1

5
7

文字

分享

1
5
7

跟名偵探學習推理—回溯推理與貝氏定理分析(下)

林澤民_96
・2021/12/21 ・4375字 ・閱讀時間約 9 分鐘

編按:回溯推理(或稱溯因推理)是從「證據推理到最佳解釋」的反覆過程。福爾摩斯的名言:「當你把一切不可能的情況都排除之後,那剩下的,不管多麼離奇,也必然是事實。」正點出了「回溯推理」的精隨,以及背後涉及的「貝氏定理」。

本文分為上下篇,上篇將帶領讀者熟悉回溯推理的基本概念,下篇則會運用貝氏定理分析,一窺偵探腦內的判斷機制。

圖/pixabay

福爾摩斯在《皮膚變白的軍人》案中的推理過程

道爾的福爾摩斯故事中,福爾摩斯都用了這種方法破案。其中把這方法的應用說得最清楚的,莫過於《皮膚變白的軍人》。這個故事寫於 1926 年,是道爾晚年的作品。一般讀者對它印象可能不深,但它有一個特色:它是所有福爾摩斯小說中唯二華生未親自出現的一篇。所以,小說中推理方法的描述,是由福爾摩斯本人娓娓道來的。

故事中來向福爾摩斯求助的客戶是退伍軍人,他因與昔日同袍好友失聯,心中不安。寫信給好友父親,父親說好友周遊世界去了,一年之內不會回來。但客戶不相信好友出遊會不告知他,非常疑惑。於是轉而寫信給好友母親,詳述軍中友情,欲前往拜訪。好友母親熱情歡迎,他遂前往,並蒙留宿。

但好友父親仍然冷漠相待,只重複好友出國周遊的說法。當晚,夜深時,他彷彿看到好友隔著落地窗戶從室外看他,臉色慘白,有如鬼魂。他急忙追出,其身影已經消失在黑暗中。第二天,他厚顏要求再宿一宵,乘機觀察附近環境,發現園子盡頭有一棟房屋,有人看守,頗為神秘。他疑心好友被幽禁在此,但他的窺伺行動被好友父親發現,對他下了逐客令。他只好來求福爾摩斯相助追查真相。

福爾摩斯在揭發真相後,如此跟主人解釋他的推理過程:

-----廣告,請繼續往下閱讀-----

「我的方法,」我說道,「就建立在這樣一種假設上面:當你把一切不可能的結論都排除之後,那剩下的,不管多麼離奇,也必然是事實。也可能剩下的是幾種解釋,如果這樣,那就要一而再、再而三地加以證實,直到最後只剩下一種具有足夠根據來支持的解釋。現在我們就用這個方法來研究一下當前這個案子。起初,提到我面前的有三種可能的解釋,可以說明為什麼這位先生在他父親莊園的小屋裡被隔離或禁錮起來。可以認為他是由於犯罪而逃避,或者是由於精神失常而不願住瘋人院,最後是因為有某種疾病而需要隔離。我想不出其它解釋。那麼,就需要把這幾個結論加以對比和甄別。

  

犯罪之說是不能成立的。本地區並沒有尚未破案的犯罪報告,這我十分清楚。如果說是尚未暴露出來的犯罪,那從家族利益來說應該是把他弄走或是送出國外,而不是藏在家裡。我看不出這條思路有什麼可能成立的地方。

  

精神失常的可能性要更大一些。小屋裡有的第二個人可能是看守人。他走出來以後把門倒鎖上,這就加強了上述假設,說明可能是強行禁閉。但另一方面,強制不可能是很嚴的,否則這個青年就不會跑出來去看一眼他的朋友了。多德先生,你記得我曾探索論據,比如問你肯特先生讀的是什麼報紙。如果是《柳葉刀》或《英國醫學雜誌》,那會幫助我思索。但是,只要有醫生陪同並上報當局,把瘋人留在家裡是合法的事。為什麼這樣拚命保密呢?因此精神失常的設想也不能成立。

  

剩下的第三個可能,看來雖然稀奇,卻是完全符合實際情況的。麻瘋在南非是常見病。由於特殊的機遇,這位青年可能受到感染。這樣一來,他的家屬處境就十分困難了,因為他們不願把他交給麻瘋隔離病院。為了不露風聲、不受當局干涉,必須嚴守秘密。如果給以適當報酬,不難找到一位忠實的醫生來照顧病人。也沒有理由在晚上不讓病人出來。膚色變白是這種病的普通症狀。這個假設的論據是十分充足的,以致使我決心把它當做已被證實了那樣來行動。當我初到這裡,發現給小屋送飯的拉爾夫戴著浸了消毒水的手套,這時候我連最後的疑點也消除了。先生,我只寫了一個詞,就告訴你秘密已被發現了,我之所以寫而沒有說出來,是為了向你證明可以信任我的謹慎。

