還有一些遺傳因子是和醫療沒有關係的,像是智力和教育成就等。當我們對個人、不同性別和人口之間的遺傳差異有更多認識時,就必須確保這些看法絕不會被用來作為歧視的基礎。和讀取基因組的能力同樣厲害的是編輯和重寫基因組的能力。一種叫做 CRISPR-Cas9 的酶是一種功能強大的工具,就像一把分子剪刀,科學家可以利用這種酶對 DNA 進行非常精確的切割,藉以增加、刪除或改變基因序列,這就是所謂的基因編輯或基因組編輯。
生物學家自 1980 年左右開始,就已經能夠在酵母等簡單的生物體中做到這一點,那也是我研究裂殖酵母菌的原因之一,但 CRISPRCas9 大幅提升了 DNA 序列被剪輯的速度、準確性和效率,也使得編輯其他更多物種的基因變得更加容易,這之中當然也包括了編輯人類的基因。
隨著時間的流逝,我們可以期待以基因編輯細胞為基礎的新療法出現,例如研究人員已經在製造能抵抗像是愛滋病毒(HIV)這種特定感染的細胞或是用來治療癌症。但目前說來,想要嘗試編輯人類胚胎早期的 DNA 是一件非常魯莽的事情,這會造成新生兒所有細胞的基因被改變,他未來小孩的基因也會被改變。目前以改造基因為基礎的療法存在著風險,可能會在無意間改變了基因組中的其他基因。
博士畢業後,帕波義無反顧地轉換領域,遠渡美國追隨加州柏克萊大學的威爾森(Allan Wilson)。威爾森在 1970 年代便開始探討分子演化,後來又根據不同人類族群間粒線體 DNA 的差異,估計非洲以外的人群,分家只有幾萬年,支持智人出非洲說。
帕波正式投入相關研究後意識到,從古代樣本取樣 DNA 的汙染問題相當嚴重。這邊「汙染」的意思是,並非抓到樣本內真正的古代 DNA 目標,而是周圍環境、實驗操作者等來源的 DNA;包括他自己之前的木乃伊 DNA,很可能也不是真正的古代 DNA。另一大問題是,生物去世後 DNA 便會開始崩潰,經歷成千上萬年後,樣本中即使仍有少量遺傳物質殘存,含量也相當有限。
至今年代最古早的人類 DNA,來自西班牙的胡瑟裂谷(Sima de los Huesos),距今 43 萬年左右(最早的是超過一百萬年的古代象,由受到帕波啟發的其餘團隊發表)。根據 DNA 特徵,胡瑟裂谷人的細胞核基因組更接近尼安德塔人,可以視作初期的尼安德塔人族群。然而,他們的粒線體卻更像丹尼索瓦人。
近年 COVID-19(武漢肺炎、新冠肺炎)席捲世界,觀察到感染者的症狀輕重受到遺傳差異影響;其中至少兩處 DNA 片段,一處會增加、另一處降低住院的機率,都可以追溯到尼安德塔人的遠古混血。
非洲外每個人都有 1% 到 2% 血緣來自尼安德塔人,不同人遺傳到的片段不一樣。將不同智人個體的片段拼起來,大概能湊出 40% 尼安德塔人基因組(不同算法有不同結果),也就是說,當初進入智人族群的尼安德塔 DNA 變異,不少已經失傳。
失傳可能是機率問題,某一段 DNA 剛好沒有智人繼承。但是也可能是由於尼安德塔 DNA 變異,對智人有害或是遺傳不相容,而被天擇淘汰。遺傳重組之故,智人基因組上每個位置,繼承到尼安德塔變異的機率應該差不多;可是相比於體染色體,X 染色體的比例卻明顯偏低;這意謂智人的 X 染色體,不適合換上尼安德塔版本。
蔡育彰說明,精準育種使用的基因編輯技術,與傳統基因改造不同,傳統基因改造是經由外加的基因。他指出,實際應用的困難在於,精準育種此技術應用在不同作物、品種和品系上,效率也都不同。由於目前法規允許的精準育種技術有限制 DNA 序列的變異型式,應用於許多現行栽培的作物種類上可能預期效果較有限。蔡育彰也提醒,精準育種技術的應用也需要對目標作物的基因組序列有完整的了解。