0

0
0

文字

分享

0
0
0

當「機率」被誤解,審判是否會變成粗暴的正義?──《偶然的科學》

PanSci_96
・2018/07/10 ・5773字 ・閱讀時間約 12 分鐘 ・SR值 533 ・七年級

草率分析機率,是帶著正義面具的暴力

粗暴的正義

如果你想瞭解某件事的機率,例如在犯罪現場發現的 DNA 是否與被告的 DNA 相符,那麼你必須以良好的統計數據為基礎。但近年來,構成良好基礎的東西已出現變化。對許多人來說,就像安琪拉.賽尼 (Angela Saini) 所說的,傳統的統計數據需用18世紀的一個想法加以翻新。

不修邊幅的神探可倫坡,總能抓到他想抓的人。我們拿這齣美國知名電視影集在1974年播放的某一集來說吧。該集中有個攝影師殺了他的妻子,還把整件事偽裝成一場手法拙劣的綁架案,但在偵探可倫坡發現了一個詭計,終於揭發整件事情之前,這是一齣完美的犯罪。可倫坡在一個架子上放了十二台相機,然後引誘凶手從架上取下拍下受害人被殺前影像的那台相機。看守的警察對凶手說:「先生,你剛剛讓自己捲進事端了。」

美國知名電視影集《神探可倫坡》。圖/wikipedia

事情若有這麼簡單就好了。無論是不是凶手,每人去拿相機的人都有十二分之一的機會隨機拿到同一台相機。在法庭上,這樣的證據根本站不住腳。但,如果它站得住腳呢?

這種機率陷阱不只出現在犯罪小說裡。「發生統計錯誤的頻率高得驚人,」英國索爾福德大學數學家雷.希爾 (Ray Hill) 說,他曾在幾個著名的刑事案件中提供證據。「我總在證據說明中發現人們沒注意的例子。」他說。

其中根本原因在於人們草率地分析機率,玷汙了公正性,甚至可能讓無辜者啷噹入獄。隨著人們在判案時越來越仰賴「確定」的數據,像 DNA 配對,這問題變得越來越嚴重。有些數學家呼籲,法院應開密集課程,把證據的重要性放在第一要務。他們需要什麼呢?貝氏機率能公斷一切。

有兩億分之一的機率,你與罪犯有相同的 DNA

這呼籲出自湯馬斯.貝氏 (Thomas Bayes) 的研究,他是18世紀英國一名數學家和神職人員,他曾針對該如何計算條件機率做出說明。條件機率是指某一件事發生的機率,取決於其他事件發生的機率。這正是刑事案件面對的問題,因為辦案人員會清查所有證據,以確認被告無罪或有罪(請參見下面的「法庭上的貝氏統計」)。

那麼,數學看來很適合使用在法庭上,但法官和陪審團其實常常太過依賴直覺判案。有個讓人吃驚的案例發生在1996年,那是跟英國男子丹尼斯.約翰.亞當斯 (Dennis John Adam) 有關的強暴案。在指認凶手時,亞當斯並未被指認出來,而他的女友也提供了他的不在場證明。但他的 DNA 與犯罪現場的精液匹配,而這是兩億分之一的機率,這個證據很可能讓任何一位陪審員判他有罪。

正義女神帶著眼罩,象徵一視同人的精神,但用「常識」來解讀數據扭曲了這樣的精神。圖/pixibay

然而,在這裡我們必須面對的問題是,這個數字到底說明了什麼。實際上,這數字並不如法庭和新聞界一般以為的那樣稀罕。他們往往認為,既然這些精液只有兩億分之一的機率不是亞當斯留下的,因此他不太可能是無辜的。就像我們稍後會明白的,這數字實際上代表,若我們隨機在大眾之中取得 DNA,那麼我們將有兩億分之一的機會,拿到與犯罪現場精液相符的 DNA。

這兩個意義的差異十分微小,卻至關重要。在一群(假設是一萬人)可能犯下罪行的人之中,有人的 DNA 與犯罪現場 DNA 相符的機率是兩億分之一,或是兩萬分之一。這樣的解釋對亞當斯來說仍然不太妙,但不至於完全毫無希望。

法庭上的貝氏統計

你能成為貝式陪審員嗎?就像下面例子所示,它並不是一個直截了當的判斷。假設你有個來自犯罪現場的證據E,那是一灘血跡,或是一段衣服線頭,並且與嫌犯身上的東西相符。這些東西會如何影響你對嫌犯清白的看法或假設 H?

貝式定理會告訴你如何在給定的 E,計算出 H 的機率。亦即:(H的機率)乘以(在給定的 H 下,E 的機率),再除以(E 的機率)。或是,如果用標準的數學符號來表示,會是這樣:

P (H | E) = P (H) × P (E | H) / P (E)

假設你擔任一起攻擊案的陪審員,到目前為止你有60%相信被告是無辜的:P (H) = 0.6。然後有人告訴你,被告的血型和犯罪現場留下的血型都是 B 型,而世界上有10%的人是這種血型。這件事會如何改變你的看法?被告的嫌疑應該更大或是更小?

法醫專家給你的機率,是在一般清白大眾中找到與證據相符的人的機率:P (E | H) = 0.1。要應用貝式公式並發現 P (H | E),也就是你對被告為無罪的新看法,你需要的是數量 P (E),也就是他們的血液與犯罪現場血液相符的機率。

機率影響了陪審團對案情的認知。圖/pixibay

實際上,這個機率取決於被告無罪或是有罪。如果他們是無辜的,他們就和所有人一樣都是0.1;但如果他們有罪,那就是1,因為他們的血液確定與現場血液相符。這個洞見讓我們可以在無罪 (H) 或有罪 (不是H) 的狀況下加總血液匹配的機率,進而計算出 P (E):

P (E) = [ P (E | H) × P (H) ]+[ P (E | 非H) × P(H) ]
= (0.1 × 0.6) + (1 × 0.4) = 0.46

所以,根據貝式公式,修正過的無罪機率是:

P (H | E) = (0.6 × 0.1) ÷ 0.46 = 0.13

正如你所想的,若採用這個方法,無罪的機率便下降了。如此一來,被告有罪的機率,也許比你一開始想的高了四到五倍。

當常識與正義背道而馳

亞當斯的辯護團隊,非常擔心陪審團可能會曲解機率,因此找來牛津大學統計科學家彼得.唐納利 (Peter Donnelly) 協助。「我們設計了一個問卷調查,透過貝式推理,幫助他們整合所有證據。」唐納利說。

