0

3
0

文字

分享

0
3
0

孟德爾與他的豌豆,開創「遺傳學」先河!——《生命之鑰:一場對生命奧祕的美麗探索》

三采文化集團_96
・2021/12/02 ・2104字 ・閱讀時間約 4 分鐘

  • 作者 / 保羅.納斯爵士(Sir Paul Nurse)
  • 譯者 / 邱佳皇

編按:筆者是知名遺傳學家和細胞生物學家,致力於控制細胞複製的研究工作,也就是所有生物生長和發展的基礎。於 2001 年獲頒諾貝爾生理學/醫學獎(Nobel Prize in Physiology or Medicine),同時也是阿爾伯特.愛因斯坦世界科學獎、拉斯克獎與皇家學會科普利獎章的獲獎者。

在本書中,保羅.納斯用優美、詼諧的語調幫讀者上了一堂生物學簡史,引領我們思考科學家長久以來追尋的生命之謎,讓讀者彷彿身歷其境、穿梭在各個時代的實驗室裡,感受那些科學發現過程的挫敗和欣喜。並除了學術理解,更希望帶給讀者哲學性的思考能力。

我有兩個女兒和四個孫子,他們所有人都極為與眾不同。比方說,我其中一個女兒莎拉是一名電視製作人,另一個女兒艾蜜莉是物理學教授。但她們有些特徵還是會和彼此、和她們的孩子或我與妻子相同。家人之間的相似度可能很高或只有部分相似,相似的地方包括身高、眼珠顏色、嘴巴或鼻子曲線,甚至一些特別的習性或臉部表情等。家人之間也會有很多差異,但無法否認的是,每代之間都有延續性。

所有生物的父母和子女間,一定會有某種程度的相似,那是亞里斯多德和其他古典時期思想家很久之前就認證的理論,但生物遺傳的基礎一直是個難解之謎。多年來出現過各種解釋,但有些解釋在今日看來有些古怪。比方說亞里斯多德就認為母親對孩子的影響只有在腹中的成長,就像某種土壤品質對植物的影響,只有從種子到發芽的階段而已。有些思想家則是認為遺傳基礎是來自「血液的混合」,也就是說孩子是從雙親那邊獲得平均的特徵。

直到發現基因後,我們才更加了解遺傳的運作方式。基因不只幫助我們理解家人間複雜的相似性和獨特性,也是生命用來建造、維持和繁殖細胞的關鍵訊息來源。更進一步說,基因也是細胞製造的有機體的關鍵訊息來源。來自現位於捷克布爾諾修道院的孟德爾(Gregor Mendel),是第一位解開遺傳學神祕面紗的人。但他的研究標的並不是人類費解的遺傳型態,而是用豌豆這種植物進行謹慎的實驗,而他所研究出來的概念,最終引導我們發現目前稱之為基因的遺傳單位。

豌豆, 荚, 绿色, 蔬菜, 植物, 棕色蔬菜, 棕色的植物
豌豆的各個構造,包括莖、葉、花、果莢、種子。圖/Pixabay

孟德爾不是第一個用科學實驗來探究遺傳學的人,甚至不是第一個用植物來尋找答案的人,有些更早期的植物育種家描述了植物的某些特徵如何以不如我們預期的方式代代相傳。兩種不同的親株植物混種後的下一代,有時候看起來會像兩種的混合。比方說,將紫色花和白色花混合後可能會產生粉紅色的花;但有些特徵則會在某個世代中扮演主宰角色,比方說紫色花和白色花的下一代是開出紫色的花。早期的研究先驅集合了許多有趣線索,但當中沒有人能完全解釋基因如何在植物中發揮遺傳效用,更別說如何在所有生物,包括人類上,發揮效用了,而那正是孟德爾在豌豆實驗中所開始揭露的事情。

在 1981 年冷戰中期,我進行了一場自己的朝聖之旅,前往位於布爾諾的奧古斯丁教派修道院,看看孟德爾曾經工作的地方,那是當地成為如今的觀光勝地前很久的事。當時野草叢生的花園大得驚人,我能輕易想像孟德爾曾經在那裡種植著一排排豌豆的情景。他曾經在維也納大學攻讀自然科學,雖沒有成為合格教師,但他並沒有遺忘自己在物理學方面所受的訓練。他明白自己需要很多資料,因為龐大的樣本更有可能發現重要的模式。他有些實驗包含了一萬多種不同的豌豆植物,在他之前未曾有植物育種家採行過如此縝密和大量的方式來進行研究。

