1

5
1

文字

分享

1
5
1

訂製「100%完美嬰兒」真的毋通嗎? ——《生命之鑰:一場對生命奧祕的美麗探索 》

三采文化集團_96
・2021/12/04 ・1618字 ・閱讀時間約 3 分鐘

  • 作者 / 保羅.納斯爵士(Sir Paul Nurse)
  • 譯者 / 邱佳皇

編按:筆者是知名遺傳學家和細胞生物學家,致力於控制細胞複製的研究工作,也就是所有生物生長和發展的基礎。於 2001 年獲頒諾貝爾生理學/醫學獎(Nobel Prize in Physiology or Medicine),同時也是阿爾伯特.愛因斯坦世界科學獎、拉斯克獎與皇家學會科普利獎章的獲獎者。

在本書中,保羅.納斯用優美、詼諧的語調幫讀者上了一堂生物學簡史,引領我們思考科學家長久以來追尋的生命之謎,讓讀者彷彿身歷其境、穿梭在各個時代的實驗室裡,感受那些科學發現過程的挫敗和欣喜。並除了學術理解,更希望帶給讀者哲學性的思考能力。

能正確預測疾病尤其會對以個人健康保險為資金來源的醫療系統帶來困難,如果沒有嚴格限制這些基因訊息的使用方式,可能會產生有人被拒保和被拒絕照護,或是被收取無法負擔的高額保費的狀況,但這些全不是他們的錯。在接受醫療服務當下不需付費的醫療系統就沒有這類的問題,因為這種系統可以利用這些遺傳誘因的情報更加容易預測、診斷和治療疾病。雖說如此,知道這些訊息也不見得就能活得輕鬆,如果基因科學有天發展到能夠準確地預測你何時會死亡和會以何種方式死亡,你會想知道嗎?

還有一些遺傳因子是和醫療沒有關係的,像是智力和教育成就等。當我們對個人、不同性別和人口之間的遺傳差異有更多認識時,就必須確保這些看法絕不會被用來作為歧視的基礎。和讀取基因組的能力同樣厲害的是編輯和重寫基因組的能力。一種叫做 CRISPR-Cas9 的酶是一種功能強大的工具,就像一把分子剪刀,科學家可以利用這種酶對 DNA 進行非常精確的切割,藉以增加、刪除或改變基因序列,這就是所謂的基因編輯或基因組編輯。

生物學家自 1980 年左右開始,就已經能夠在酵母等簡單的生物體中做到這一點,那也是我研究裂殖酵母菌的原因之一,但 CRISPRCas9 大幅提升了 DNA 序列被剪輯的速度、準確性和效率,也使得編輯其他更多物種的基因變得更加容易,這之中當然也包括了編輯人類的基因。

Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA.jpg
受單股 RNA 導引而接上目標基因的 Cas9 蛋白。圖/WIKIPEDIA

隨著時間的流逝,我們可以期待以基因編輯細胞為基礎的新療法出現,例如研究人員已經在製造能抵抗像是愛滋病毒(HIV)這種特定感染的細胞或是用來治療癌症。但目前說來,想要嘗試編輯人類胚胎早期的 DNA 是一件非常魯莽的事情,這會造成新生兒所有細胞的基因被改變,他未來小孩的基因也會被改變。目前以改造基因為基礎的療法存在著風險,可能會在無意間改變了基因組中的其他基因。

-----廣告,請繼續往下閱讀-----

然而就算只有想要修改的基因被編輯,那些基因修改也可能會造成難以預測和潛在的危險副作用。我們對自己的基因組了解仍有限,不能肯定這樣的風險不會發生,或許未來有一天當這些程序被認為足夠安全時,就能讓一些家庭遠離某些遺傳疾病的困擾,像是避免生下患有亨丁頓舞蹈症或肺部囊狀纖維化的嬰兒。