然而,他們未能說服陪審團相信貝式方法的價值,最終亞當斯還是被定了罪。他上訴兩次皆鎩羽而歸,上訴法官最終裁定陪審團的任務是「不要用公式來評估證據,而是用他們的常識來判斷。」

但如果常識與正義背道而馳,又該如何呢?對英國蘭開斯特大學的數學家大衛.露西 (David Lucy) 來說,亞當斯的案例說明了傳統文化必須有所改變。「在某些情況下,統計分析是評估證據的唯一方法,因為直覺有可能導致謬誤的結果,」他說。

錯誤的判斷會造成不公的判決。圖/pxhere

在錯誤發生前便發現它

倫敦瑪麗王后大學計算機科學家諾曼.芬頓 (Norman Fenton),曾在刑事案件中擔任防務小組的工作,他提出一個可能的解決方案。他和同事馬丁.尼爾 (Martin Neil) 合作,研發了一個按步驟出現的圖片系統和一棵決策樹,藉此幫助陪審員瞭解貝式推理。這兩人說,一旦陪審團相信這方法有效,專家們就能把貝式定理使用在類似這種「黑盒子」的案件中,計算出每個證據所指出的無罪或有罪機率。「人們不會質疑電子計算機執行的步驟是否正確,那麼為什麼在這裡就要質疑呢?」芬頓問。

這個建議很有爭議。根據其結論來說,我們可能在單一計算中看到公平審判的結果。用貝式機率處理DNA和血型配對的效果很好,但若事涉將外貌和行為等因素量化,難度卻變得更大。「不同陪審員對證據會有稍微不同的見解,而這不是數學家可以代勞的事,」唐納利說。

唐納利認為,法醫專家應接受統計學的教育,以便在錯誤發生之前就能發現它們。從類似亞當斯這樣的案例發生以來,美國和英國的法醫專家確實已開始學習統計學;然而,律師和陪審員受到的統計訓練仍然很少,如果真有的話。

真實的五個謬誤

隨著五個真實謬誤的出現,我們實在無法感到自滿。唐納利說,這些來自法律教科書的真實案例顯示,人們要求翻新統計分析的呼籲,並不是要讓數學家把他們的思考方式強加在整個世界上。「正義必須仰賴每一個人都能在不確定的情況下,適當地進行推理。」他說。

一、檢察官的謬誤

「檢察官謬誤是種非常容易犯的錯,」英國肯特市一家證據顧問公司首席法醫顧問公司的伊恩.埃夫特 (Ian Evett) 說。這種謬誤混淆了貝式公式對兩種機率之間所做的微妙區分。P (H | E) 這機率是指一個人與部分證據相符的情況下,他是無辜的機率;P (E | H) 這機率則是指一個人在無辜的情況下,他與部分證據相符的機率。第一個機率是我們想知道的,第二個機率則通常是法醫告訴我們的。

不幸的是,即使是專業人士有時也會把這兩個機率搞混。例如,1991年在英國曼徹斯特,安德魯.迪恩 (Andrew Deen) 強暴案正在審判時,一位專家證人同意該(精液的)DNA 樣本「不是安德魯.迪恩留下的機率是三百萬分之一。」

然而那樣說是錯的。在一般大眾之中,任何無辜者的 DNA 與犯罪現場的精液相符之可能性是三百萬分之一;也就是說,這是 P (E | H)。英國大約有六千萬人,很少有人的 DNA 會與犯罪現場相符。根據有多少人可能會承認自己犯下罪行來說,就算迪恩的 DNA 與犯罪現場遺留的精液相符,但他無罪的機率—或說 P (H | E) —實際上還是比三百萬分之一要大上很多。

在上訴時,迪恩有罪的判決被撤銷了,讓一群類似案件也成功獲得程度不一的翻案,有些還出現讓人驚訝的結果。例如,警察發現一名在2008年入獄的加州人,他的 DNA 與三十五年前一起姦殺案留下的證據相符。

任何無辜者的 DNA 都有可能與犯罪現場的精液相符。圖/pixibay

二、終極議題的謬誤

迪恩的起訴案在快發生機率謬誤之前結束了。然而在陪審團的想法裡,它可能會變成「終極議題」的謬誤:明確將(小的)數字 P (E | H) 等同於嫌犯無罪的可能性。

在1968年的洛杉磯,這個終極議題的謬誤讓黑人馬爾科姆.柯林斯 (Malcolm Collins) 和他的白人妻子珍娜啷噹入獄。乍看之下,這個案子似乎沒什麼可質疑的:一位年長女士被一位金髮白人女性和蓄鬍的黑人搶劫,他們雙雙跳進一輛黃色汽車後逃逸。根據一位專家的計算,要找到一對符合這種組合男女的機率,是一千兩百萬分之一。

警方相信了專家的話,而陪審團也不假思索地相信這看法。他們認為,站在法庭上的這對黑白男女,只有一千二百萬分之一的機率不是作案的那對,而這也是他們無辜的機率。

然而,警察和陪審團都錯了。在像洛杉磯這樣的城市裡,數以百萬計來自各種族的人都住在這裡,或是經過這裡,所以有其他類似種族組合的男女大有可能存在,因此柯林斯夫婦有更平均或更高的機率是無辜的;更不用說,受害者對嫌犯的描述本身可能根本是錯誤,這一點有助於上訴時扭轉被告的有罪判決。

每一個證據都有可能使無罪的人入獄。圖/pixibay

三、忽視基本比率

任何想靠 DNA 分析快速得到判決的人,都該意識到遺傳證據也許並不可靠。這個世界有七十億人,就算發現相同基因的機率是十億分之一,也可以在這世上找到七個相符的人。

所幸,間接證據和法醫證據往往會把可能是嫌犯的那群體迅速切成小團體。但是,忽略你的「基本比率」—也就是可能符合的那群人—會讓你得到錯誤的結論。而且這樣的事不只發生在法庭上。

舉例來說,看看醫生幫你動手術的狀況。假設你剛剛被檢查出罹患了不治之症,而罹患這疾病的機率是一萬分之一。這個檢查的準確度為99%。那麼,你罹患該疾病的真正機率是多少呢?