為了降低實驗的複雜度,孟德爾只專注在有顯示明確差異的特徵上。他多年來小心記錄他所設計的混種結果,並發現了其他人沒注意到的模式。更重要的是,他觀察到在這些豌豆中會有特定比例出現某些特徵,特定比例缺少某些特徵,像是特定花色或種子形狀等。關鍵之一就是孟德爾用了數學級數的方式來描述這些比例,這讓他可以主張豌豆花內的雄性花粉和雌性胚珠含有他稱為「元素」的事物,這些元素就和親株的不同特徵有關聯。當這些元素透過受精結合,就會影響下一代植物的特徵。但孟德爾當時並不知道這些元素是什麼,或者會怎麼運作。

當時有個有趣的巧合,另一位知名的生物學家達爾文(Charles Darwin)大約在同一時間也在研究金魚草這種植物的混種,他觀察到類似的比例,但並沒有試著解釋那些數值可能代表的意義。總之,孟德爾的研究幾乎被當代完全忽視,直到一整個世代後,才有人認真看待他的研究。

接著,在約莫 1900 年時,有一些獨立研究的生物學家重複了孟德爾的研究,將這些研究進一步發展,並開始對於遺傳如何運作這件事做出更明確的預測,進而促進為了紀念孟德爾而命名的「孟德爾定律」和遺傳學的誕生,世界開始注意到這個議題。

──本文摘自三采文化《生命之鑰:諾貝爾獎得主親撰 一場對生命奧祕的美麗探索》/ 保羅.納斯爵士,2021 年 12 月,三采

文章難易度
三采文化集團_96
25 篇文章 ・ 7 位粉絲
閱讀在生活中不曾改變, 它讓我們看見一句話的力量,足以撼動你我的人生。而產生一本書的力量,更足以改變全世界

0

1
0

文字

分享

0
1
0
用這劑補好新冠預防保護力!防疫新解方:長效型單株抗體適用於「免疫低下族群預防」及「高風險族群輕症治療」
鳥苷三磷酸 (PanSci Promo)_96
・2023/01/19 ・2874字 ・閱讀時間約 5 分鐘

本文由 台灣感染症醫學會 合作,泛科學企劃執行。

  • 審稿醫生/ 台灣感染症醫學會理事長 王復德

「好想飛出國~」這句話在長達近 3 年的「鎖國」後終於實現,然而隨著各國陸續解封、確診消息頻傳,讓民眾再度興起可能染疫的恐慌,特別是一群本身自體免疫力就比正常人差的病友。

全球約有 2% 的免疫功能低下病友,包括血癌、接受化放療、器官移植、接受免疫抑制劑治療、HIV 及先天性免疫不全的患者…等,由於自身免疫問題,即便施打新冠疫苗,所產生的抗體和保護力仍比一般人低。即使施打疫苗,這群病人一旦確診,因免疫力低難清除病毒,重症與死亡風險較高,加護病房 (ICU) 使用率是 1.5 倍,死亡率則是 2 倍。

進一步來看,部分免疫低下病患因服用免疫抑制劑,使得免疫功能與疫苗保護力下降,這些藥物包括高劑量類固醇、特定免疫抑制之生物製劑,或器官移植後預防免疫排斥的藥物。國外臨床研究顯示,部分病友打完疫苗後的抗體生成情況遠低於常人,以器官移植病患來說,僅有31%能產生抗體反應。

疫苗保護力較一般人低,靠「被動免疫」補充抗新冠保護力

為什麼免疫低下族群打疫苗無法產生足夠的抗體?主因為疫苗抗體產生的機轉,是仰賴身體正常免疫功能、自行激化主動產生抗體,這即為「主動免疫」,一般民眾接種新冠疫苗即屬於此。相比之下,免疫低下病患因自身免疫功能不足,難以經由疫苗主動激化免疫功能來保護自身,因此可採「被動免疫」方式,藉由外界輔助直接投以免疫低下病患抗體,給予保護力。