但利用基因改造來優化基因,像是製造出擁有高智商、外表出眾或體能優異的孩子,則是完全不同的議題了,在將生物學應用於人類生活的各種科技中,這個範疇的議題是當今最棘手的倫理問題之一。雖然使用基因編輯來製造名牌寶寶這件事目前還只是空談,但許多未來要成為父母的人在未來幾年和幾十年間還是必須思考一些困難的議題,因為科學家們會愈來愈懂得預測基因的影響力、改造基因和操控人類的胚胎與細胞,這些議題都是社會必須共同討論的,而現在就應該開始討論。

──本文摘自三采文化《生命之鑰:諾貝爾獎得主親撰 一場對生命奧祕的美麗探索》/ 保羅.納斯爵士,2021 年 12 月,三采

文章難易度
所有討論 1
三采文化集團_96
25 篇文章 ・ 8 位粉絲
閱讀在生活中不曾改變, 它讓我們看見一句話的力量,足以撼動你我的人生。而產生一本書的力量,更足以改變全世界

0

5
1

文字

分享

0
5
1
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
194 篇文章 ・ 297 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
胚胎發育必不可少的兩位舞者:胚胎幹細胞與滋養層幹細胞——《生命之舞》
商周出版_96
・2023/10/22 ・2668字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

細胞工程如何進行?

如果我們真的要進行細胞工程的話,我們就得要以孩童拼樂高積木的方式,一次一個地將細胞組合成胚胎。但我們並沒有經由口吸管的方式(請參考第五章)來這樣做,而是把一切都留給機率來決定。

我們在培養皿中混合了不同濃度的兩種細胞,並讓它們自由接觸。我們在第二天透過顯微鏡看到,有些細胞確實開始相互作用並形成結構。但為數不多,因為這取決於無法預測的機率。不過當胚胎幹細胞與滋養層幹細胞結合時,它們就會以驚人的方式進行自我建構,它們好像知道自己要做什麼,也有個目標。

胚胎發育過程經歷了什麼?

我們在實驗室暗房的顯微鏡下,看到許多胚胎發育的基本過程。我們首先看到細胞極化。接著幹細胞會自我建構,胚胎幹細胞會聚集在一端,而滋養層幹細胞則聚集在另一端。由於胚胎幹細胞衍生出的胚胎部分與滋養層幹細胞衍生出的胚外部分會進行對話,所以在每個細胞群中的空腔後續會打開並創造出三維的 8 字形。我們發現這涉及到一個名為 Nodal 的蛋白所傳送的訊號。這兩個空腔之後會融為一體,最終形成一個對胚胎發育至關重要的大型羊膜腔。這種體腔形成的過程似乎就跟真正胚胎在著床不久後會發生的情況一樣。我們看見了自我建構的驚人創舉。

不過,我們當然總是想要更進一步,讓合成胚胎中胚胎幹細胞所衍生部位裡的那些類胚胎細胞,能夠適當地打破對稱性。我們的意思是讓這些細胞設法進行原腸化,也就是提供未來身體體制基礎的關鍵步驟。
我們發現若是可以讓胚胎幹細胞與滋養層幹細胞結構再發育久一點,它們確實會打破對稱性。

-----廣告,請繼續往下閱讀-----

像 Brachyury 這類基因就會在胚胎與胚外部位之間開始表現,就跟真正胚胎的情況一樣。Brachyury 基因至關重要,因為它會影響中胚層的形成與前後軸線。 這個發現不但讓我的心跳差點停止,也讓實驗室中的每個人都大為驚奇。

這些類胚胎結構與正常胚胎結構非常相像,足以用於揭開在母體著床時期的某些發育謎團。很明顯地,胚胎幹細胞與滋養層幹細胞一同建造的結構所模擬出的胚胎形態與結構模式,要比只使用胚胎幹細胞要來得精確許多——這是更值得信賴的發育模型。