貝氏回溯推理者福爾摩斯

福爾摩斯因客戶的敘述而提出三個可能的假設,這固然是回溯推論法,但他排除其中兩個而達到一個確定的結論,其方法卻不脫演繹法。這是因為「以否定後項來否定前項」其實是具有絕對確定性的演繹邏輯:

  • 前提1:若 A2 則 B2 及 B
  • 前提2:¬B2
  • —————————-
  • 結論:¬A2
  • 前提1:若 A3 則 B3 及 B
  • 前提2:¬B3
  • —————————-
  • 結論:¬A3

如果福爾摩斯能確定他提的三個理論是互斥而且窮盡所有可能性的(mutually exclusive and exhaustive),則他所謂「當你把一切不可能的結論都排除之後,那剩下的,不管多麼離奇,也必然是事實」可以示意如下:

  • 前提1:若 ¬A2 及 ¬A3 則 A1
  • 前提2:¬A2 及 ¬A3
  • —————————-
  • 結論:A1

這樣的推論沒有任何不確定性,當然是十足的演繹法。也許這是道爾把福爾摩斯的方法稱為「演繹的科學」的原因吧?

但是這種演繹法成立的條件,除了理論必須互斥而且窮盡所有可能性之外,還得他的前提特別是對 B2、B3(或 ¬B2、¬B3)的鑑識都是百分之百確定的。如果其中有任何不確定性,例如疑犯自白、證人證詞、甚至科學鑑識的可信度不足,則使用「以否定後項來否定前項」的邏輯也就無法達到 p=1 的結論了。

《皮膚變白的軍人》案中,福爾摩斯亟想知道小屋看守人是否在讀《柳葉刀》等醫學刊物,但客戶沒去注意這些細節,隨口答了比較像《觀察家》。這種「證詞」能有多少確定性?如何足以讓福爾摩斯百分之百否定精神失常的假說?而且難道痲瘋病患者的看守人就不會讀《柳葉刀》嗎?當 0<p<1 時,我們就又回到回溯推論法了。此時因為不止一個理論無法完全排除,必須仰賴貝氏定理來算各理論的後驗機率。

圖/Pixabay

貝氏定理的計算必須要假設先驗機率,其值由福爾摩斯依客戶的敘述及他自己的專業知識可以主觀判斷。

以下的例子假設犯罪逃亡(理論1)、精神失常(理論2)、傳染疾病(理論3)三個理論的先驗機率分別為Pr(1)=0.2、Pr(2)=0.3、Pr(3)=0.5。

福爾摩斯到現場調查之後,依鑑識結果判定資料支持各理論的程度。這是假設理論為真時,觀察到所得資料的條件機率。這裡依據故事中福爾摩斯自己的分析假設了下列條件機率,其中「+」代表調查所發現的資料與理論相符,「-」代表調查所發現的資料與理論不符:

-----廣告,請繼續往下閱讀-----
  • 調查結果與犯罪逃亡的理論完全不符,Pr(+|1)=0.0,Pr(-|1)=1.0。
  • 調查結果與精神失常的理論不盡相符,Pr(+|2)=0.5,Pr(-|2)=0.5。
  • 調查結果與傳染疾病的理論大致相符,Pr(+|3)=0.9,Pr(-|3)=0.1。

這些調查結果可以讓福爾摩斯用貝氏定理來更新他的先驗機率,其結果就是所謂後驗機率,也就是回溯推論法結論的確定性。計算的結果顯示:如福爾摩斯所說,犯罪逃亡的理論的確是不能成立的(Pr(1|+)=0),但其它兩個理論都不能完全排除。經過調查之後,資料證據稍微減少了精神失常的可能性(Pr(2|+)=0.25),但大大加強了傳染疾病的可能性(Pr(3|+)=0.75)。見表一。這結果雖然無法保證每案必破,卻比較合乎現實情況。

貝氏定理的計算,請參考我的文章:〈會算「貝氏定理」的人生是彩色的!該如何利用它讓判斷更準確、生活更美好呢?〉

從這個例子可以看出:不論先驗機率如何,只要資料與理論完全不符(即條件機率為零),該理論就可以完全排除。如果資料不只與犯罪逃亡的理論不符,也與精神失常的理論不符,那剩下的當然就只有傳染疾病的理論了。

這就是「當你把一切不可能的結論都排除之後,那剩下的,不管多麼離奇,也必然是事實」。

這個結論雖然在特殊的條件下用演繹法就可推出,但它其實是回溯推論法的一個特例,用貝氏定理也可算出,只是不需要那麼麻煩而已。見表二。當鑑識資料與理論的符合程度不是那麼確定時,光靠演繹法就行不通的,還是要仰賴回溯推論法及貝氏定理!

諾伯里!