答案是不到1%,原因是這種疾病非常罕見,這表示即使檢查擁有高達99%的準確率,出現偽陽性的機率會遠遠超過實際患病的機率(見下頁圖)。這就是為什麼進一步檢查而將機率縮小,是這麼重要。並不是只有像我們這樣的一般人,才會被這種反直覺結果所困擾。根據調查顯示,有85-90%的健康專家,都會搞錯這東西。

癌症檢驗結果的準確性其實不高。圖/八旗文化提供

四、被告的謬誤

在法庭內,能把統計數據按對自己有利的方式詮釋的人,並不只有檢察官。就我們所知,辯護律師也會出現「挑櫻桃」的機率(譯注:挑櫻桃是指,只談支持論點的理由,而不談反對論點的理由)。

例如,1995年前美國足球明星O.J.辛普森 (O.J. Simpson) ,因謀殺前妻妮可.布朗 (Nicole Brown) 及其友人而受到審判。在此多年之前,辛普森曾被控家暴,對此他不承認自己有罪,但也未替自己辯護。為了淡化這件家暴案,在 O.J. 辛普森的辯護顧問團裡,有個名叫艾倫.德爾霍維茨 (Alan Dershowitz) 的顧問,他說在曾被丈夫或男友施暴的所有女性中,只有不到千分之一的人被伴侶殺害。

後來,賓州天普大學的數學家約翰.艾倫.保羅斯 (John Allen Paulos) 表示,這數字可能是真的,但並非最重要的事。由於貝氏算法會將所有相關事實的資訊都計算進去,所以一名女性若曾遭虐待再被殺害,那麼凶手有80%的機率會是她的伴侶。

但這也許還不是故事的全貌,加州大學爾灣分校的犯罪學家威廉.湯普森 (William Thompson) 就表示,在所有遭殺害的女性中,無論她們有沒有被施暴過,如果有超過80%的人都是被伴侶所殺,那麼「有沒有虐待就根本不具判斷價值,」他說。

「有沒有被虐待」無法影響女性被殺害的機率。圖/pxhere

五、相關證據謬誤

有時候,早在貝式統計能發揮作用之前,數學邏輯就已離開法庭,變得無用武之地,這是因為我們根本誤用了機率。

就相關證據謬誤來說,這是英國近期最惡名昭彰的一起正義受挫的案例。1991年11月,莎麗.克拉克 (Sally Clark) 被控趁孩子睡覺時,將他們窒息而死。兒科醫生羅伊.梅多 (Roy Meadow) 作證說,兩個孩子皆自然死於初生嬰兒猝死症(SIDS,或稱嬰兒促死)的機率為七千三百萬分之一。他之所以得到這數字,是因為他將個別孩童罹患初生嬰兒猝死症的機率八千五百分之一相乘起來。也就是說,該醫生將克拉克家中的兩起死亡案件,當成彼此獨立的事件來處理。

相關證據謬誤讓正義變成暴力。圖/pixibay

但,為何這兩起死亡案件是獨立事件呢?對此,英國皇家統計學會在上訴時表示,「可能有未知的基因或環境因素,讓某些家庭特別容易罹患初生嬰兒猝死症。因此發生過這種事件的家庭,更有可能發生第二起這樣的案件。」

「即使當時判案的是三位傑出的法官,但他們都沒發現這個錯誤。」為辯方工作的雷.希爾 (Ray Hill) 說。他估計,如果家中有一個孩子死於初生嬰兒猝死症,那麼另一個孩子死於此症的機率,將高達60%。如此,貝氏推論算出兩個孩子發生初生嬰兒猝死症的機率大約是十三萬分之一。英國每年有幾萬個孩子出生,這表示三不五時就會發生兩起初生嬰兒猝死症。

最後,克拉克在2003年獲釋。她的案件持續發酵,讓人們反省許多類似案件。希爾說,「最近幾年,我不記得法院是否還有收到嬰兒死猝亡案件。」然而,克拉克自此不曾從被誤解的痛苦中痊癒過來。2007年,人們發現她陳屍家中,她終究成了人們對統計無知的受害者。

 

 

本文選自泛科學2018年7月選書《偶然的科學:好運、隨機及機率背後的秘密》,八旗文化。

 

文章難易度
PanSci_96
1189 篇文章 ・ 1742 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
鑑識故事系列:狗咬狗,滿嘴…mtDNA
胡中行_96
・2023/08/14 ・1957字 ・閱讀時間約 4 分鐘

愛犬慘死,兇手逍遙法外。縱然不是每個人都如電影《捍衛任務》的 Johon Wick,身懷絕技,謀求私刑正義;[1]透過科學管道,至少可以討個答案,獲得心靈平靜。義大利某隻母的傑克羅素㹴(Jack Russell Terrier),橫屍寵物旅館的院子,得年 8 歲。犬舍的網子破裂,有向內拉扯的痕跡。寵物旅館老闆養的3隻荷花瓦特犬(Hovawart),嫌疑重大;然而事後到場的獸醫,卻認為野生狐狸或海狸才是罪魁禍首。傑克羅素㹴的主人心有不甘,遂找上波隆那的一所動物疾病預防研究機構(L’Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna)。[2]

非當事傑克羅素㹴。圖/Oskar Kadaksoo on Unsplash

解剖狗屍

這隻傑克羅素㹴死後,在日均溫 7 °C 的環境,被擱置 18 到 20 個鐘頭。接著於 − 18 °C 的冰庫裡,凍了 1 個月,才被研究機構拖出來驗屍。從外觀看來,牠生前的健康狀況良好。不過,毛皮沾血,且有 14 道 7 至 10 公厘,略呈橢圓,邊緣清楚的咬傷,分佈於頸、肩、胸、肋弓、大腿(照片)和鼠蹊。另外,腰部還有個 10 公分長,2.5 公分寬的大傷口。剝掉狗皮後,可見創傷頗深:左邊頸、胸的肌肉浸潤於血中;胸腔與腹腔內,也有輕微出血;肋間肌、肋膜及腹壁穿孔;並有一根肋骨骨折。綜合以上,牠顯然死於咬傷穿透胸部,[2]使空氣在肋膜腔中累積而壓迫肺臟,[3]所導致的氣胸(pneumothorax)。[2]那麼究竟是什麼動物如此殘暴?