圖/unsplash

感覺起來,這兩種幹細胞就好像兩名舞者彼此都告訴對方,自己在胚胎中的所在位置。沒有這場雙人舞,正確形狀與形式的發育以及關鍵生物機制的適時運作就不會適當發生。我們也發現這個結構模式的發育,得仰賴 Wnt 與骨成形性蛋白質(bone morphogenetic protein, BMP)的訊號路徑,這與真正胚胎的發育情況一樣。

投稿論文的種種阻力與助力

我們將這篇論文投稿至《自然》。由於許多論文在初始階段就會被退回,所以我們知道編輯將稿子送去審閱時,士氣不由得為之一振。編輯們的知識淵博,經驗也豐富,能走到這一步就是一種重要的認可,所以我們有場小小的慶祝活動,因為即使是小小的成功也能做出改變。

-----廣告,請繼續往下閱讀-----

不過最終他們沒有接受我們的論文,除非得像一位審稿人要求的那樣,提供合成胚胎在自我建構時所用基因的詳細資料,以及這些基因的表現模式在自我建構的每個階段是如何變化的。這將會是一件大工程。然而這彷彿算不上是什麼壞消息,因為我的實驗室中並沒有技術可以研究這些基因所運用的轉變形態模式。我需要尋求經費來購買我負擔不起的設備,我們也需要找到合作夥伴。

我受邀到澳洲獵人谷為歐洲分子生物學組織大會進行講座。那時正值學校放假,所以我帶著賽門一起踏上這次的冒險旅途。我們在香港轉機,順便停留一天拜訪當時的行政長官梁振英,他是我最好的前博士生之一梁傳昕的父親。

圖/unsplash

我的演講是由小鼠發育生物學家譚秉亮(Patrick Tam)開場,我感到非常榮幸,因為我向來就對譚秉亮的研究極為崇拜。賽門與我加入譚秉亮與他太太伊莉莎白(Elizabeth)的行列,一起到雪梨的海邊走走,一路上譚秉亮告訴我有關他與上海生命科學研究院景乃禾(Naihe Jing)的合作,景乃禾利用雷射切割胚胎,揭露了胚胎基因的表現模式。我非常幸運,因為在我回到劍橋不久後,景乃禾就到劍橋來拜訪,所以我能夠親自與他見上一面。我們同意一起合作揭開我們類胚胎結構中基因表現的模式。景乃禾團隊的貢獻將是我下一章故事的重心。那時我們才意識到,可能要花上一年的時間才有辧法確實做到這一點,而我也不確定我們是否願意為了讓《自然》的編輯滿意(或者還是不滿意,誰知道呢)而等這麼久。

那時,莎拉與柏娜已經累積了更多的數據,所以我們決定將研究結果投稿到我比較不熟悉的《科學》。事實證明這是正確的選擇。跟過往一樣,審稿人要求我們再多做一點實驗。但這次的要求還做得到,只是我們就得在 2016 年的聖誕節假期長時間的工作,以便在新學期開始前完成手稿。大衛也一起下來幫忙,他成為這篇論文的共同作者。

-----廣告,請繼續往下閱讀-----

為「類胚胎模型」命名也是一門大學問

命名很重要,因為「珠子」那個命名的前車之鑑,所以我們對於要怎麼為我們的類胚胎模型命名進行了漫長的討論。這些模型讓我們知道胚胎結構是如何從幹細胞自我建構而成,所以我們想要給它們取個特別的名字。但是我們最後沒有得到共識。

圖/imdb

《科學》的編輯不喜歡「合成」類胚胎結構這個名字。我在期中假期得知這個消息,那時我正與家人及朋友滑雪度假中,所以我請他們一起來想想其他的名字。這或許就是為何我們會想到「ETs」這個名字的原因之一。史蒂芬.史匹柏有部科幻電影講述到從異世界來的訪客,而從幹細胞自我建構出的第一個類胚胎結構似乎也帶給我們這樣的感受。不過這個 E 不是代表「另外(extra)」的意思,而 T 也不是「地球人(terrestrials)」的意思。E 代表的是胚胎幹細胞(ES),而 T 代表的則是滋養層細胞(TS)。