太過於相信自己的判斷曾經給福爾摩斯帶來失敗的教訓。在另一個與《皮膚變白的軍人》有點類似的疑案《黃面人》中,從倫敦西南諾伯里(Norbury)區專程來求助的客戶懷疑自己的婚姻出了可怕的問題。他有次經過住家附近的一棟空屋,發現空屋的一扇窗戶裡有一張詭異的面孔也正在看著他:

-----廣告,請繼續往下閱讀-----

我背上似乎冒出了冷汗。我站得稍微遠了一點,所以看不清面貌如何。不過這張面孔有點不自然而且不像人臉。這就是我那時的印象。我便急忙走向前去,以便把窺視我的那個人看得更清楚些。但我走近以後,那張面孔突然不見了,彷彿突然被拉到室內的暗處。我站了足有五分鐘,仔細考慮這件事,打算把我得到的印象分析一下。我很難說明這究竟是一張男人的面孔,還是女人的,它離我太遠了。可是這張面孔的顏色給我留下的印象卻是很深的。它就像青灰色的白堊土一樣,而且有點僵硬呆板,不自然得嚇人。

客戶心中不安,可是接下來發生的事更令他焦急:他發現他的美國妻子進出這棟空屋,行為異常,卻堅決不肯透露實情,只請求他相信她的愛情和苦衷。可是客戶忍不住了,來請福爾摩斯協助。

聽過客戶敘述案情之後,福爾摩斯在華生催問下,提出了他的唯一一個理論:客戶妻子的前夫住在空屋裡。華生難得地不以為然,說那完全是臆測,但福爾摩斯說:

「可是它至少符合所有的事實。假使再發現了不相符合的新情況,我們重新考慮也還來得及的。」

可是福爾摩斯和華生搭火車到達當地之後,在月台等待的客戶「面色蒼白,憂心忡忡,渾身顫抖」已經忍無可忍了,要求兩人為證,直接闖入空屋。這才發現黃面人是妻子與美國具非洲血統的前夫所生的小女孩。

前夫雖然膚色不黑,小女孩卻黝黑得多,妻子怕鄰居的流言蜚語,給女孩戴上黃色的面具,讓她至少可以在窗戶後面窺視戶外景物。客戶諒解妻子的苦衷,抱著小孩與妻子攜手回家。

-----廣告,請繼續往下閱讀-----

福爾摩斯不發一言回到倫敦,直到夜晚,才對華生說:

「如果以後你覺得我過於自信我的能力,或在辦一件案子時下的功夫不夠,請你最好在我耳旁輕輕說一聲『諾伯里』,那我一定會感激不盡的。」

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
林澤民_96
37 篇文章 ・ 246 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
1

文字

分享

0
2
1
福爾摩斯碰上古人類化石,可是日期不太對勁?
寒波_96
・2023/03/08 ・2782字 ・閱讀時間約 5 分鐘

虛構人物福爾摩斯,就是偵探的代名詞。英國小說家柯南道爾創作的這位名偵探,活躍於 19 世紀晚期到 20 世紀初期,那時古人類學已經起步,博學多聞的福爾摩斯應該有機會知道某些化石。奇妙的是,他竟然還見過尚未出土的死人骨頭?

請注意,本文包含古人類遺骸的圖像。

圖/參考資料

福爾摩斯遇見古人類化石

柯南道爾的故事設定中,福爾摩斯是存在於現實歷史的虛構人物。例如故事中公元 1896 年發生的事件,現實中也應該在這個時候上演,而 1899 年更晚的事情還沒有發生。

短篇小說《三名同姓之人(The Three Garridebs)》,以一個罕見姓氏 Garridebs 導引出簡短卻高潮起伏的探案。故事中有一位角色喜歡收藏古物,也包括幾件人類化石。

華生醫師第一人稱的描述是:

-----廣告,請繼續往下閱讀-----

「當我環顧四周,我驚訝於此人興趣之廣。這兒是一箱古錢幣。那兒有一櫃子的燧石工具。中間桌子後方是個裝著化石骨頭的大櫃子,裡頭擺著一排石膏頭骨,有尼安德塔人(Neanderthal)、海德堡人(Heidelberg)、克羅馬儂人(Cro-Magnon)等名字標示。很顯然他是許多主題的學習者。」

「As I glanced round I was surprised at the universality of the man’s interests. Here was a case of ancient coins. There was a cabinet of flint instruments. Behind his central table was a large cupboard of fossil bones. Above was a line of plaster skulls with such names as “Neanderthal,” “Heidelberg,” “Cro-Magnon” printed beneath them. It was clear that he was a student of many subjects. 」

故事中這位角色有哪些收藏品並不影響劇情,不過敘述這般瑣碎的細節,有助於強化真實感,算是一項創作技巧。這些頭骨化石不是原件,而是石膏複製品(plaster skulls),也證實角色自稱家中藏品沒什麼值得偷竊的價值。

