2

1
0

文字

分享

2
1
0

史上第一個全腦世代!獨立、重視個體性、技能比學位更重要的「Z 世代」——《全腦人生》

天下文化_96
・2022/08/24 ・4462字 ・閱讀時間約 9 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • (編按)根據不同世代的背景和特徵,歐美國家流行將不同年代出生的人們依序冠以:
    • 嬰兒潮世代:1946 年~1964 年,二戰後嬰兒潮
    • X 世代:1965年~1980年
    • Y 世代:1980年~1990年,千禧世代
    • Z 世代:1990年代末~2010年代前期,數位原生世代
    • α 世代:Z 世代的子女

隨著科技日新月異,各個世代產生了哪些轉變?

千禧世代之後,Z 世代接棒,他們的父母通常是思想獨立的 X 世代。這些 Z 世代青年比父母一輩更獨立,更運用全腦生活,原因如下:

  • 第一,這些孩子是由 X 世代撫養,長成的一號人格註1超級給力。
  • 第二,Z 世代接受右腦學習教育,造就強大的全腦思維。
  • 第三,X 世代得將嫻熟科技的全腦思維,融入嬰兒潮世代。

那由左腦建構的世界,無獨有偶,Z 世代也得將全腦思維融入千禧世代那右腦主導的世界。綜上所述,Z 世代在生物學上和文化方面都是史上第一個全腦世代。

Z 世代與千禧世代相仿,從嬰兒床時期就與科技產品綁在一起,許多人說自己的母語之前,早就會說谷歌語言。

不過,千禧世代喜歡群體,希望置身社群網路,Z 世代在社交活動上卻更為自主,沒那麼喜歡與人互動,反而與科技互動更自在。

科技常常使得人與人的互動減少,你們也是嗎?圖/Envato Elements

將科技視為自我延伸的「Z 世代」

深究發現,Z 世代其實是將科技視為自我的延伸,有意識的將科技工具整合至日常生理活動。

手機應用程式替他們監控生命徵象,計算步數及每分鐘的呼吸次數,追蹤睡眠,減緩心率,降低焦慮,還會以任何你可想像的方式協助轉移注意力;手機應用程式會告訴他們該吃什麼,何時達到社群媒體每日使用時間上限,何時該睡覺——然後,會播放 δ 波音樂,提升睡眠品質。

儘管資通訊科技可促使人與人之間更頻繁交流,

卻不會激起人際連結的火花,

無法以正向方式刺激大腦。

Z 世代青年如此頻繁使用科技,變得愈來愈自動化,神經愈來愈根據科技來調節,世代差異益發明顯。與美軍世代及嬰兒潮世代的傳統思維、價值觀與行動相比,這些孩子及之後的 α 世代,神經學層面實有獨到之處。

在一個世紀內,大腦的支配方式及價值觀已然產生變化,儘管我們數十年來早已發現,人與人的接觸有助建立更健康的神經網路,科技卻造成人際連結嚴重中斷。

儘管資通訊科技可促使人與人之間更頻繁交流,卻不會激起人際連結的火花,無法以正向方式刺激大腦。人類天生就是社會動物,我們與科技的緊密互動,正在戕害我們的健康。

越科技,與孤獨的距離也更近

根據一份各世代孤獨感的自陳報告研究,科技使用程度與孤獨感之間呈直接正相關。

比起從小身處科技環境的世代,美軍世代及嬰兒潮世代成長過程畢竟並未時常伴著手機、電腦、平板電腦,受試者自陳的孤獨感較低。此外,機不離身導致人機界線模糊,病態狀況層出不窮,夫妻與家人莫不帶著這頭號問題,尋求治療解方。再加上電磁輻射對生物系統的影響仍為未知,科技也開始彷彿列車長不在的失速列車。

Lonely Ryan Reynolds GIF by POKÉMON Detective Pikachu
如果感到孤獨的話,也許是時候該放下手機了。圖/GIPHY

2001 年,全腦 Z 世代族群年紀尚小,有些人甚至還沒有出生,全美社會就歷經九一一事件的創傷,承受創傷後壓力症的餘波;後來 2008 年金融危機,迪士尼樂園假期縮成宅度假,這些孩子很快就知道這世界危機四伏,他們的二號人格遭恐懼和焦慮淹沒,也是理所當然;日常言論充斥著政治對立和仇恨,無怪乎藥物過量與自殺情形肆虐,年輕一代那些自覺在人際網路中無足輕重的孩子,更是置身險境。

要是上述事件還不夠嚴重,請想想這些孩子還面臨 2020 年開始的新冠肺炎大流行,說他們有點像是在野外求生,也不為過。

世道如此艱難,Z 世代如同千禧世代,耗費許多時間應付戰鬥或逃跑反應,並未累積太多財富,當然不願買房或安頓下來,反而希望繼續移動,畢竟移動的目標才難以被抓住。

所以,Z 世代究竟有哪些特徵?