——本文摘自《生命之舞》,2023 年 9 月,出版,未經同意請勿轉載。

商周出版_96
119 篇文章 ・ 360 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

1
1

文字

分享

0
1
1
發育中胚胎如何淘汰異常細胞?——《生命之舞》
商周出版_96
・2023/10/21 ・2937字 ・閱讀時間約 6 分鐘

為了理解染色體異常細胞對鑲嵌型胚胎的影響,我們必須要創造出數百個小鼠胚胎,並研究數千個胚胎不同部位的細胞。這麼龐大的工作量需要有一位專職的科學家,也需要資金。

在匯整如何測試這個假設的思緒時,我在絨毛膜採樣檢查後又進行了另一個羊膜穿刺檢查,這個檢查一樣在超音波影像的引導下,將針插入包圍發育胎兒的羊膜囊中,以取得少量的透明羊水樣本來進行分析。保護胎兒的羊水會帶有胎兒細胞,可以用來確認是否具有染色體問題。這次的檢查結果是沒有問題的,我們都鬆了一口氣。不過,得要到我把孩子抱在手上那時,我才能百分之百地放心。

圖/unsplash

還有其他的好消息是,我有了資源可以進行了解我檢查結果的研究。我在發現懷孕那天所進行的面試,讓我獲得惠康基金會的資深研究補助金。這筆補助金原本打算用在另一個計畫上,不過他們給我足夠的自由度,可以直接挪用其中部分資金來為鑲嵌型胚胎建立模型。

如何製造染色體異常的細胞?

我們有一大堆事情要做。首先,我們得要找到一種可信的方式(最好不只一種)來製造染色體異常的細胞。然後我們還要找到一種方式來標記這些細胞,好讓它們在正常細胞旁發育時,我們可以追蹤到它們。製造異常細胞比我們原先所想得更加困難。海倫測試許多種不同的方法來干擾染色體分離的過程,我們最後用到一種名為逆轉素(reversine)的藥物,這是我們實驗室中另一個研究計畫使用過的藥物。

-----廣告,請繼續往下閱讀-----

逆轉素是種小分子抑制劑。我們想要使用逆轉素來抑制染色體分離中的一個關鍵過程。那是一個分子檢查點,在正常情況下會暫停細胞分裂(有絲分裂),直到有正確數目的染色體(帶有 DNA)被拉開,並分離到兩個不同的子細胞間為止。逆轉素會阻斷名為單極紡錘體蛋白激酶(monopolar spindle 1 kinase)的酵素,而這種酵素會在細胞分裂時確保染色體公平分配。

圖/unsplash

為了確認逆轉素確實會造成染色體異常,我們經由標記隨機選出的三個染色體來分析有用藥及無用藥的胚胎。我們所使用的標記方法名為螢光原位雜合技術(fluorescence in situ hybridization, FISH),這種技術會外加一個探針(短 DNA 序列)及一個螢光標記。當探針在樣本中碰到類似的 DNA 片段時,就會在螢光顯微鏡下發光。經由螢光原位雜合技術的追蹤,確認了海倫使用逆轉素後,確實會增加染色體異常胚胎的數量。

逆轉素的效用是暫時性的,海倫一把藥劑洗掉,檢查點就恢復正常功能。這很重要,因為這表示我們可以將胚胎染色體異常的發生限制在特定的發育期間內。

染色體異常的胚胎能正常發育嗎?