nDNA vs. mtDNA

兇手遺留在死者身上的 DNA,是指認身份的好線索。[2]細胞中的細胞核(nucleus)和粒線體(mitochondria)都含有 DNA,[4]分別簡稱為 nDNAmtDNA,兩者並不相同。以人類為例,前者包含從雙親得來的 2 至 3 萬個基因;後者則有 37 個,主要遺傳自母親。[5]分析 nDNA 的短縱列重複序列(short tandem repeat;STR),也就是一些鑑別度高的小片段;[4]或是單核苷酸多型性(single nucleotide polymorphism;SNP),即DNA序列中單一鹼基的變異,[6]便能辨識個體。[2]

以此案來說,最理想的作法,當然是從㹴犬身上的咬傷取樣,分析 nDNA,再比對兇嫌的樣本。可惜屍體於運送的過程中,大概已經受到汙染,驗了也未必準確。再加上寵物旅館的老闆,絕不可能讓3隻荷花瓦特犬配合調查,這個辦案方向根本毫無希望。[2]

好在天無絕人之路,數根 5 到 10 公分不等,顏色有深有淺的毛髮,不僅卡在死者的牙縫裡(照片),還纏於腳掌上。它們出現的位置奇怪,長得又跟梗犬的不同,或許正是來自兇手。儘管鑑識採集的毛髮時常不帶毛囊,[2]而髮幹的 nDNA 含量又極低,不過會有相當充足的 mtDNA,[7]可以辨識物種。於是,鑑識人員挑了最長又最完整的 4 根送驗。[2]

死者的腳掌,纏著兇嫌的毛髮。圖/參考資料 2,Figure 3(CC BY 4.0)

狼 vs. 犬

毛髮 mtDNA 分析的結果,顯示其來源非狼即犬,才不是獸醫瞎說的狐狸或海狸。如果進一步由傷口位置,回推攻擊方式,嫌疑範圍又會縮得更小:[2]

(Canis lupus)作為掠食者,攻擊講求效率。最好不太耗費能量,便獵得豐美肉食。特別是遇到傑克羅素㹴,這種小型犬的時候,會朝頸部直接咬死,然後狼吞虎嚥。此外,該寵物旅館附近,沒有狼出沒。[2]

相對地,(Canis lupus familiaris)打起架來,才會全身從頭到尾胡亂咬。好不容易把對方搞癱了,卻放著全屍一口沒吃。因此,本案的兇手應該是中、大型犬,而且當時有機會與死者接觸的,唯有那 3 隻毛髮長度和顏色,與證物完全吻合的荷花瓦特犬。[2]

非當事荷花瓦特犬。圖/Oxborrow on Wikimedia Commons(Public Domain)

身後貢獻

鑑識團隊完成狗主人託付的任務後,撰文介紹將 mtDNA 的細胞色素 b 基因(cytochrome b gene),放大並定序,最後確認物種的細節。[2]雖然不曉得他們的努力,是否有助司法公道,但是好歹已為學術研究貢獻心力。天下蒼生多少默默無聞,死後被立碑著傳的又有幾個?一隻備受寵愛的傑克羅素㹴,能榮登學術期刊,也算不枉此生。

  

參考資料

  1. John Wick’. IMDb. (Accessed on 02 AUG 2023)
  2. Roccaro M, Bini C, Fais P, et al. (2021) ‘Who killed my dog? Use of forensic genetics to investigate an enigmatic case’. International Journal of Legal Medicine, 135, 387–392.
  3. McKnight CL, Burns B. (15 FEB 2023) ‘Pneumothorax’. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
  4. Department of Emergency Services and Public Protection. ‘Nuclear DNA’. U.S. Connecticut’s Official State Website. (Accessed on 01 AUG 2023)
  5. Storen R, Smith E. (11 JUN 2021) ‘Mitochondrial donation in Australia.’ FlagPost by Parliament of Australia.
  6. Gunter C. (01 AUG 2023) ‘Single Nucleotide Polymorphisms (SNPs)’. U.S. National Human Genome Research Institute.
  7. Tridico SR, Koch S, Michaud A, et al. (2014) ‘Interpreting biological degradative processes acting on mammalian hair in the living and the dead: which ones are taphonomic?’. Proceedings of the Royal Society B, 2812014175520141755.
胡中行_96
151 篇文章 ・ 54 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

4
1

文字

分享

0
4
1
用數學看見微觀的生物演變!深研分子演化學 50 年的巴仁獎得主——李文雄專訪
研之有物│中央研究院_96
・2023/04/20 ・7970字 ・閱讀時間約 16 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文/寒波
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

80 歲高壽的分子演化學家

您知道中央研究院有位相當低調的遺傳演化學大師嗎?此人開創了許多分子演化的數學分析方法,他就是生物多樣性研究中心的特聘研究員李文雄院士!數學是李文雄用來描述生物演化的工具,用 DNA 序列計算分子時鐘是他的重要貢獻。至今 80 歲高壽的李院士,是國內唯一獲得巴仁獎榮譽的得主,不僅培育眾多學生,並且依然在最前線探索未知。中研院「研之有物」專訪李文雄,邀請他分享在美國與臺灣的學研經歷及主要研究成果。

李文雄院士開創了許多分子演化領域的數學分析方法,對遺傳及演化學的發展影響甚遠。圖/研之有物

用數學在演化生物學領域開疆拓土

李文雄身為世界首屈一指的分子演化學家,也是經典教科書的作者,學分子演化的人肯定讀過他的書或論文。不過讓年輕學子們驚訝的是他大學就讀的科系,其實和生物及數學沒有直接關係,而是中原理工學院(中原大學前身)土木系。

李文雄表示,當年資訊閉塞,他像同學一樣照著聯考分數填志願,就這麼進了土木系。讀到大二接觸專業科目後,確認土木不是想要念的學門,便考慮投入數學或物理領域,又以數學比較得心應手。可惜他沒有考上數學碩士班,倒是考進了中央大學地球物理研究所。拿到碩士之後,李文雄更加確定比起物理,自己更適合念數學。

早年臺灣的進修資源很有限,李文雄選擇赴美深造,就讀布朗大學的應用數學博士班。當構思論文題目時,他想要找一個還沒有人用數學深入探討的領域,以便發揮所長。那時日本出身的遺傳學家根井正利(Masatoshi Nei)正好轉到布朗大學生物系授業,李文雄與他討論後,決定帶著數學專長投入尚待開拓的生物學,就此開啟 50 年輝煌的研究生涯。