Z 世代如父母一樣獨立,重視左腦一號人格的個體性,沒興趣將自己擠入社會組織架構的框架,於是,許多人選擇直接跳過大學。

Z 世代只要動動手指,就能通達浩如煙海的資訊,真真切切以強大的一號人格與科技共存,也以三號人格的價值觀過活。想要什麼東西,就上亞馬遜訂購,無論他們可能身在何處,訂購物品幾乎立刻就送達門前。三號人格好喜歡科技帶來的即時滿足感。

網際網路幾乎可以即時滿足 Z 世代的大部分物質慾望。圖/Pixabay

Z 世代天生熟悉電腦程式碼,許多人幾乎沒什麼開銷,便賺得大筆收入,因為大型科技公司現在直接透過網路雇用他們的技能。事實上,在科技盛行的世界,Z 世代人才炙手可熱,谷歌與亞馬遜等大公司甚至不需要員工有學士學位。

Z 世代喜愛高薪工作,開名車,身著最新的花押字印花名牌。Z 世代一號人格的自我價值由所持有的事物反映,但若二號人格感覺遭威脅,而三號人格需要衝至別處,也要隨時能將所需要的事物一把抓起帶著走。

這點,與典型的千禧世代特徵有如天壤之別,千禧世代通常會到古著店或二手衣店買衣服,錢比較不會用在自己身上,更傾向捐款做公益。

與社群媒體共生:Z 世代更寬容、更不受拘束

若說千禧世代有了社群媒體而如虎添翼,Z 世代則需要社群媒體,才能如魚得水。

Z 世代建立關係的對象主要是手機、iPad、電腦,因此他們站在文化潮流的尖端,了解現今當紅時事,簡直是第二天性。

右腦強勢又強大的他們,儘管常聽到長輩仇恨言論喋喋不休,面對與之殊異的文化、族裔、宗教、性傾向,都更為寬容;比起應該做的事,花時間做喜歡的事更自在。

對 Z 世代來說,社群媒體佔了生活得很大一部分。圖/pixabay

Z 世代手藝精巧,對自己下了工夫的創作,引以為傲。他們的四號人格希望種植可食用的健康作物,打造美麗花園,關心清淨的空氣和水源,一心保護地球家園。

電腦對人腦帶來的加速、耗損與壓迫

我們這個社會已經達到人類與科技融合的轉捩點。這麼說好了,儘管大腦是由數百億個互相傳遞訊息的神經元組成,造就的神奇副產物卻是人類個體意識的展現;相形之下,我們有數十億顆大腦互相交流,共同展現人類的集體意識。

再更進一步說,網際網路是由數十億部電腦組成,電腦則透過人腦意識互相連接,結果就是:出現遍及全球的科技意識,而這種意識突破了最狂放的科幻想像。

人類與電腦開始產生這種聯繫之時,是人類建構電腦,影響電腦。然而,現在卻是電腦在影響人腦。

隨著千禧世代與 Z 世代到來,網際網路的追蹤行為司空見慣,我們的上網活動、位置、移動模式、飲食、採買的產品、理財習慣、政治喜好,甚至是我們的臉孔、朋友家人互動程度,都會受到追蹤,手機應用程式會監控、蒐集我們的生物系統資料,提供生活建議。

手機無時無刻不在紀錄我們的一舉一動,甚至影響我們的選擇、行動和思考。圖/Pixabay

科技與人類如今步步走向整合,最終我們不僅賦予科技影響我們想法、情緒和生理反應的能力,也已嘗試植入各種形式的科技和神經微晶片。這點令人既期待又害怕。

生物系統的運作集結了各種負回饋迴路,例如,我餓到肚子痛,吃了東西,痛感就沒了。在此生物系統中,我有欲望,並依這種欲望行事,欲望消止之後,我感覺滿足,該系統就暫歇。

以負回饋迴路為本的系統,有其妙處:可以建立並傳達需求,一旦滿足需求,就能恢復自身的平衡與恆定機制。在恆定機制下,生物系統可以自行休息與補足能量。這些負回饋迴路消耗最少的能量來示警,警報一解除,系統就會暫時關閉,返回節能模式,生命因此得以健康發育。

另一方面,資通訊科技堪稱正回饋系統,不會暫歇或停止運作。此系統愈常運轉(也就是你打電動或瀏覽網頁的次數愈多),系統中設置的誘惑也愈多,以便增加你的點閱數,吸引你付出更多時間與注意力。這些科技全天候運作,會加速我們的神經網路,也會耗損我們的神經網路。

大腦就像電腦一樣,偶爾要清理才不會當機

電腦及網際網路的世界都會持續運作,直到當機、需要修復或更新軟體的時候。然後,該系統會重新啟動,並從上次停止的地方再度開始運轉。電腦驅使我們更賣力工作,更用力玩遊戲,更迅速思考。從認知和情緒方面來看,這些科技正在磨耗我們的生物系統,我們更難抵擋科技癮頭。

科技帶來便利,協助我們提高效率,適當使用的話,也能創造更健康的工作與生活平衡狀態——這些當然無可否認,只是,科技老是鼓勵我們「衝衝衝」,可能造成腦部健康大大受損,也可能粉碎我們與身旁親友的關係。

科技就像是生活的加速器,但也讓我們忘了「停下」。圖/Pixabay

大腦基本上就是人類生命的硬碟,我們成天編譯數十億個 Cookie ——來自電視、手機、社群媒體、以及科技替你量身訂做的健身課表,當然還有工作用的電腦。

人腦就像工作用的電腦,我們若沒有一天清理好幾次垃圾檔案,至少也要每天清理一次,重新啟動大腦,才能呈現最佳效能。若要還原為由負回饋迴路驅動的生物系統,我們必須定期按下暫停鍵,給大腦機會更新、重新校準並執行硬體重設,這也是睡眠如此重要的一大因素。