外力介入能達到「被動免疫」的有長效型單株抗體,可改善免疫低下病患因原有治療而無法接種疫苗,或接種疫苗後保護力較差的困境,有效降低確診後的重症風險,保護力可持續長達 6 個月。另須注意,單株抗體不可取代疫苗接種,完成單株抗體注射後仍需維持其他防疫措施。

長效型單株抗體緊急授權予免疫低下患者使用 有望降低感染與重症風險

2022年歐盟、英、法、澳等多國緊急使用授權用於 COVID-19 免疫低下族群暴露前預防,台灣也在去年 9 月通過緊急授權,免疫低下患者專用的單株抗體,在接種疫苗以外多一層保護,能降低感染、重症與死亡風險。

從臨床數據來看,長效型單株抗體對免疫功能嚴重不足的族群,接種後六個月內可降低 83% 感染風險,效力與安全性已通過臨床試驗證實,證據也顯示針對台灣主流病毒株 BA.5 及 BA.2.75 具保護力。

六大類人可公費施打 醫界呼籲民眾積極防禦

台灣提供對 COVID-19 疫苗接種反應不佳之免疫功能低下者以降低其染疫風險,根據 2022 年 11 月疾管署公布的最新領用方案,符合施打的條件包含:

一、成人或 ≥ 12 歲且體重 ≥ 40 公斤,且;
二、六個月內無感染 SARS-CoV-2,且;
三、一周內與 SARS-CoV-2 感染者無已知的接觸史,且;
四、且符合下列條件任一者:

(一)曾在一年內接受實體器官或血液幹細胞移植
(二)接受實體器官或血液幹細胞移植後任何時間有急性排斥現象
(三)曾在一年內接受 CAR-T 治療或 B 細胞清除治療 (B cell depletion therapy)
(四)具有效重大傷病卡之嚴重先天性免疫不全病患
(五)具有效重大傷病卡之血液腫瘤病患(淋巴肉瘤、何杰金氏、淋巴及組織其他惡性瘤、白血病)
(六)感染HIV且最近一次 CD4 < 200 cells/mm3 者 。

符合上述條件之病友,可主動諮詢醫師。多數病友施打後沒有特別的不適感,少數病友會有些微噁心或疲倦感,為即時處理發生率極低的過敏性休克或輸注反應,需於輸注時持續監測並於輸注後於醫療單位觀察至少 1 小時。

目前藥品存放醫療院所部分如下,完整名單請見公費COVID-19複合式單株抗體領用方案

  • 北部

台大醫院(含台大癌症醫院)、台北榮總、三軍總醫院、振興醫院、馬偕醫院、萬芳醫院、雙和醫院、和信治癌醫院、亞東醫院、台北慈濟醫院、耕莘醫院、陽明交通大學附設醫院、林口長庚醫院、新竹馬偕醫院

  • 中部

         大千醫院、中國醫藥大學附設醫院、台中榮總、彰化基督教醫療財團法人彰化基督教醫院

  • 南部/東部

台大雲林醫院、成功大學附設醫院、奇美醫院、高雄長庚醫院、高雄榮總、義大醫院、高雄醫學大學附設醫院、花蓮慈濟

除了預防 也可用於治療確診者

長效型單株抗體不但可以增加免疫低下者的保護力,還可以用來治療「具重症風險因子且不需用氧」的輕症病患。根據臨床數據顯示,只要在出現症狀後的 5 天內投藥,可有效降低近七成 (67%) 的住院或死亡風險;如果是3天內投藥,則可大幅減少到近九成 (88%) 的住院或死亡風險,所以把握黃金時間盡早治療是關鍵。

  • 新冠治療藥物比較表:
藥名Evusheld
長效型單株抗體
Molnupiravir
莫納皮拉韋
Paxlovid
倍拉維
Remdesivir
瑞德西韋
作用原理結合至病毒的棘蛋白受體結合區域,抑制病毒進入人體細胞干擾病毒的基因序列,導致複製錯亂突變蛋白酵素抑制劑,阻斷病毒繁殖抑制病毒複製所需之酵素的活性,從而抑制病毒增生
治療方式單次肌肉注射(施打後留觀1小時)口服5天口服5天靜脈注射3天
適用對象發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人(18歲以上)的輕症病患。發病7天內、具有重症風險因子、未使用氧氣之成人與孩童(年齡大於28天且體重3公斤以上)的輕症病患。
*Remdesivir用於重症之適用條件和使用天數有所不同
注意事項病毒變異株藥物交互作用孕婦哺乳禁用輸注反應