確信可以製造出染色體異常的胚胎後,我們需要確定這些施用過逆轉素的胚胎是否會完全發育。海倫對四細胞胚胎施用逆轉素,並觀察到在發育 4 天後,它們的細胞數量比未施藥的胚胎要來得少。不過雖然細胞數量較少,還是可以形成三組基本的細胞世系。

-----廣告,請繼續往下閱讀-----

為了找出施用內逆轉素的胚胎是否可以長成小鼠,我們將這些胚胎植入母體中。這個時間點是在我們創造出體外培養胚胎的技術之前。每 10 個正常胚胎有 7 個會著床,而這個比例在施藥後的胚胎上則降了一半。最重要的是,施用逆轉素的胚胎沒有一個能夠成長為活生生的老鼠。這個實驗顯示,當胚胎中大多數的細胞都出現染色體異常時,它們的發育最終會以失敗收場,即使它們著床了、也發育了一陣子。

圖/unsplash

製造同時有異常與正常細胞的胚胎

現在我們可以進一步來探討那個重要的問題:若是只有部分胚胎細胞帶有染色體異常,發育又會受到何種程度的影響?為了找出答案,我們必須製造出鑲嵌型胚胎,也就是混合了染色體異常細胞與染色體正常細胞的胚胎。因此我們決定經由製造嵌合體來達到這個目的。

因為我們無法在對同個胚胎施用逆轉素時只讓其中一些細胞出現染色體異常,所以無法經由這個方式製造出鑲嵌型胚胎,因此我們想到了運用嵌合體的作法,將來自不同胚胎的細胞結合建構成嵌合體(鑲嵌型胚胎是由單顆受精卵生長發育而成的)。創造嵌合體而非鑲嵌型胚胎的好處是,我們可以系統性地去研究要具有多少異常細胞才會干擾到發育。很幸運地,這個作法成功了。

圖/unsplash

海倫在小鼠胚胎從兩細胞階段分裂到四細胞階段時,經由口吸管的方式施用逆轉素,並在八細胞階段將細胞一個個地分開。然後她將來自正常胚胎的四個細胞與來自施藥胚胎的四個細胞結合創造出八細胞嵌合體胚胎。

-----廣告,請繼續往下閱讀-----

我們要追蹤細胞的命運就需要標記。我朋友凱特.哈迪安東納基斯(Kat Hadjantonakis)與金妮.帕帕約安努在紐約對小鼠進行基因改良,讓牠們的細胞核具有綠色螢光蛋白,所以我們就採用了具有這種特性的小鼠。我們將這類小鼠胚胎施予逆轉素,施過藥的細胞會與未施過藥的細胞有不同的顏色,這樣我們就可以做出區別。具有綠色螢光蛋白的細胞讓我們可以明確看到新細胞是在何時與何處誕生以及新細胞的後續分裂,還有,若是細胞死亡了,我們也可以看到是在何時與何處死亡的。我們可用此種方式為個別細胞建立「譜系圖」。

染色體異常細胞在胚胎發育過程中會被清除嗎?

我們為這些鑲嵌型胚胎拍攝了影片,以精準追蹤每個細胞的命運。海倫在螢幕上看見,異常細胞數量的下降主要發生在產生新個體組織的那一部分胚胎,也就是上胚層。這些異常細胞會在凋亡的過程中死去,也就是經歷程序性的細胞死亡。在注定成為胚胎本體的那一部分胚胎中,施用過逆轉素的細胞經歷凋亡的頻率是未施藥細胞的兩倍以上。

圖/unsplash

這個結果表示,在注定成為胎兒的那一部分胚胎中,異常細胞有被清除的傾向。這支持了我的假設,也就是在這一部分的胚胎中,異常細胞競爭不過正常細胞,不過實際運用的機制跟我原來所想的不一樣。

我簡直不敢相信。這是我們真的會研究出重要成果的第一個徵兆,發育中的胚胎不僅可以自我建構,也同樣可以自我修復。幾年前當我懷著賽門那時,絨毛膜採樣檢查所檢測到的染色體異常細胞的後代,有沒有可能在成長為賽門的那部分胚胎中自我毀滅了呢?

-----廣告,請繼續往下閱讀-----
這張圖片的 alt 屬性值為空,它的檔案名稱為 0823--300.jpg

——本文摘自《生命之舞》,2023 年 9 月,出版,未經同意請勿轉載。

商周出版_96
119 篇文章 ・ 360 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。