一天之中找些時間,有意識的與四大人格舉行大腦會議,也享有這種好處。無論我們是否需要接受幫助,或者只是剛好想抱持感恩,擁抱新氣象,我們都有能力選擇想成為什麼樣的人,有能力選擇如何成為那樣的人,有能力扶自己一把。

無論這些世代的差異為何,誠如我在 TED 演講所述:

我們是能量生物,藉由右腦半球的意識互相連結,

形成一個人類大家庭。

而此時此地,我們全都是這個星球上的兄弟姊妹,

來這裡,讓這個世界更美好。

而在這個時刻,我們很完美,我們很完整,我們很美麗。

——本文摘自《全腦人生:讓大腦的四大人格合作無間,當個最棒的自己》,2022 年 8 月,天下文化,未經同意請勿轉載。

文章難易度
所有討論 2
天下文化_96
113 篇文章 ・ 597 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

1

133
3

文字

分享

1
133
3
AI 是理科「主場」? AI 也可以成為文科人的助力!
研之有物│中央研究院_96
・2022/08/13 ・5646字 ・閱讀時間約 11 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/田偲妤
  • 美術設計/蔡宛潔

AI 的誕生,文理缺一不可

人工智慧(Artificial Intelligence,簡稱 AI)在 21 世紀的今日已大量運用在生活當中,近期掀起熱議的聊天機器人 LaMDA、特斯拉自駕系統、AI 算圖生成藝術品等,都是 AI 技術的應用。多數 AI 的研發秉持改善人類生活的人文思維,除了仰賴工程師的先進技術,更需要人文社會領域人才的加入。

中央研究院「研之有物」專訪院內人文社會科學研究中心蔡宗翰研究員,帶大家釐清什麼是 AI?文科人與工程師合作時,需具備什麼基本 AI 知識?AI 如何應用在人文社會領域的工作當中?

中央研究院人文社會科學研究中心蔡宗翰研究員。圖/研之有物

詩詞大對決:人與 AI 誰獲勝?

一場緊張刺激的詩詞對決在線上展開!人類代表是有「AI 界李白」稱號的蔡宗翰研究員,AI 代表則是能秒速成詩的北京清華九歌寫詩機器人,兩位以「人工智慧」、「類神經」為命題創作七言絕句,猜猜看以下兩首詩各是誰的創作?你比較喜歡哪一首詩呢?

猜猜哪首詩是 AI 做的?哪首詩是人類做的?圖/研之有物

答案揭曉!A 詩是蔡宗翰研究員的創作,B 詩是寫詩機器人的創作。細細賞讀可發覺,A 詩的內容充滿巧思,為了符合格律,將「類神經」改成「類審經」;詩中的「福落天赦」是「天赦福落」的倒裝,多念幾次會發現,原來是 Google 開發的機器學習開源軟體庫「Tensor Flow」的音譯;而「拍拓曲」則是 Facebook 開發的機器學習庫「Pytorch」的音譯,整首詩創意十足,充滿令人會心一笑的魅力!

相較之下,B 詩雖然有將「人工」兩字穿插引用在詩中,但整體內容並沒有呼應命題,只是在詩的既有框架內排列字句。這場人機詩詞對決明顯由人類獲勝!

由此可見,當前的 AI 缺乏創作所需的感受力與想像力,無法做出超越預先設定的創意行為。然而,在不久的將來,AI 是否會逐漸產生情感,演變成電影《A.I. 人工智慧》中渴望人類關愛的機器人?

AI 其實沒有想像中聰明?

近期有一則新聞「AI 有情感像 8 歲孩童?Google 工程師爆驚人對話遭停職」,讓 AI 是否已發展出「自我意識」再度成為眾人議論的焦點。蔡宗翰研究員表示:「當前的 AI 還是要看過資料、或是看過怎麼判讀資料,經過對應問題與答案的訓練才能夠運作。換而言之,AI 無法超越程式,做它沒看過的事情,更無法替人類主宰一切!

會產生 AI 可能發展出情感、甚至主宰人類命運的傳言,多半是因為我們對 AI 的訓練流程認識不足,也缺乏實際使用 AI 工具的經驗,因而對其懷抱戒慎恐懼的心態。這種狀況特別容易發生在文科人身上,更延伸到文科人與理科人的合作溝通上,因不了解彼此領域而產生誤會與衝突。如果文科人可以對 AI 的研發與應用有基本認識,不僅能讓跨領域的合作更加順利,還能在工作中應用 AI 解決許多棘手問題。

「職場上常遇到的狀況是,由於文科人不了解 AI 的訓練流程,因此對 AI 產生錯誤的期待,認為辛苦標注的上千筆資料,應該下個月就能看到成果,結果還是錯誤百出,準確率卡在 60、70% 而已。如果工程師又不肯解釋清楚,兩方就會陷入僵局,導致合作無疾而終。」蔡宗翰研究員分享多年的觀察與建議:

如果文科人了解基本的 AI 訓練流程,並在每個訓練階段協助分析:錯誤偏向哪些面向?AI 是否看過這方面資料?文科人就可以補充缺少的資料,讓 AI 再進行更完善的訓練。

史上最認真的學生:AI

認識 AI 的第一步,我們先從分辨什麼是 AI 做起。現在的數位工具五花八門,究竟什麼才是 AI 的應用?真正的 AI 有什麼樣的特徵?

