網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

1
0

文字

分享

0
1
0

基改作物有什麼危險?

葉綠舒
・2013/02/13 ・2794字 ・閱讀時間約 5 分鐘 ・SR值 451 ・四年級
credit: CC by sachman75@flickr

基改作物有什麼危險?任何未知的東西都有他的危險性在,即使是天然的也有危險。不然神農氏的臉怎麼會是綠的?世界上有多少人對花生過敏?更不要提很多植物其實本身就有毒,所以一開始就認為基改作物一定是極端危險的,其實也不公平。

但是基改作物的確有他的危險性存在,基改作物的危險性主要是來自於兩件事,一件事是農桿菌(Agrobacterium tumefaciens)本身的問題,另一件事則是植物本身帶來的副作用。

農桿菌是什麼?目前在市面上的轉殖植物,大概都是農桿菌的產品。這種細菌,廣泛存在於土壤中,如果感染植物,就會使植物長出腫瘤。

農桿菌如何讓植物長出腫瘤呢?

原來農桿菌上面有一個質體叫做Ti 質體。Ti是「誘發腫瘤」(tumor-inducing)的意思,農桿菌會把這個質體上面的一段DNA插入植物的DNA裡面(1)。插進去的DNA裡面帶有可以合成生長素(IAA)以及細胞分裂素(cytokinin)的酵素的基因。所以,一旦這段DNA插進植物細胞裡面,多了那段DNA的植物細胞,就會因為合成較多的生長素跟細胞分裂素,就開始進行細胞分裂。

假想一下,當樹幹上的植物細胞,只有10個被農桿菌感染,開始進行細胞分裂;而周圍的數百數千個細胞都還是如如不動的時候,會怎麼樣?當然那10個細胞就會長到凸出來,就成了腫瘤。

動物長腫瘤,是可怕的事;植物長腫瘤呢?其實植物長腫瘤,因為植物的每個細胞都被細胞壁圍得動彈不得,所以長出來的腫瘤細胞也不會亂跑(轉移),對植物來說也不痛不癢。

但是如果長在樹幹上,當然就會損害的木材的經濟價值;而腫瘤長得多了,會分去植物合成的養分(新的細胞當然需要養分來合成),所以很早(1897年)就有人研究這些腫瘤,發現了農桿菌。

當然接下來就會開始努力研究農桿菌的致病機轉,到了20世紀末期,科學家發現農桿菌上面的Ti質體,也發現農桿菌在感染植物細胞的時候,就是把Ti質體上面的一段DNA放到植物的DNA裡面。

而且,這段DNA有很清楚的界限,被定名為左邊界(Left Border, LB)與右邊界(Right Border, RB)。

既然這樣,有科學家就想到,如果我們把左邊界與右邊界中間的序列,置換成其他的DNA,然後再放回去農桿菌裡面,接著是不是只要用農桿菌來感染植物,就可以不費吹灰之力地把那段DNA放進去植物裡面了?

為什麼會有人想到這些,主要是因為過去製作轉殖植物的方法,都是用基因槍(gene gun),基因槍是很貴的設備,轉殖率也不高。

所以,一有人想到這方法,大家就開始努力的讓這個方法實現。由於用農桿菌感染植物,對植物本身的傷害不大(相對於基因槍),所以一旦這個方法真的能用,使用的人就愈來愈多了。

聽起來好像沒什麼問題,怎麼又會說有問題呢?