可是故事開頭,華生醫師十分明確表示此案發生在 1902 年:

「那日期我記得特別熟,因為福爾摩斯在同一個月,拒絕一項也許有一天會講出來的爵位。……然而我重申,這使我能夠確定日期,亦即 1902 年 6 月下旬,南非戰爭結束後不久。」

「I remember the date very well, for it was in the same month that Holmes refused a knighthood for services which may perhaps some day be described…… I repeat, however, that this enables me to fix the date, which was the latter end of June, 1902, shortly after the conclusion of the South African War. 」

這兒提到 1902 年結束的南非戰爭是「第二次波耳戰爭」。真實歷史中,那時柯南道爾已經靠著福爾摩斯成為知名作家;他以醫師的本行親自參戰,擔任軍醫而受封爵士,也是柯南道爾爵士(Sir Arthur Ignatius Conan Doyle)名號中「爵士(Sir)」的由來。

對照如此明確的日期,令人愈想愈不對勁。與尼安德塔人並列的「Heidelberg」顯然指的是 Homo heidelbergensis ,但是第一件海德堡人化石要等到 1907 年才在德國出土,更早的 1902 年絕不可能存在石膏複製品,被福爾摩斯與華生見到。

-----廣告,請繼續往下閱讀-----
1907 年在德國出土的海德堡人下顎化石「Mauer 1 」。圖/Radiometric dating of the type-site for Homo heidelbergensis at Mauer, Germany

容易起爭議的海德堡人

解開此一謎題大概不需要福爾摩斯的推理能力。《三名同姓之人》於 1924 年發表,那時海德堡人大概已經有點名氣,被取材用於偵探故事中增添血肉。柯南道爾與編輯卻沒有注意到 1902 年之際,海德堡人仍不存在。

另一方面,即使是故事發表的 1924 年,「海德堡人」也應該還沒有頭骨,不會有石膏複製品。1907 年出土,隔年公開的化石 Mauer 1 只有下顎,沒有頭骨。

1921 年在非洲南部 Kabwe 出土的化石包括頭骨,但是當時將其分類為羅德西亞人(Homo rhodesiensis),多年後才歸入海德堡人旗下。這條消息或許影響過柯南道爾 1924 年發表的創作,詳情不得而知。

1921 年在尚比亞出土的頭骨化石「Kabwe 1 」,早期被分類為羅德西亞人,後來也被歸類為海德堡人。圖/史密森尼學會(Smithsonian)教育網站

Kabwe 在 1921 年屬於大英帝國的北羅德西亞(Northern Rhodesia)殖民地,現在則是尚比亞的疆域。有人主張這群死人骨頭算是非洲的海德堡人,也有人認為是不同的羅德西亞人,還有人提出應該歸於波多人(Homo bodoensis)……反正一百多年來,海德堡人的爭議持續不休,即使配備福爾摩斯的智謀,大概也無法解開這些難題。

-----廣告,請繼續往下閱讀-----

故事中海德堡人以外的兩款化石,尼安德塔人最初問世於 1856 年,克羅馬儂人則是 1868 年。到 1902 年都已經是特定圈子內普及的知識,也買得到石膏頭骨複製品,可謂有血有肉的安排。

大英帝國的榮耀

古人類化石中,1924 年的柯南道爾想必也知道皮爾當人(Piltdown Man)。這是英國人 1912 年偽造的化石,由紅毛猩猩和數百年前的智人骨頭加工而成,但是要等到 1953 年才證實造假。

圖/參考資料

捏造的皮爾當人被不少英國人認同,也騙過不少專家,讀過《三名同姓之人》好像能稍加體會時代背景。

故事中那位收藏家以史隆(Hans Sloan,1753 年去世後他的收藏催生出大英博物館)為楷模,實則相當平凡。他的藏品應該能代表當時對人類化石的普遍印象,也就是說,德國出土的尼安德塔人、海德堡人,以及法國出土的克羅馬儂人……榮耀的大英帝國豈能忍受!

-----廣告,請繼續往下閱讀-----

可惜 1910 年代以後,福爾摩斯便退隱江湖不再辦案。否則以他的才智展開調查,哪需要等 40 多年才確認皮爾當人造假!

不追究那些死人骨頭,《三名同姓之人》也相當有意思。故事雖短,卻發生壞人打槍、華生流血,福爾摩斯激動、華生興奮、福爾摩斯用小刀割開華生褲子等情節,鐵與血的糾葛、靈與肉的碰撞,亂七八糟的 ❤️

延伸閱讀

參考資料

  1. 《三名同姓之人》小說原文:THE THREE GARRIDEBS

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
寒波_96
193 篇文章 ・ 1141 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。