基本上,有「預測」功能的才是 AI,你無法得知每次 AI 會做出什麼判斷。如果只是整合資料後視覺化呈現,而且人類手工操作就辦得到,那就不是 AI。

數位化到 AI 自動化作業的進程與舉例。圖/研之有物

蔡宗翰研究員以今日常見的語音辨識系統為例,大家可以試著對 Siri、Line 或 Google 上的語音辨識系統講一句話,你會發現自己無法事先知曉將產生什麼文字或回應,結果可能正是你想要的、也可能牛頭不對馬嘴。此現象點出 AI 與一般數位工具最明顯的不同:AI 無法百分之百正確!

因此,AI 的運作需建立在不斷訓練、測試與調整的基礎上,盡量維持 80、90% 的準確率。在整個製程中最重要的就是訓練階段,工程師彷彿化身老師,必須設計一套學習方法,提供有助學習的豐富教材。而 AI 則是史上最認真的學生,可以穩定、一字不漏、日以繼夜地學習所有課程。

AI 的學習方法主要分為「非監督式學習」、「監督式學習」。非監督式學習是將大批資料提供給 AI,讓其根據工程師所定義的資料相似度算法,逐漸學會將相似資料分在同一堆,再由人類檢視並標注每堆資料對應的類別,進而產生監督式學習所需的訓練資料。而監督式學習則是將大批「資料」和「答案」提供給 AI,讓其逐漸學會將任意資料對應到正確答案。

圖/研之有物

學習到一定階段後,工程師會出試題,測試 AI 的學習狀況,如果成績只有 60、70 分,AI 會針對答錯的地方調整自己的觀念,而工程師也應該與專門領域專家一起討論,想想是否需補充什麼教材,讓 AI 的準確率可以再往上提升。

就算 AI 最後通過測試、可以正式上場工作,也可能因為時事與技術的推陳出新,導致準確率下降。這時,AI 就要定時進修,針對使用者回報的錯誤進行修正,不斷補充新的學習內容,讓自己可以跟得上最新趨勢。

在了解 AI 的基本特徵與訓練流程後,蔡宗翰研究員建議:文科人可以看一些視覺化的操作影片,加深對訓練過程的認識,並實際參與檢視與標注資料的過程。現在網路上也有很多 playground,可以讓初學者練習怎麼訓練 AI,有了上述基本概念與實務經驗,就可以跟工程師溝通無礙了。

AI 能騙過人類,全靠「自然語言處理」

AI 的應用領域相當廣泛,而蔡宗翰研究員專精的是「自然語言處理」。問起當初想投入該領域的原因,他充滿自信地回答:因為自然語言處理是「AI 皇冠上的明珠」!這顆明珠開創 AI 發展的諸多可能性,可以快速讀過並分類所有資料,整理出能快速檢索的結構化內容,也可以如同真人般與人類溝通。

著名的「圖靈測試」(Turing Test)便證明了自然語言處理如何在 AI 智力提升上扮演關鍵角色。1950 年代,傳奇電腦科學家艾倫・圖靈(Alan Turing)設計了一個實驗,用來測試 AI 能否表現出與人類相當的智力水準。首先實驗者將 AI 架設好,並派一個人操作終端機,再找一個第三者來進行對話,判斷從終端機傳入的訊息是來自 AI 或真人,如果第三者無法判斷,代表 AI 通過測試。

圖靈測試:AI(A)與真人(B)同時傳訊息給第三者(C),如果 C 分不出訊息來自 A 或 B,代表 AI 通過實驗。圖/研之有物

換而言之,AI 必須擁有一定的智力,才可能成功騙過人類,讓人類不覺得自己在跟機器對話,而這有賴自然語言處理技術的精進。目前蔡宗翰的研究團隊有將自然語言處理應用在:人文研究文本分析、新聞真偽查核,更嘗試以合成語料訓練臺灣人專用的 AI 語言模型。

讓 AI 替你查資料,追溯文本的起源

目前幾乎所有正史、許多地方志都已經數位化,而大量數位化的經典更被主動分享到「Chinese Text Project」平台,讓 AI 自然語言處理有豐富的文本資料可以分析,包含一字不漏地快速閱讀大量文本,進一步畫出重點、分門別類、比較相似之處等功能,既節省整理文本的時間,更能橫跨大範圍的文本、時間、空間,擴展研究的多元可能性。

例如我們想了解經典傳說《白蛇傳》是怎麼形成的?就可以應用 AI 進行文本溯源。白蛇傳的故事起源於北宋,由鎮江、杭州一帶的說書人所創作,著有話本《西湖三塔記》流傳後世。直至明代馮夢龍的《警世通言》二十八卷〈白娘子永鎮雷峰塔〉,才讓流傳 600 年的故事大體成型。