免疫低下病友需有更多重的防疫保護,除了戴口罩、保持社交距離、勤洗手、減少到公共場所等非藥物性防護措施外,按時接種COVID-19疫苗,仍是最具效益之傳染病預防介入措施。若有符合施打長效型單株抗體資格的病患,應主動諮詢醫師,經醫師評估用藥效益與施打必要性。

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
161 篇文章 ・ 270 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

2
1

文字

分享

1
2
1
生命的起源是什麼?達爾文的祖父相信「萬物始於貝」——《海之聲》
臉譜出版_96
・2022/11/18 ・2891字 ・閱讀時間約 6 分鐘

在我們這個迷因勝過物質的時代,「萬物源自共同祖先,藉由不斷演化存活下來」的想法,被烙上查爾斯.達爾文的名字。這個名字總是會以全大寫出現在熟悉的有腳魚圖案保險桿貼紙和 T 恤上。

有腳的達爾文魚是進化論的象徵符號。圖/Wikipedia

演化論的標語化,掩蓋了達爾文的優雅理論其實是緩慢的、斷續的、不確定的浮現,在他之前的好幾代就已開始並持續鋪展。科學家結合演化論與遺傳學,揭示生命如何在古海洋中興起,並在劇烈的環境變化中存續。

達爾文的祖父相信生命起源於貝殼

達爾文的祖父──一位名叫伊拉斯謨斯.達爾文(Erasmus Darwin)的肥胖醫生,早在兩個世紀之前便預見了福爾邁伊今日著名的貝殼裝飾理論。「不規則的突起,」伊拉謨斯在〈植物園〉(The Botanic Garden)一詩中寫道,「是牠們的防禦工事,對抗敵人攻擊。」

伊拉斯謨斯.達爾文。圖/Wikipedia

包含達爾文祖父內的那群十八世紀哲學家與科學家,談論著不復存在的生物化石證據。在那個時代,膽敢質疑上帝造物的完美性,仍是非常危險的一件事。伊拉謨斯的詩作〈自然殿堂〉(The Temple of Nature)描繪了一場大爆炸──「在時間開始之前,從燃燒的混沌中,」以及「在連續幾代生命的綻放,在牠們取得新的力量而生長成更大的軀體之前」──「海洋中微小的生命崛起」。

伊拉斯謨斯相信,萬物源自於一只微小貝殼中扭動的「絲狀體」。雖然他住在英國斯塔福郡利齊菲爾德的大教堂城市,有著信仰虔誠的鄰居與病人,但伊拉斯謨斯還是對他的貝殼起源深感興奮,想要與其他願意質疑傳統的智慧之人分享。

出現在家族徽章上的貝殼

達爾文的家族徽章上有三枚扇貝,這紋樣在當時與現在都很流行。(黛安娜王妃的徽章是斯賓塞(Spencer)家族從十六世紀代代相傳的,裡頭也有三枚扇貝。她的兩個兒子,威廉與哈利,在十八歲後也將貝殼納入自己的紋徽中以紀念母親。)伊拉斯謨斯.達爾文決定將達爾文家的徽章加上「萬物始於貝」(E conchis omnia)這句座右銘。

達爾文的家族徽章上有三枚扇貝。圖/Wikipedia

他把座右銘印在自己私用的書籤上,但這樣無法讓更多人看見。於是,就像演化論的現代捍衛者在保險桿上貼了有腳魚的貼紙;伊拉斯謨斯.達爾文在一七七○年將他的紋徽與新座右銘裝飾在馬車側身。

他虔誠的鄰居們被他的失德行為嚇壞了。在利齊菲爾德大教堂上,法政牧師湯瑪斯.史都華(Thomas Seward)看到伊拉斯謨斯「棄絕他的造物主」,滿心憤慨,寫下這首諷刺詩:

多麼偉大的巫師!憑藉魔法咒術

能讓貝殼長出萬物……

噢醫生,改掉那愚蠢的座右銘

或將它留在某位女士的窟洞裡

否則你可憐的病人會戰悸

如果你的治療力比不過創造力。

伊拉斯謨斯.達爾文不想侮辱教會也不想失去病患,於是將馬車上的貝殼座右銘塗掉,但仍保留在書籤上。他的後代子孫(無論是生物上或知識上的),都在共同起源論中找到真理,儘管不是來自一枚原始貝殼。不過,今日的古生物學家確實認為,軟體動物是我們目前所知最古老的動物,而牠們是由單一的有殼祖先演化而成。

早期生物如何適應地球的變化?關鍵就在於外殼

科學家尚未發現軟體動物之母,但他們知道,軟體動物至少是在五億四千萬年前演化而成。在單細胞微生物出現後,有些創造出生物的第一個外殼,並終於蠕動出更複雜的生命體。在統治地球大半歷史的軟泥微生物墊層與動物的大崛起之間,有兩波被低估的生命浪潮。

第一波是最早的多細胞生物,以柔軟的身體蠕動存在,如今只能在地球最古老的岩石潛穴與痕跡中瞥見。這些黏糊糊的老祖宗,找到方法在陽光中捕捉能量,但牠們的創新卻也助長了牠們的毀滅進程。牠們發展出來的光合作用有一個副產品──氧氣;對大多數在原始、低氧海中演化出來的微生物而言,氧氣是有毒的。

最早的多細胞生物。圖/Wikipedia

這些謎樣的生物,有許多在教科書裡的「五大滅絕」,以及目前正在經歷的第六次大滅絕之前就已大量死亡。只有能夠適應地球化學變化的生物堅持了下來,其中許多是拜牠們打造的外殼之賜。

第二波由微小、虛弱的礦化生物組成,即科學家口中的「小殼化石」。牠們的暱稱是「小殼」(small shellies)或「小臭」(small smellies),因為採集牠們的唯一方式,是將石灰岩塊溶解在酸液裡。

這些迷你造礦者包括蟲狀、管狀與海綿狀生物,以及最早的一些軟體動物——已滅絕的喙殼綱(rostroconch)軟體動物看似蛤蚌,但雙殼融合成單殼;蝸牛似的太陽女神螺綱(helcionelloid)外殼有如女巫帽,生活在動盪海洋的淺灘裡。牠們很快就會有一大群夥伴。

鸚鵡螺。圖/臉譜出版提供

光合作用協助打造外骨骼的材料

逐漸增加的氧氣導致更多的光合作用,提高類似蛋白質的膠原——那是動物製造組織的必需品;火山灰也可能增加了海中的碳酸鈣,為打造外殼提供了現成的材料庫存。在俄羅斯西北部奧涅加河河岸,有一層五億五千五百萬年的火山灰燼,裡頭保存了一種寶螺狀的柔軟動物,名為金伯拉蟲(Kimberella),拖著一個數公分長的非礦物殼。科學家追蹤牠的覓食與爬行軌跡,得知牠大概是靠一條爬行足倒退移動。

繼這場「軟啟動」之後,在寒武紀(Cambrian)的動物崛起中,硬殼連同骨骼於世界各地出現。斑斑點點、慢慢吞吞的生命形式,開始讓位給喧喧鬧鬧、由掠食者與獵物組成的海洋動物寓言。肢節分明的三葉蟲,和牠們的昆蟲與螃蟹後代一樣沿著海底爬行。更大的海洋動物演化出來並掠食牠們,例如五公分長、龍蝦狀的赫德蝦(Hurdia victoria),牠們擁有多刺的爪子以及從頭部突起的長矛狀外殼。

赫德蝦(Hurdia victoria)有多刺的爪子和長矛狀外殼。圖/Wikipedia

在加拿大落磯山區,數百隻名為威瓦西亞蟲(Wiwaxia)的尖刺蛞蝓,保存在寒武紀海洋中巨大的伯吉斯頁岩(Burgess Shale)化石沉積中。這些五億零五百萬年的遺骸覆蓋著鱗片,並有突出的尖刺。和金伯拉蟲一樣,科學家尚未確定牠是早期的軟體動物或一種蟲。但科學家確實看到牠的許多尖刺曾經折斷(可能是掠食者造成)然後修復。