李文雄在博士班前的求學之路,可以說比其他人多走了好幾步,但也練就了深思熟慮的精準眼光,「Make right choice!」是他學到最重要的能力。用數學來探討生物學,即為他一生最好的抉擇之一。

轉換跑道到生物學,李文雄幾乎沒有遇到太多困難,即使他是在博二暑假才開始學遺傳學,但數學好的人在群體遺傳學領域有些優勢,他受到師長賞識,只花費兩年就完成博士論文,再經歷一年威斯康辛大學麥迪遜分校的博士後研究,1973 年李文雄便前往德州大學休斯頓分校擔任助理教授,因為恩師根井正利在一年前已搬去那裏。

李文雄的恩師根井正利,國際知名分子演化學家,2013 年獲得日本京都獎。圖片為日本京都獎專訪片段。(Photo courtesy of The Inamori Foundation)資料來源/Kyoto Prize

「分子演化」探討微觀的生物演變

分子演化(molecular evolution)和我們一般認知的演化有什麼不同?生物以 DNA 承載遺傳訊息,基因又會產生蛋白質。分子演化學簡單說來,是以 DNA、蛋白質這類遺傳資訊探討生物隨時間演變的學問。

分子演化學在 1960、1970 年代,木村資生(Kimura Motoo)、威爾森(Allan Wilson)等前輩主要是以蛋白質序列作材料,由於蛋白質定序很慢成本也高,李文雄並沒有跟風投入研究。直到後來桑格(Sanger)的 DNA 定序方法 1977 年問世後,陸續有 DNA 資料發表,李文雄認為時機已到,便全心擁抱分子演化學的新天地,大獲成功,成為引領潮流的先驅者。

李文雄開始研究分子演化時已經有電腦,但當時還是卡片打孔的時代,計算過程相當繁複,不像現在有各種套裝軟體可以做數學統計分析。值得一提的是,今日相當受歡迎的分析軟體「MEGA」(Molecular Evolutionary Genetics Analysis),便是恩師根井正利與弟子們一起開發而成的。

在詳細講分子演化之前,我們還是先來複習一下遺傳學吧!

DNA、DNA 密碼子與氨基酸的對應案例。圖/研之有物(資料來源/Wikipedia

基因編碼以三個核苷酸為一組密碼子,並對應一個氨基酸(蛋白質的基本單位)。DNA 有 A、T、C、G 四種核苷酸,可以形成 64 種組合,而氨基酸只有 20 種,所以有些氨基酸對應兩種以上密碼子。

因此改變 DNA 的核苷酸,有時候不會改變氨基酸,此時稱為同義突變(synonymous mutation);有時候會改變氨基酸,此時稱為非同義突變(nonsynonymous mutation)。比較 DNA 序列和胺基酸序列變與不變之比例,就能大約估計天擇力量的影響,推測天擇是傾向去除突變還是選擇突變。這是分子演化常見的分析之一,李文雄的實驗室開發了數個被廣泛應用的分析方法。

在分子演化興起前,不同生物間的親疏關係,可以透過生物形態的相似程度建構演化樹,但形態資料很有限。比較生物 DNA 或蛋白質的資料,可以細緻地釐清物種間的親緣關係,對分類學的貢獻很大。

比方說早期演化學家會比較一群鳥類的嘴喙特徵,兩種鳥喙的形態差異較小,便代表其親緣關係較近;而分子演化學家則是比較這群鳥類的 DNA 或蛋白質序列的差異,更能釐清彼此的親緣關係。

形態是巨觀的,分子是微觀的。但我們也可以說每一處 DNA 或氨基酸位置都相當於一種形態。分子資料通常更容易取得,可提供比較的特徵數量也比形態還多很多,更容易計算。

現今探討親緣關係,最好能考慮不同材料,有多重證據的支持,因此分子演化的分析方法就相當重要。李文雄在親緣樹建構及統計評估的方法上有重要貢獻。

李文雄回憶,他的好朋友古德曼(Morris Goodman)當初便靠著分子生物學的方法,釐清人類和黑猩猩(chimpanzee)的遺傳親緣關係,要比和大猩猩(gorilla)更近,解決了爭議了數十年的「大猩猩—黑猩猩—人類的三角問題」,是一大貢獻。

大師傳承的軌跡:中性演化和分子時鐘

今日分子演化之所以和 50 年前有很大差別,其中就有來自李文雄的重要貢獻。李文雄建立了數學方法讓「分子時鐘」(molecular clock)理論得以實際應用至生物演化的分析。

分子時鐘的概念是:DNA(或蛋白質)序列的演化以等速進行。如果這個假設成立,則透過兩個物種之間 DNA 序列的差異,就可以估計分化的時間。也就是以分子的變化量為時鐘來計算這兩個物種分離後時間的流逝。

之所以可以這樣假設的基礎,是生物在一代代傳承下,由於突變之故,遺傳序列不斷累積新的變化,稱為「取代」(substitution);而取代的數量正比於世代數,例如每一代新增 5 處取代,差異 50 處便可回推經過 10 代。

分子時鐘的示意圖,DNA 序列的變化量正比於世代數。假設每條 DNA 序列花費 2500 年取代一個鹼基,圖中兩個現代物種的 DNA 相差四個鹼基,我們可以估計這兩個物種的演化時間相差一萬年,而共同祖先至少生活於 5000 年前。圖/研之有物(資料來源/University of California Museum of Paleontology

然而,這假設與傳統達爾文的天擇概念有很大的出入;因為分子時鐘這樣假設的意思就是說:大部分突變不會影響天擇,對生存競爭的影響可謂中性(neutral)。上述觀點也就是根井正利和李文雄的前輩:木村資生提出的「中性演化理論」。

木村資生認為,大多數遺傳分子的改變未必和天擇有關,個體間的遺傳多樣性往往是隨機變化的結果。當初這個論點引發很大爭議,後來又經過許多改版與補充,如今中性演化的觀點已被許多學者接受,分子層次的遺傳變異,常常不影響其天擇;新突變取代舊的遺傳訊息,未必是因為其有利於生存競爭,也常常只是運氣好而已。

中性演化理論提供了分子時鐘的理論基礎,帶來許多突破。例如受到注目的智人(Homo sapiens)起源問題,於 1980 年代根據各地人群間的遺傳差異程度,判斷歐亞人與非洲人分家只有數萬年,而非多地智人起源論主張的上百萬年,這便是「單地起源,智人出非洲說」的有力證據。