我們可以透過「命名實體辨識技術」標記文本中的人名、地名、時間、職業、動植物等關鍵故事元素,接著用這批標記好的語料來訓練 BERT 等序列標注模型,以便將「文本向量化」,進而找出給定段落與其他文本的相似之處。

經過多種文本的比較之後發現,白蛇傳的原型可追溯自印度教的那伽蛇族故事,傳說那伽龍王的三女兒轉化成佛、輔佐觀世音,或許與白蛇誤食舍利成精的概念有所關連,推測印度神話應該是跟著海上絲路傳進鎮江與杭州等通商口岸。此外,故事的雛型可能早從唐代便開始醞釀,晚唐傳奇《博異志》便記載了白蛇化身美女誘惑男子的故事,而法海和尚、金山寺等關鍵人物與景點皆真實存在,金山寺最初就是由唐宣宗時期的高僧法海所建。

白蛇傳中鎮壓白娘子的雷峰塔。最早為五代吳越王錢俶於 972 年建造,北宋宣和二年(1120 年)曾因戰亂倒塌,大致為故事雛形到元素齊全的時期。照片中雷峰塔為 21 世紀重建。圖/Wikimedia

在 AI 的協助之下,我們得以跨時空比較不同文本,了解說書人如何結合印度神話、唐代傳奇、在地的真人真事,創作出流傳千年的白蛇傳經典。

最困難的挑戰:AI 如何判斷假新聞

除了應用在人文研究文本分析,AI 也可以查核新聞真偽,這對假新聞氾濫的當代社會是一大福音,但對 AI 來說可能是最困難的挑戰!蔡宗翰研究員指出 AI 的弱點:

如果是答案和數據很清楚的問題,就比較好訓練 AI。如果問題很複雜、變數很多,對 AI 來說就會很困難!

困難點在於新聞資訊的對錯會變動,可能這個時空是對的,另一個時空卻是錯的。雖然坊間有一些以「監督式學習」、「文本分類法」訓練出的假新聞分類器,可輸入當前的新聞讓機器去判讀真假,但過一段時間可能會失準,因為新的資訊源源不絕出現。而且道高一尺、魔高一丈,當 AI 好不容易能分辨出假新聞,製造假新聞的人就會破解偵測,創造出 AI 沒看過的新模式,讓先前的努力功虧一簣。

因此,現在多應用「事實查核法」,原理是讓 AI 模仿人類查核事實的過程,尋找權威資料庫中有無類似的陳述,可用來支持新聞上描述的事件、主張與說法。目前英國劍橋大學為主的學者群、Facebook 與 Amazon 等業界研究人員已組成 FEVEROUS 團隊,致力於建立英文事實查核法模型所能運用的資源,並透過舉辦國際競賽,廣邀全球學者專家投入研究。

蔡宗翰教授團隊 2021 年參加 FEVEROUS 競賽勇奪全球第三、學術團隊第一後,也與合作夥伴事實查核中心及資策會討論,正著手建立中文事實查核法模型所需資源。預期在不久的將來,AI 就能幫讀者標出新聞中所有說法的資料來源,節省讀者查證新聞真偽的時間。

AI 的無限可能:專屬於你的療癒「杯麵」

想像與 AI 共存的未來,蔡宗翰研究員驚嘆於 AI 的學習能力,只要提供夠好、夠多的資料,幾乎都可以訓練到讓人驚訝的地步!圖/研之有物

AI 的未來充滿無限可能,不僅可以成為分類與查證資料的得力助手,還能照護並撫慰人類的心靈,這對邁入高齡化社會的臺灣來說格外重要!許多青壯年陷入三明治人(上有老、下有小要照顧)的困境,期待有像動畫《大英雄天團》的「杯麵」(Baymax)機器人出現,幫忙分擔家務、照顧家人,在身心勞累時給你一個溫暖的擁抱。

機器人陪伴高齡者已是現在進行式,新加坡南洋理工大學 Gauri Tulsulkar 教授等學者於 2021 年發表了一項部署在長照機構的機器人實驗。這名外表與人類相似的機器人叫「娜丁」(Nadine),由感知、處理、互動等三層架構組成,可以透過麥克風、3D和網路鏡頭感知用戶特徵、所處環境,並將上述資訊發送到處理層。處理層會依據感知層提供的資訊,連結該用戶先前與娜丁互動的記憶,讓互動層可以進行適當的對話、變化臉部表情、用手勢做出反應。

長照機構的高齡住戶多數因身心因素、長期缺乏聊天對象,或對陌生事物感到不安,常選擇靜默不語,需要照護者主動引導。因此,娜丁內建了注視追蹤模型,當偵測到住戶已長時間處於被動狀態,就會自動發起話題。

實驗發現,在娜丁進駐長照機構一段時間後,住戶有一半的天數會去找她互動,而娜丁偵測到的住戶情緒多為微笑和中性,其中有 8 位認知障礙住戶的溝通能力與心理狀態有明顯改善。

照護機器人娜丁的運作架構。圖/研之有物

至於未來的改進方向,研究團隊認為「語音辨識系統」仍有很大的改進空間,需要讓機器人能配合老年人緩慢且停頓較長的語速,音量也要能讓重聽者可以清楚聽見,並加強對方言與多語混雜的理解能力。