問題在於,理論上農桿菌應該只會把位在他的Ti 質體上面,從LB到RB中間的那一段放到植物裡面去;所以,只要研究者把LB到RB之間那段弄清楚,不要摻雜什麼有問題的DNA序列進去,理論上應該不會有什麼麻煩。

可是,過去的研究發現,農桿菌沒有那麼聽話(2,3)。

他有時會把完整的一整段轉進去,有時只會轉一個片段,有時會轉相反的片段。

如果是轉相反的片段,那就是一大堆的Ti質體都進去了,唯獨想要轉進去的那一段沒有進去。那一大段裡面有什麼?那可熱鬧了,包括了複製原點、對抗生素產生抗性的基因……。

另外也曾發現,他除了放Ti質體的序列以外,還在其他一些莫名其妙的地方放了一些奇怪的大小不一的片段。(3)

另外一個問題是,農桿菌只需要辨認一小段DNA序列就可以把它自己的DNA插入,所以他是「亂放」(4)。

因為亂放,所以很難保證他放進去的序列,不會因為放在哪裡而產生不一樣的問題。在我過去的經驗,同樣一段轉殖基因,轉到同樣的植物上,不同的轉殖株,呈現出來的性狀會有差異。

所以,除非今天生物科技公司願意把轉殖植物的「整個基因體」定序一次,否則,很難確定它是「除了轉殖基因以外,都跟原來的植物相同」。

植物本身帶來的副作用又是什麼呢?

植物本身的問題,主要是因為現在推出的轉殖植物,若不是抗病蟲(最有名的就是抗玉米根蟲 Diabrotica virgifera virgifera 了,也就是蘇力菌 Bacillus thuringiensis 裡面的 Bt 基因),就是抗殺草劑(glyphosate)。

能抗病蟲的,最近已經發現快要沒用了;去年(2012)在美國的五個州已經找到抗 Bt 的玉米根蟲了(5)。為什麼會出現抗 Bt 的玉米根蟲呢?其實是因為農民改變了種植方式;在以前還沒有 Bt 玉米的時候,最有效的防治方法就是輪作。今年種玉米,明年就改種別的;這樣玉米根蟲就不會多。

但是在改種轉殖玉米以後,因為他不怕玉米根蟲,加上美國政府補貼農民種玉米,於是農民就一直種一直種,都不輪作了。

不輪作,就提供了玉米根蟲一個人工的天擇場所;相信原本應該就有少數的玉米根蟲是不怕Bt的,但是過去沒有Bt玉米的時候,他們不見得比其他的蟲吃香。可是現在有了Bt玉米。

目前已經有五個州找到抗Bt的玉米根蟲了,相信Bt失效只是時間的問題而已。

至於抗殺草劑的,往往農民會因此使用更多殺草劑;但是雜草們也已經演化出對殺草劑的抵抗性了(6)。

弔詭的是,原本對於抗殺草劑的轉殖植物,過去擔心的是抗殺草劑基因會跳到野草身上,產生超級雜草(super weed);但是,超級雜草已經誕生了,而且是自然在野外演化出來的,跟轉殖植物一點關係也沒有,倒是跟農民大量使用殺草劑有關。

當然,不管是具抗性的病蟲,或是超級雜草,都是因為農民因為有轉殖作物,改變了過去務農的方式。這讓我想到抗生素—早期抗生素不也是這樣濫用,用到現在產生一大堆的MRSA、還有超級細菌嗎?

嗚呼,人總以為自己一定可以勝天,勝了嗎?(至於有些人認為,吃了轉殖作物的風險是來自於我們會吃下轉殖作物的DNA;這個想法其實是非常的錯誤。怎麼說呢?任何生物吃其他的生物,不管是生食或是熟食,一定會把其他生物的DNA也一起吃下去。想想看,在實驗室裡,要動用很多化學藥劑、要磨碎細胞、用離心機離心離心再離心才能把特定物種的DNA給萃取出來;而我們平常吃的食物,頂多就是洗洗切切煮煮烤烤炸炸,誰萃取過了?如果認為吃下轉殖作物的DNA是危險的,那麼為什麼幾百萬年來,我們放心大膽的吃遍飛禽走獸、吃遍蔬菜水果,怎麼沒人擔心過,吃芹菜會變芹菜、或是吃牛會變成牛之類的?