李文雄自己在 2000 年代初期也指導博士生陳豐奇(現職為臺灣國家衛生研究院的研究員),比較人類與人猿非編碼區的 DNA 序列,便估計出人類與黑猩猩分家約 600-700 萬年。

李文雄院士證明分子時鐘的運行速度和世代長短有關,世代愈短,演化速度愈快。圖/研之有物

李文雄在 1980 年代的一關鍵貢獻就是,率先用 DNA 序列評估分子時鐘的正確性,發現取代的速度並非等速。他證明分子時鐘運行的速度和世代長短有關:世代愈短,時鐘愈快。例如大鼠、小鼠的世代比人類的世代短得多,而牠們之間演化的速度,也是人類與人猿間的大約 5 倍。此一發現有助於更準確地估計兩個物種間的分家時間。

李文雄另一重大發現是,同一物種的兩性之間,生殖細胞的突變速度可能不一樣,男比女快。這在生物學上的理由是:生殖細胞的複製及分裂次數不同。女生的卵在出生前便已儲備好了,而男生的精子則是一輩子持續複製,所以男生生殖細胞的突變速率比女生快。

關於同一物種的性別演化差異,李文雄表示這是前輩霍爾丹(J. B. S. Haldane)提出的觀點。李文雄設計好 DNA 定序區間及物種,產生適合材料,於是就驗證了此假說。雖然講起來雲淡風輕,但若讀者了解遺傳學發展史應該會深受震撼,因為霍爾丹正是奠定族群遺傳學的三大名家之一,從霍爾丹到李文雄,我們可以看見大師傳承的軌跡。

遺傳與演化學最高榮譽:巴仁獎

靠著數學和分子生物學的分析,李文雄解決了許多演化生物學的難題。比如,他在 1991 年就以很有限的人類 DNA 序列資料,預估人類的 DNA 多樣性低於 0.1%,比果蠅的低不少,十年後大量的資料證明他的預估是正確的!還有,在 2001 年當黑猩猩的基因體資料還很有限時,他就預估出人類與黑猩猩的基因體相差只有 1.2%,這個預估引起很大的震撼,因為人類與黑猩猩看起來很不一樣,但當黑猩猩的基因體於 2005 年發表時,得到的答案與李文雄的預估完全一樣!

承上,李文雄陸續受到各界肯定,他於 1998 年被挖角到芝加哥大學擔任 George Beadle 講座教授(Beadle 為一位諾貝爾獎得主),並當選中研院院士。2003 年更獲得兩項重大榮譽:美國國家科學院院士和巴仁獎(Balzan Prize for Genetics and Evolution)。

要成為美國國家科學院的院士並不容易,對學者而言是極大的榮譽。例如:以中研院為例,最近的三任院長廖俊智、翁啟惠、李遠哲;以及超導物理學家吳茂昆、公衛學家陳建仁、經濟學家朱敬一、植物學家蔡宜芳等,每一位都是該領域世界級科學家。

獲頒巴仁獎則更為難得,李文雄是史上第三位得獎的遺傳與演化學家,也是第一位亞洲出身的巴仁獎得主。巴仁獎從 1978 年以來獎勵人文、哲學、物理科學、生物科學,或促進和平的傑出人士或組織。對演化學家來說,巴仁獎就是遺傳與演化學的最高榮譽。

李文雄在 2003 年獲得遺傳與演化學最高榮譽:巴仁獎。(Courtesy of The Balzan Prize)圖/李文雄

李文雄獲得巴仁獎時的引文如下:

「李文雄對分子演化做出了許多基礎性的貢獻。他開發並應用了數學技術來解決非常廣泛的問題,他的方法是屬於該領域最常用的方法。

隨著 1980 年代以來 DNA 序列數據的爆炸式增長,李文雄一直是通過比較 DNA 序列來推斷演化關係的方法的設計師。他在建立估計演化樹的準確程度和可以放在其中的統計置信度的方法方面特別有影響力。

以往解釋 DNA 數據的一個關鍵假設是 DNA序列的變化在演化時間上以恆定速率進行(所謂的分子時鐘)。該假設常被用於估算譜系分歧的時間。1980 年代,李文雄第一個證明分子時鐘的運行速度取決於世代的長短:世代越短,時鐘越快。因此,時鐘在大鼠和小鼠之間的演化速度是猴子和人類之間的演化速度的五倍。這一發現有助於更好地估計兩物種的分歧時間。

李文雄在證明 DNA的突變率在男性生殖細胞高於女性生殖細胞的工作也很有影響力。他已經在包括人類在內的高等靈長類動物以及囓齒動物證明了這一點。

除了開創性研究外,李文雄還在分子演化領域的教育上 扮演一核心人物。他的書被認為是該領域的權威。」

在獲得巴仁獎的遺傳及演化學家之中,第一位為 1984 年得獎的萊特(Sewall Wright,美國人),與前述提及的霍爾丹,同為族群遺傳學三大開創者之一;第二位則是 1991 年英國的梅納德史密斯(John Maynard Smith),再來就是 2003 年的李文雄。生物科學包含那麼多領域,遺傳及演化大約十年才得獎一次,讓李文雄覺得這項肯定十分難得。

李文雄的成就受到芝加哥大學的肯定,在 2004 年為他設立 James Watson 講座教授(Watson 以雙螺旋 DNA 模型得諾貝爾獎,是一家喻戶曉的名字),並提供研究資源。然而,過了四年之後,李文雄決定回到臺灣,提攜後進。

回歸臺灣,培育後進

2008 年,李文雄終於回到這塊多年成長的土地,擔任中研院生物多樣性研究中心的主任。除了自己的研究外,他特別重視兩件事:首先是和臺灣師範大學合辦「生物多樣性國際研究生博士學位學程」,在臺灣本土培育新生代的研究人員。

再來他號召成立「臺灣演化與計算生物學會」,成立的初衷是因為李文雄覺得臺灣研究演化的人不多,希望讓演化、生物資訊領域的人集中起來交流,尤其是讓年輕的研究者有練習發表的舞台,增加被認識的機會。擔任兩屆理事長後,李文雄交棒給臺灣大學的丁照棣教授,以及陽明交通大學的黃宣誠教授。