臺灣如要發展出能順暢溝通的機器人,首要任務就是要開發一套臺灣人專用的 AI 語言模型,包含華語、臺語、客語、原住民語及混合以上兩種語言的理解引擎。這需花費大量人力與經費蒐集各種語料、發展預訓練模型,期待政府能整合學界與業界的力量,降低各行各業導入 AI 相關語言服務的門檻。

或許 AI 無法發展出情感,但卻可以成為人類大腦的延伸,協助我們節省處理資料的時間,更可以心平氣和地回應人們的身心需求。與 AI 共存的未來即將來臨,如何讓自己的行事邏輯跟上 AI 時代,讓 AI 成為自己的助力,是值得你我關注的課題。

延伸閱讀

文章難易度
所有討論 1
研之有物│中央研究院_96
253 篇文章 ・ 2221 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

2
0

文字

分享

0
2
0
半導體以前的半導體:從礦石收音機到電晶體——《圖解半導體》
台灣東販
・2022/11/21 ・3430字 ・閱讀時間約 7 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

從礦石收音機到電晶體

直到 1947 年末,美國發明電晶體後,人類才正式開始使用半導體。不過在這之前,人類已經在使用類似半導體的東西,礦石檢波器就是其中的代表。

日本從 1925 年開始放送廣播,最早的收音機使用的是礦石檢波器。檢波器是一種可以接收電波,並從中提取出聲音與音樂等資訊訊號的元件。使用天然存在之礦石製作出來的檢波器,就叫做礦石檢波器。

礦石檢波器。圖/東販

圖 1-1 是礦石檢波器的原理。檢波器的構造是以金屬製的針碰觸著方鉛礦這種特殊礦石(圖 1-1(a))。

電流容易從金屬針流向礦石,卻很難從礦石流向金屬針(圖 1-1(b))。這種特殊的性質稱為整流性,也是半導體的特性。

對於擁有整流性的物質來說,容易讓電流通過的方向稱為順向,不容易讓電流通過的方向則稱為逆向

換言之,順向的電阻較低,逆向的電阻較高。之後會說明理由,總之有這種特性的元件,可用於製作檢波器。而順向與逆向的電阻比值愈大,可以製成愈靈敏的礦石檢波器。

礦石檢波器的原料是天然礦石,所以品質並不固定。針的接觸位置不同時,靈敏度也不一樣。所以製作礦石檢波器時,必須試著尋找能夠使針的敏感度達到最佳的特定位置。雖然品質不穩定,但製作簡便又便宜,也不用消耗電力,所以早期的收音機常會使用礦石檢波器。

當時的收音機少年也熱中於用礦石檢波器,自己動手製作礦石收音機。以前筆者(井上)年紀還小的時候,就曾自己製作礦石收音機。調整好礦石檢波器後,就可以清楚聽到廣播電台的聲音,讓人相當興奮。為了盡可能提高接收電波時的靈敏度,我當時也下了不少工夫。

這裡就來簡單說明用檢波器,從電波中提取出資訊訊號的原理吧。

訊號的接收與提取

接收無線電波訊號。圖/東販

如圖 1-2 所示,欲以無線電波傳送聲音、音樂等頻率較低的波時,需先將其轉變成頻率較高的波才行。

這個操作稱為調變。圖中,以調變器混合資訊訊號波(同圖①)與頻率較高的載波(同圖②)後,可以得到同圖③般的波,然後再發送這種無線電波(同圖④)。

檢波器接收到這種無線電波(同圖⑤)後,由於只會讓正向的調變波通過,故可得到同圖⑥般的波。這種波含有頻率較低的訊號波與頻率較高的載波,所以需再通過低通濾波器(只讓低頻率的波通過的濾波器),抽取出訊號波(同圖⑦)。

在真空管收音機盛行起來之後,人們便不再使用礦石檢波器。不過,在第二次世界大戰時,礦石檢波器又起死回生。使用礦石檢波器的雷達,在第二次世界大戰相當活躍。

雷達的原理。圖/東販

雷達如圖 1-3 所示,可透過指向性高的天線,朝特定對象發射高頻率電波脈衝,再接收由該對象反射回來的電波,並計算時間差,以測量出與該對象的距離與方向。之所以要使用高頻率電波,是因為頻率愈高,愈能正確識別出細小的物體。

這種雷達使用的無線電波叫做微波,頻率在 3GHz~10GHz 左右。若要用真空管檢波器,從頻率那麼高的無線電波中檢出訊號,必須使用體積很大、電容量很大的真空管才行,所以真空管不適用於高頻率的檢波器。

重出江湖的礦石檢波器

此時就輪到礦石檢波器重出江湖了。使用礦石檢波器時,針與礦石只要有一個接觸點就行了,電容量很小,在高頻率時也能正常運作。

如前所述,礦石檢波器的運作並不穩定,無法直接用於戰爭。於是歐美國家便紛紛投入研發性能更好、能夠取代礦石檢波器的新型檢波器,最後得到的就是矽晶(半導體)與鎢針的組合。