當然可能還有人會說,但是我們平常不會去吃細菌的DNA~確定嗎?我們從市場買回來的菜肉魚等等,都不是無菌的,只是我們會清洗到生菌數低於一定數目以下,然後再煮熟~煮熟了,就是把煮熟的細菌跟著食物一起吃下去。如果吃那麼多年都不會有事,為什麼吃煮熟的帶有一點點細菌DNA的植物就會有事呢?這些都是沒有根據的恐懼。)

參考資料:

  1. Pitzschke A. and Hirt H.. 2010.  Newinsights into an old story: Agrobacterium-induced tumour formation in plants byplant transformation. The EMBO Journal 29, 1021 – 1032.
  2. Fobert PR, Miki BL, Iyer VN. 1991. Detection of gene regulatory signals in plantsrevealed by T-DNA-mediated fusions. Plant Mol Biol. 17(4):837-51.
  3. Kononov ME, Bassuner B, Gelvin SB. 1997. Integration of T-DNA binary vector ‘backbone’sequences into the tobacco genome: evidence for multiple complex patterns ofintegration. Plant J. 11(5):945-57.
  4. Brunaud V, Balzergue S, Dubreucq B, Aubourg S, Samson F, Chauvin S, Bechtold N, Cruaud C, DeRose R, Pelletier G, Lepiniec L, Caboche M & Lecharny A. 2002. T-DNA integrationinto the Arabidopsis genome depends on sequences of pre-insertion sites. EMBO reports 3, 12, 1152–1157
  5. BBC News. 2011. Plant pests: The biggest threats to food security?
  6. Jerry Adler著. 林慧珍譯. 2011. 超級雜草. 科學人.

文章難易度
葉綠舒
262 篇文章 ・ 5 位粉絲
做人一定要讀書(主動學習),將來才會有出息。


0

13
5

文字

分享

0
13
5

揭開人體的基因密碼!——「基因定序」是實現精準醫療的關鍵工具

科技魅癮_96
・2021/11/16 ・1998字 ・閱讀時間約 4 分鐘

為什麼有些人吃不胖,有些人沒抽菸卻得肺癌,有些人只是吃個感冒藥就全身皮膚紅腫發癢?這一切都跟我們的基因有關!無論是想探究生命的起源、物種間的差異,乃至於罹患疾病、用藥的風險,都必須從了解基因密碼著手,而揭開基因密碼的關鍵工具就是「基因定序」技術。

揭開基因密碼的關鍵工具就是「基因定序」技術。圖/科技魅癮提供

基因定序對人類生命健康的意義

在歷史上,DNA 解碼從 1953 年的華生(James Watson)與克里克(Francis Crick)兩位科學家確立 DNA 的雙螺旋結構,闡述 DNA 是以 4 個鹼基(A、T、C、G)的配對方式來傳遞遺傳訊息,並逐步發展出許多新的研究工具;1990 年,美國政府推動人類基因體計畫,接著英國、日本、法國、德國、中國、印度等陸續加入,到了 2003 年,人體基因體密碼全數解碼完成,不僅是人類探索生命的重大里程碑,也成為推動醫學、生命科學領域大躍進的關鍵。原本這項計畫預計在 2005 年才能完成,卻因為基因定序技術的突飛猛進,使得科學家得以提前完成這項壯舉。

提到基因定序技術的發展,早期科學家只能測量 DNA 跟 RNA 的結構單位,但無法排序;直到 1977 年,科學家桑格(Frederick Sanger)發明了第一代的基因定序技術,以生物化學的方式,讓 DNA 形成不同長度的片段,以判讀測量物的基因序列,成為日後定序技術的基礎。為了因應更快速、資料量更大的基因定序需求,出現了次世代定序技術(NGS),將 DNA 打成碎片,並擴增碎片到可偵測的濃度,再透過電腦大量讀取資料並拼裝序列。不僅更快速,且成本更低,讓科學家得以在短時間內讀取數百萬個鹼基對,解碼許多物種的基因序列、追蹤病毒的變化行蹤,也能用於疾病的檢測、預防及個人化醫療等等。