學會在李文雄奠定的基礎上持續前進,2012 年開始年年舉辦國際研討會,除了邀請外國學者參加,也會特別安排新進學者演講的場次,至於博士生、博士後,則設有專屬的口說與壁報比賽。另外為了兼善臺灣各地,年會舉辦的地點一年在臺北,另一年在臺北以外輪流,包括高雄、臺南、臺中、苗栗等地,展現兼顧不同區域的用心。

李文雄也鼓勵大家,多參加不同的研討會與加入學會。獲取新知對做研究的人相當重要,參加活動多看多聽多交流,都是寶貴的機會,不只能增加知識,有時候也能獲得他人幫助,有助於自己的研究。

回到臺灣以後,李文雄除了指導學生,本人依然站在研究的第一線,而且兼顧學術與應用的方向,合作對象眾多,議題包括鳥類羽毛的發育演化、微生物固氮作用的起源與演化,還有開發 C4 水稻(水稻是 C3 植物,希望能改造為光合效率更好的 C4 型態)等等。

近期值得一提的是,李文雄與合作團隊發表在分子演化頂級期刊《Molecular Biology and Evolution》的研究。他們探討新冠病毒棘蛋白(spike protein)的受體蛋白 ACE2 的演化,發現一些非人類的靈長類動物,有大量降低親和力的 ACE2 突變,讓這些猴子的 ACE2 不容易和病毒的棘蛋白結合,因此對病毒有很強的抵抗力。又發現有少數人的 ACE2 也帶有會抵抗病毒的突變。李文雄也說,如果人類與舊世界猴子的共同祖先的 ACE2 沒有突變成與棘蛋白更容易結合的話,也許新冠病毒就不會造成全球大流行,或是病毒的危害不至於那麼廣、那麼深!

李文雄與合作團隊分析了靈長類動物的 ACE2 的演化,ACE2 是新冠病毒感染宿主的結合受器。研究顯示,左側的舊世界猴子(獼猴、大猩猩、長尾猴)和人類一樣容易感染新冠病毒,右側的眼鏡猴與兩種新世界猴子(松鼠猴、金絨猴)則對新冠病毒具有很強的抵抗力。圖/研之有物(資料來源/中研院生多中心)

勇於追求「跨領域」研究,尋找新鮮的問題

李文雄入行 50 餘年一直活躍在第一線,作為參與者和見證人,最有資格回答「分子演化學在過去和現在有什麼不同?」。他表示,以前容易找到重要的題目,但是取得資料的速度很慢。現在隨著分子生物學及資訊科學技術的進步,比較容易取得大量資料,資料多就容易找到題目,寫論文不難,內容也會比較豐富。可是期刊的要求也變高,而且比較不容易找到新鮮的議題,如今剩下的題目,多半是舊題目的延伸,或是難度很高。還好,現在科技發展迅速,目前的難題也許在不久的將來,就可以解決!

李文雄還是如年輕時一般,善於尋覓突破機會。像是微生物的固氮作用,無疑是重要的問題,氮是所有生物的必要元素,但只有非常少數的微生物可以固氮!可是從前卻少有演化學者研究這個問題,這就會成為好的題材。

另一方面隨著技術進步,以前難如登天的問題,現在也可能有機會解答。上面提到人類與黑猩猩的 DNA 分歧只有 1.2%,但兩者間的差異除了非編碼區外,也有很多來自基因調控不同的區域,尤其是腦部發育。過去這幾乎是不可能探索的議題,如今難度雖大,卻是有希望解決的難題。總之,在李文雄的視角中,一直都有新鮮的問題。

科學隨著歲月累積,現在入行的新人,必須先具備的知識遠超過李文雄當年,必須勇於追求「跨領域」研究。李文雄建議大家,不論時代如何改變,都要確認自己的喜好與專長,才能有計劃地學習和投入。李文雄以自己為例,他不會做實驗,但為了解決他很感興趣的生物問題,他設立一分子生物學實驗室,拿到了很多實驗資料,進而解決了不少演化難題!

讓李文雄院士印象最深刻的研究是⋯⋯

演化生物學時常有驚奇的新發現。身為世界級的演化大師,李文雄漫長的研究生涯中,對哪件科學發現的印象最深刻呢?

答案十分有趣,竟然是「河馬是鯨魚和海豚最親近的親戚」!

鯨魚、海豚是由陸地回到海洋生活的哺乳類,很難想像牠們在演化樹上的位置很相近。然而,透過 DNA 分子的比對,演化學者發現在現存動物中,鯨豚最接近偶蹄目的河馬。

鯨豚與偶蹄類的親緣關係,偶蹄類動物中的河馬和鯨豚最為相近。圖/研之有物(資料來源/Systematic BiologyWikipedia

此外,李文雄認為黑猩猩與人類的差異也相當有趣!威爾森(Allan Wilson)在 1970 年代發現黑猩猩與人類的蛋白序列幾乎相同,雖然它們在外觀與行為上有很大的不同,所以威爾森認為基因調控的演化是造成黑猩猩與人類有不同外觀和行為的主要原因,但到底是哪些基因調控上的不同,至今還是個謎!

最後,李文雄對非洲維多利亞湖(Lake Victoria)慈鯛魚(cichlids)的大量種化現象,也感到非常的奧妙,為什麼在同一個湖泊裡可以演化出這麼多慈鯛魚物種呢?!

投身科學研究 50 多年,取得一項又一項重大成果,李文雄依然由衷保持對新知識的好奇與樂趣。

延伸閱讀

研之有物│中央研究院_96
285 篇文章 ・ 2905 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

2
1

文字

分享

0
2
1
從遺傳基因能發現人類起源?在我們 DNA 上銘刻的故事!——《我們源自何方?》
馬可孛羅_96
・2023/03/17 ・2580字 ・閱讀時間約 5 分鐘

遺傳基因如何記錄歷史

要理解遺傳學為何能協助我們探究人類的過去,必須了解基因組(我們由雙親繼承來的所有遺傳密碼)如何紀錄資訊。

一九五三年,法蘭西斯.克里克(Francis Crick)、羅莎琳.富蘭克林(Rosalind Franklin)、詹姆斯.華生(James Watson)和莫利斯.威爾金斯(Maurice Wilkins)證明,基因組是由大約三十億個化學構件組成的雙長鏈(總共有六十億個單元)。