矽晶是由人工製成的均質結晶,所以不需要像使用礦石時那樣,用金屬針尋找、調整最佳的接觸位置。

而且,隨著雷達矽檢波器的研究持續發展,科學家們也發現了矽晶是相當典型的半導體。

為了提高結晶的純度,矽晶的精製技術也跟著進步,這和戰後電晶體的發明也有一定關聯。而且,因為製造出高性能的檢波器,所以人們也開始使用像是微波這類過去幾乎不用的高頻率無線電波。相關技術在戰後開放給民間使用,於是電視與微波通訊也開始使用這些無線電波。

雖然我並沒有要肯定戰爭行為,但戰爭確實也有促進科學技術發展的一面。

戰爭確實也有促進科學技術發展的一面。圖/pexels

半導體就是這種東西—溫度與雜質可提高電導率

接著就讓我們進一步說明,半導體究竟是什麼東西吧。

所有物質大致上可依導電性質分為兩類,分別是可導電的「導體」,以及不能導電的「絕緣體」。

導體的電阻較低,電流容易通過,譬如金、銀、銅等金屬皆屬於導體。另一方面,絕緣體的電阻較高,電流難以通過,橡膠、玻璃、瓷器皆屬於絕緣體。

我們可以用電阻率 ρ(rho:希臘字母)來描述物質的電阻大小。電阻率的單位是〔Ω・m〕,電阻率愈大,電阻就愈大。

導體、半導體、絕緣體的分類。圖/東販

如圖 1-4 所示,雖然沒有明確的定義,不過導體指的通常是電阻率在 10-6Ω・m 以下的物質,絕緣體指的則是電阻率在 107Ω・m 以上的物質。

相對於電阻率,有時會用電導率 σ(sigma:希臘字母)來描述物質的電阻大小。電導率為電阻率的倒數(σ=1∕ρ),單位為〔Ω-1・m-1〕。與電阻率相反,電導率愈大,電阻就愈小。

相對於此,半導體如名所示,性質介於導體與絕緣體之間;電阻率也介於導體及絕緣體之間,即 10-6〜107Ω・m。代表性的半導體如矽(Si)與鍺(Ge)。

半導體的特徵不僅在於電阻率的大小,更有趣的是,隨著溫度與微量雜質濃度的不同,半導體的電阻率數值也會有很大的變化。圖 1-5 為溫度對半導體電阻率的影響示意圖。圖中縱軸寫的是電導率 σ,但要注意的是,縱軸的 σ 值其實是對數尺度。

溫度對半導體電阻率的影響。圖/東販

由這個圖可以看出,一般而言,隨著溫度的上升,金屬的電導率會下降(電阻率上升);但半導體則相反,在 200℃ 以下的範圍內,溫度上升時,半導體的電導率會跟著上升(電阻率下降)。

1839 年,法拉第在硫化銀 Ag2S 上首次發現了這種隨著溫度的上升,電導率會跟著上升的奇妙現象。雖然他不知道為何會如此,不過,這確實是人類首次發現半導體性質的例子。

電流是電子的流動,所以電導率提升,就代表半導體內的電子數變多了。電子原本被半導體原子的+電荷束縛著,無法自由移動。不過當溫度上升,獲得熱能後,電子就能脫離原子的束縛自由移動了。

這種能自由移動的電子(自由電子)數目增加後,會變得較容易導電,電導率跟著上升。這就是半導體的一大特徵。

高純度的半導體結晶在室溫下熱能不足,幾乎不存在自由電子,所以可視為絕緣體。

不過,如果在半導體結晶內添加極微量的特定元素雜質(Ge 與 Si 以外的某些元素),便可大幅降低電流通過半導體的難度。這也是半導體的一大特徵(詳情將在 1-5 節中說明)。

半導體的自由電子,也可以透過光能觸發。

英國的史密斯於 1873 年時發現了這種現象。他用光照射擁有半導體性質的硒(Se)時,發現硒的電阻變小了(內光電效應)。

1907 年,英國的朗德對碳化矽(SiC)結晶施加電壓賦予能量時,發現結晶會發光。這種能讓光與電能互相變換的特性,也是半導體的特徵。

——本文摘自《圖解半導體:從設計、製程、應用一窺產業現況與展望》,2022 年 11 月,台灣東販出版,未經同意請勿轉載。

台灣東販
5 篇文章 ・ 1 位粉絲
台灣東販股份有限公司是在台灣第1家獲許投資的國外出版公司。 本公司翻譯各類日本書籍,並且發行。 近年來致力於雜誌、流行文化作品與本土原創作品的出版開發,積極拓展商品的類別,期朝全面化,多元化,專業化之目標邁進。

0

1
0

文字

分享

0
1
0
給你多少錢,才會願意放棄使用 FB ?社群軟體的體驗該如何被「金錢」衡量?──《資訊超載的幸福與詛咒》
天下文化_96
・2022/08/27 ・2405字 ・閱讀時間約 5 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

使用社群媒體後,你變得更快樂還是更憂鬱?