在疾病檢測方面,儘管目前 NGS 並不能找出全部遺傳性疾病的原因,但對於改善個體健康仍有積極的意義,例如:若透過基因檢測,得知將來罹患糖尿病機率比別人高,就可以透過健康諮詢,改變飲食習慣、生活型態等,降低發病機率。又如癌症基因檢測,可分為遺傳性的癌症檢測及癌症組織檢測:前者可偵測是否有單一基因的變異,導致罹癌風險增加;後者則針對是否有藥物易感性的基因變異,做為臨床用藥的參考,也是目前精準醫療的重要應用項目之一。再者,基因檢測後續的生物資訊分析,包含基因序列的註解、變異位點的篩選及人工智慧評估變異點與疾病之間的關聯性等,對臨床醫療工作都有極大的助益。

基因定序有助於精準醫療的實現。圖/科技魅癮提供

建立屬於臺灣華人的基因庫

每個人的基因背景都不同,而不同族群之間更存在著基因差異,使得歐美國家基因庫的資料,幾乎不能直接應用於亞洲人身上,這也是我國自 2012 年發起「臺灣人體生物資料庫」(Taiwan biobank),希望建立臺灣人乃至亞洲人的基因資料庫的主因。而 2018 年起,中央研究院與全臺各大醫院共同發起的「臺灣精準醫療計畫」(TPMI),希望建立臺灣華人專屬的基因數據庫,促進臺灣民眾常見疾病的研究,並開發專屬華人的基因型鑑定晶片,促進我國精準醫療及生醫產業的發展。

目前招募了 20 萬名臺灣人,這些民眾在入組時沒有被診斷為癌症患者,超過 99% 是來自中國不同省分的漢族移民人口,其中少數是臺灣原住民。這是東亞血統個體最大且可公開獲得的遺傳數據庫,其中,漢族的全部遺傳變異中,有 21.2% 的人攜帶遺傳疾病的隱性基因;3.1% 的人有癌症易感基因,比一般人罹癌風險更高;87.3% 的人有藥物過敏的基因標誌。這些訊息對臨床診斷與治療都相當具實用性,例如:若患者具有某些藥物不良反應的特殊基因型,醫生在開藥時就能使用替代藥物,避免病人服藥後產生嚴重的不良反應。

基因時代大挑戰:個資保護與遺傳諮詢

雖然高科技與大數據分析的應用在生醫領域相當熱門,但有醫師對於研究結果能否運用在臨床上,存在著道德倫理的考量,例如:研究用途的資料是否能放在病歷中?個人資料是否受到法規保護?而且技術上各醫院之間的資料如何串流?這些都需要資通訊科技(ICT)產業的協助,而醫師本身相關知識的訓練也需與時俱進。對醫院端而言,建議患者做基因檢測是因為出現症狀,希望找到原因,但是如何解釋以及病歷上如何註解,則是另一項重要議題。

從人性觀點來看,在技術更迭演進的同時,對於受測者及其家人的心理支持及社會資源是否相應產生?回到了解病因的初衷,在知道自己體內可能有遺傳疾病的基因變異時,家庭成員之間的情感衝擊如何解決、是否有對應的治療方式等,都是值得深思的議題,也是目前遺傳諮詢門診中會詳細解說的部分。科技的初衷是為了讓人類的生活變得更好,因此,基因檢測如何搭配專業的遺傳諮詢系統,以及法規如何在科學發展與個資保護之間取得平衡,將是下一個基因時代的挑戰。

更多內容,請見「科技魅癮」:https://charmingscitech.pse.is/3q66cw

文章難易度
科技魅癮_96
115 篇文章 ・ 253 位粉絲
《科技魅癮》的前身為1973年初登場的《科學發展》月刊,每期都精選1個國際關注的科技議題,邀請1位國內資深學者擔任客座編輯,並訪談多位來自相關領域的科研菁英,探討該領域在臺灣及全球的研發現況及未來發展,盼可藉此增進國內研發能量。 擋不住的魅力,戒不了的讀癮,盡在《科技魅癮》