我們可以把這些構件想成字母,包括腺嘌呤(adenine,A)、胞嘧啶(cytosine,C)、鳥糞嘌呤(guanine,G)和胸腺嘧啶(thymine,T)1。我們所謂的「基因」是由一段段短鏈組成,每段的長度通常是一千個字母左右。

基因的功能是模板,用來合成執行細胞內各項工作的蛋白質。基因之間是非編碼 DNA ,有時稱為垃圾 DNA (junk DNA)。在 DNA 片段上進行化學反應的機器能讀取這些字母指令,在反應沿 DNA 序列行進時放射閃光。

A、C、G、T 等字母進行化學反應時放射的色彩各不相同,所以字母序列能用攝影機掃描後輸入到電腦。

  

現代人演化年表。圖/《我們源自何方?》

絕大多數科學家只留意基因包含的生物訊息,但 DNA 序列之間偶爾也會有些差異。這些差異源自基因組過去複製時出現在某些時刻的隨機誤差(稱為突變〔mutation〕)。這些差異的發生機率大約是一千分之一,基因和垃圾 DNA 都可能出現。遺傳學家探究過去時要研究的正是這些差異。

在這大約三十億個字母中,無關的基因組之間通常有大約三百萬個差異。兩個基因組的片段之間差異密度越高,這兩個片段的共同祖先年代就越久遠,因為突變隨時間增加的速率大約是固定的。所以差異密度就像生物碼表,紀錄了以往發生的重要事件距離現在大約多久。

基因組序列差異/《我們源自何方?》

粒線體夏娃

透過遺傳學研究過往,最令人驚奇的應用途徑是粒線體 DNA 。粒線體 DNA 是基因組中非常微小的一部分(大約只有二十萬分之一),透過母親、女兒和孫女等母系親屬代代相傳。一九八七年,艾倫.威爾森(Allan Wilson)等人採集世界各地多個人種的粒線體 DNA ,定序出數百個字母。他們比較這些序列之間的突變差異,建構母系親屬系統樹。

他們發現,系統樹中最長的分支(也就是最早脫離主幹的分支)現在只出現在撒哈拉以南的非洲人後裔身上,表示現代人的祖先生活在非洲。相反地,現在非洲以外的人全都源自系統樹中年代較晚的分支。

依據一九八○和一九九○年代發現的考古、遺傳和骨骼證據下提出的主流整合結果中,這項發現成為十分重要的部分,支持現代人的祖先數十萬年前曾經生活在非洲的理論。

威爾森等人依據突變累積速率,估算出所有分支的共同祖先中,距離現在最近的粒線體夏娃(Mitochondrial Eve)大約生活在二十萬年前。目前最可靠的估計年代是十六萬年前左右,但我們必須了解,這個數據和大多數遺傳年代一樣不大精確,因為人類突變的實際發生速率並不確定。

科學家藉由基因突變率估計人類共同的祖先約出現在二十萬年前。圖/envatoelements

共同祖先年代距離現在如此之近,相當令人興奮,因為這打破了多區域說(multiregional hypothesis)。根據這個假說,生活在非洲和歐亞大陸許多地區的現代人類大多源自直立人(Homo erectus)早年的擴散(距今至少一百八十萬年)。直立人能製作粗糙的石造工具,腦容量大約是現代人類的三分之二。

多區域說則指出,直立人的後代在非洲和歐亞大陸各地分別演化,形成現在生活在相同地區的族群,因此多區域說預測,現代人類身上有些粒線體 DNA 序列在兩百萬年前左右分化開來,也正是直立人擴散的年代。

人類擴散與文化演變

然而,遺傳資料完全不吻合這個預測。所有現代人類的共同粒線體 DNA 祖先距今只有兩百萬年的十分之一,代表現在的人類大多源自年代晚近許多的擴散,從非洲前往世界各地。

人類學證據指出當時可能的狀況。最古老的「解剖上具有現代人類相同特徵」的人類骨骼(也就是在球狀顱骨和其他表徵方面位於所有現代人類的變異範圍內)年代約為二十∼三十萬年前,而且全部出自非洲。但在非洲和近東地區外,解剖學上的現代人目前還沒有年代早於十萬年前的可信證據,年代早於五萬年前的證據也相當有限。

石造工具種類的考古證據也指出五萬年前開始出現重大改變,西歐亞大陸考古學家稱這個時期為舊石器時代晚期(Upper Paleolithic),非洲考古學家則稱之為石器時代晚期(Later Stone Age)。

這段時期之後,製造石造工具的技術大幅躍進,此後每幾千年改變風格一次,改變步調比冰河還慢。這段時期的人類也開始留下更多展現美學與精神生活的文物:鴕鳥蛋殼串珠、拋光的石質手鐲、以紅色氧化鐵製作的身體塗料,以及全世界最早的具象藝術。

目前已知全世界最古老的小雕像是長毛象牙刻成的獅子人(lionman)雕像,發現於德國的霍倫斯坦—施泰德洞穴(Hohlenstein-Stadel),年代約為四萬年前。法國蕭維岩洞(Chauvet Cave)中的前冰川時期動物畫的年代約為三萬年前,現在仍被認為是傑出的藝術作品。

尼安德塔的骨骼。圖/wikipedia

從大約五萬年前開始,考古紀錄變化大幅加快,同時也反映在族群變化上。尼安德塔人大約四十萬年前出現在歐洲,由於骨骼形狀不在現代人類變異範圍內,所以被視為「古代」人類,於四萬一千年∼三萬九千年前在西歐滅絕,此時現代人類到達西歐只有數千年。

歐亞大陸其他地方也有族群反轉現象,非洲南部也是如此,證據包括某些地點遭到棄置以及石器時代晚期文化突然出現。

這些變化最自然的解釋是解剖上具有現代人類相同特徵的某個人類族群擴散,這個族群的祖先包括擁有先進新文化的「粒線體夏娃」,並且取代了原先居住在這些地方的人類。

——本文摘自《我們源自何方?:古代DNA革命解構人類的起源與未來》,2023 年 3 月,馬可孛羅出版,未經同意請勿轉載。

馬可孛羅_96
25 篇文章 ・ 19 位粉絲
馬可孛羅文化為台灣「城邦文化出版集團」的一個品牌,成立於1998年,經營的書系多元,包含旅行文學、探險經典、文史、社科、文學小說,以及本土華文作品,期望為全球中文讀者提供一個更開闊、可以縱橫古今、和全世界對話的新閱讀空間。