想知道更多資訊的時候,你可能會上網搜尋。有時候是為了資訊的工具價值,比如透過 Google 地圖確認 A 地到 B地 的路線;腳踝扭傷時,也可以從網路上搜尋到應變的實用資訊;又或是並非真的出於任何用途,只覺得知道某些事很有趣,像是忽然想了解流行音樂歷史。你當然完全可以這樣做。

我們身邊有許多資訊都是一些抽象的概念,其中部分資訊卻可能和你切身相關。比如依據某些基本事實可以推斷你的預期壽命;某些資訊可以了解你的健康風險、未來「錢」景,甚至是個性。比起 10 年前,我們現在能得到的資訊更為詳盡正確,再過 10 年,肯定能夠知道得更多。

這章要談的內容很多,不妨開頭就先提示最大的重點:

研究顯示,整體而言,臉書會讓人變得比較不開心,而且可能感到憂鬱、更為焦慮,也對生活變得更不滿意。

你每天花多少時間使用 FB?使用社群軟體對你的心情造成了什麼影響?圖/Pixabay

我並不打算危言聳聽,事實上這些影響並不大。然而,它們的確存在。

而與此同時,有些人明明已經停用臉書、也感受到幸福感明顯增加,卻又非常想要重新打開臉書。實際上他們要求要得到一大筆錢才願意放棄臉書。這是為什麼?我們雖然無法確定,但一項合理的解釋是,使用臉書的體驗,包括帶來的資訊,並不會讓人變得更快樂,但還是有它的價值。

無知並不是幸福,而很多人都感受到這一點。人們需要知道自己在意的資訊,這是因為喜歡、甚至珍視一種和重要的人之間產生連結的感覺。

若須付費才能使用社群媒體,會怎樣?

重要的是,我們必須強調,社群媒體的功能不僅僅是提供資訊,至少不是我在這裡反覆強調的揭露資訊的意義。你會使用臉書,可能是為了和家人或朋友聯繫,也可能是為了改善荷包或健康。但無論如何,社群媒體的一大重點在於資訊傳遞,雖然這個概念要比我目前所談的更為廣泛。

而這裡的核心問題是:社群媒體究竟多值錢?

在社群媒體上,大部分的資訊是免費的,至少表面上你無須付費;或許可以說你仍需要付出注意力或個資等等。臉書和推特這些企業是從廣告獲得收益,但有鑑於相關爭議不斷,也有人認真討論起將這些平台及其服務的商業模式改成付費使用。

除此之外也有些偏理論的探討,主要關注在如何評估這些平台的經濟價值。要是民眾必須付費才能使用臉書,情況會變得如何?而民眾又願意花多少錢成為用戶?

要是社群媒體要付費的話,你們願意花多少錢呢?圖/LightFieldStudios

這些答案會透露出一些重要的資訊,讓我們知道社群媒體與一般資訊所擁有的價值。而回答這些問題,也有助於了解一些更基本的問題:如何計算經濟上的價值;知道某些消費決定可能只是表面工夫;了解傳統經濟指標與實際民眾福利有何差距(請見第二章)。此外,這些答案也會進一步影響政策與法規。

要你放棄使用 FB ,可能比要你付費使用來得更難?

行為經濟學特別感興趣的一個問題,就是「支付意願」和「願意接受金額」間可能出現的巨大落差。

以臉書為例,如果我們想知道它能為我們帶來多少福利,究竟該問民眾願意為此付出多少錢,抑或該問要給他們多少錢才會願意放棄使用臉書?許多研究都探討過稟賦效應(endowment effect)的現象,也就是被要求放棄某樣商品時所要求的價格,會遠高於他們當初獲得這些商品時支付的費用

稟賦效應目前還有爭議,至少在適用的領域、來源與程度上仍未有定論。我們可能會想知道,使用社群媒體願意付出的費用,是否大於不使用社群媒體所得到的費用?如果是的話,傳統論點又能否提出說明?

IKEA 所設置的家具體驗區,常常被拿來當作「稟賦效應」的案例。圖/Pixabay

另一個同樣常見、甚至是更基本的問題,則是涉及支付意願或願意接受金額的衡量與民眾福利。我在前面也提過,在經濟學中,要是談到民眾擁有某樣商品時的福利效果,往往是以民眾願意付出多少錢來使用那件商品作為衡量。

當然,「願意付出多少錢」也是現實市場的衡量標準。但請回想一下,要提出這項金額,事實上也就是做出預測:預測該商品會對自己的福利造成什麼樣的影響。

這個問題乍看不難,尤其當談到自己熟悉的商品(鞋子、襯衫、肥皂);但換做是從未使用過的商品,回答起來也就沒那麼簡單。對於一項從未擁有過的商品,哪知道能帶給自己多大的福利效果,以及可以換算成多少錢?

對許多人而言,臉書、推特、Instagram 等平台都是再熟悉不過的社群媒體,而且有著豐富的使用體驗。但出於某些我們馬上會討論到的原因,社群媒體用戶就是很難估算這些平台可以換算的金錢價值。

只要看看民眾提出使用社群媒體願意付出的金額,就會了解在尋求資訊上,「願意付出的金額」和民眾得到的福利效果似乎並不對等;同時值得進一步研究其中的福利效果究竟是什麼。

在這種時候,「願意付出的金額」只反映出部分的福利效果,還可能只反映一小部分。我們必須找出反映效果不佳的實際原因,並且嘗試找出更能呈現福利效果的方式。而我在這裡的目標,就是希望推進這項任務的進展。


——本文摘自《資訊超載的幸福與詛咒》,2022 年 8 月,天下文化 ,未經同意請勿轉載。

天下文化_96
113 篇文章 ・ 597 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。