,同時也獲得新的資訊,例如那些突然出現要借錢的親戚。於是我們會心想,如果早點知道這些資訊,就可以正確預測未來的幸福狀態,也許就不會去買樂透彩了。

因此,我們沒有質疑自己預測未來幸福程度的能力,反而只是認為我們漏掉了一些重要的東西,並且確保自己不再犯相同錯誤。然而我們卻一錯再錯。事實上,無論對於他人行為的預測失準了多少次,我們總是可以用當時未知的事情做為辯解。透過這種方式,我們掩蓋了框架問題,一再說服自己下次會做好,卻永遠都不明白我們真正錯在哪裡。

圖/envato

這種行為模式在動機與金錢報酬的關係中最為明顯,也最難消除。例如,實施金錢獎勵制度顯然能提升員工表現,而且數十年來,職場上大幅出現以績效為基礎的薪資制度,最具代表性的就是高階主管薪酬與股價掛鉤。

當然,員工在意的顯然不只薪水,還有內在的愉悅感、認同感,以及在個人職涯上的成長與晉升等因素,這些都會影響工作表現。

在其他條件都相同的情況下,適當的金錢獎勵可以提升個人表現——這似乎理所當然。然而,多年來有多項研究顯示,薪酬與工作表現之間的關係,實際上的複雜程度讓人難以想像。

舉個例子,最近我跟雅虎(Yahoo!)的同事梅森(Winter Mason)進行了一系列網路實驗。我們給予受試者不同的薪資,並要求他們執行各種簡單的重複性工作,例如:按照正確的時間順序排列一組車流照片,或是在矩形網格上,找出隱藏在一堆英文字母中的英文單字。

所有受試者都是在亞馬遜土耳其機器人(Amazon’s Mechanical Turk)這個外包網站上招募而來,這個網站是亞馬遜公司於二○○五年推出,原先是用來找出重複的庫存商品。現在有數百家企業使用土耳其機器人進行「群眾外包」(crowd-source),處理五花八門的各種任務,像是標示圖片中的物品、描述新聞報導的觀點,或是判斷兩種說法中哪一個比較清楚。這個網站也是招募心理學實驗受試者的一個有效方法,就像心理學家多年來在大學校園裡張貼廣告那樣,不過土耳其機器人網站的「託客」(turkers)完成一件任務的報酬通常只需要幾美分,只占了研究經費的一小部分。

圖/envato

我們的實驗總共納入數百位受試者,完成了數萬件任務。有些受試者完成一件任務只能得到 1 美分的酬勞,例如整理一組圖片、找出一個單字。但是,有些受試者完成相同任務卻會得到 5 美分或 10 美分。這在工資上是相當大的差異,要知道,美國電腦工程師的平均時薪只有聯邦最低工資的六倍,所以你可以預期這個工資差異會對受試者的行為產生強烈影響。

結果確實如此。我們付的錢越多,受試者離開實驗之前完成的任務就越多。我們還發現,不管工資多少,分配到「簡單」任務(每一組有兩張圖片需要歸類)的人,比分配到中等或困難任務(每一組有三至四張)的人完成更多任務。換句話說,這些都符合常理。

但接下來的問題是:雖然存在上述差異,我們發現這群受試者的工作品質,也就是歸類圖片的準確度,並不會因為工資不同而下降,即使只有正確完成才能拿到酬勞。

該如何解釋這個結果?我們並不十分確定。在受試者完成任務之後,我們問了一些問題,包括他們認為自己的工作該得到多少報酬。有趣的是,他們的回答與工作難度無關,而是取決於獲得的工資。平均而言,每件任務得到 1 美分的受試者,認為自己該得到 5 美分。得到 5 美分的認為自己該得到 8 美分,而得到 10 美分的則認為自己該得到 13 美分。

換句話說,不論他們實際上得到多少(還記得有些受試者的工資是別人的十倍嗎),每個人都覺得工資過低。大家在直覺上會認為,給予金錢獎勵就能夠提升員工的動機,但這個實驗告訴我們,即使是非常簡單的工作,工作動機也會因爲員工的權利意識提升而大幅減弱。

——本文摘自《超越直覺》,2024 年 01 月,一起來出版,未經同意請勿轉載。

討論功能關閉中。

一起來
5 篇文章 ・ 2 位粉絲