——本文摘自《海之聲:貝殼與海洋的億萬年命運》,2022 年 11 月,臉譜出版,未經同意請勿轉載。

所有討論 1
臉譜出版_96
73 篇文章 ・ 246 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

0

3
0

文字

分享

0
3
0
孟德爾與他的豌豆,開創「遺傳學」先河!——《生命之鑰:一場對生命奧祕的美麗探索》
三采文化集團_96
・2021/12/02 ・2104字 ・閱讀時間約 4 分鐘

  • 作者 / 保羅.納斯爵士(Sir Paul Nurse)
  • 譯者 / 邱佳皇

編按:筆者是知名遺傳學家和細胞生物學家,致力於控制細胞複製的研究工作,也就是所有生物生長和發展的基礎。於 2001 年獲頒諾貝爾生理學/醫學獎(Nobel Prize in Physiology or Medicine),同時也是阿爾伯特.愛因斯坦世界科學獎、拉斯克獎與皇家學會科普利獎章的獲獎者。

在本書中,保羅.納斯用優美、詼諧的語調幫讀者上了一堂生物學簡史,引領我們思考科學家長久以來追尋的生命之謎,讓讀者彷彿身歷其境、穿梭在各個時代的實驗室裡,感受那些科學發現過程的挫敗和欣喜。並除了學術理解,更希望帶給讀者哲學性的思考能力。

我有兩個女兒和四個孫子,他們所有人都極為與眾不同。比方說,我其中一個女兒莎拉是一名電視製作人,另一個女兒艾蜜莉是物理學教授。但她們有些特徵還是會和彼此、和她們的孩子或我與妻子相同。家人之間的相似度可能很高或只有部分相似,相似的地方包括身高、眼珠顏色、嘴巴或鼻子曲線,甚至一些特別的習性或臉部表情等。家人之間也會有很多差異,但無法否認的是,每代之間都有延續性。

所有生物的父母和子女間,一定會有某種程度的相似,那是亞里斯多德和其他古典時期思想家很久之前就認證的理論,但生物遺傳的基礎一直是個難解之謎。多年來出現過各種解釋,但有些解釋在今日看來有些古怪。比方說亞里斯多德就認為母親對孩子的影響只有在腹中的成長,就像某種土壤品質對植物的影響,只有從種子到發芽的階段而已。有些思想家則是認為遺傳基礎是來自「血液的混合」,也就是說孩子是從雙親那邊獲得平均的特徵。

直到發現基因後,我們才更加了解遺傳的運作方式。基因不只幫助我們理解家人間複雜的相似性和獨特性,也是生命用來建造、維持和繁殖細胞的關鍵訊息來源。更進一步說,基因也是細胞製造的有機體的關鍵訊息來源。來自現位於捷克布爾諾修道院的孟德爾(Gregor Mendel),是第一位解開遺傳學神祕面紗的人。但他的研究標的並不是人類費解的遺傳型態,而是用豌豆這種植物進行謹慎的實驗,而他所研究出來的概念,最終引導我們發現目前稱之為基因的遺傳單位。

豌豆, 荚, 绿色, 蔬菜, 植物, 棕色蔬菜, 棕色的植物
豌豆的各個構造,包括莖、葉、花、果莢、種子。圖/Pixabay

孟德爾不是第一個用科學實驗來探究遺傳學的人,甚至不是第一個用植物來尋找答案的人,有些更早期的植物育種家描述了植物的某些特徵如何以不如我們預期的方式代代相傳。兩種不同的親株植物混種後的下一代,有時候看起來會像兩種的混合。比方說,將紫色花和白色花混合後可能會產生粉紅色的花;但有些特徵則會在某個世代中扮演主宰角色,比方說紫色花和白色花的下一代是開出紫色的花。早期的研究先驅集合了許多有趣線索,但當中沒有人能完全解釋基因如何在植物中發揮遺傳效用,更別說如何在所有生物,包括人類上,發揮效用了,而那正是孟德爾在豌豆實驗中所開始揭露的事情。

在 1981 年冷戰中期,我進行了一場自己的朝聖之旅,前往位於布爾諾的奧古斯丁教派修道院,看看孟德爾曾經工作的地方,那是當地成為如今的觀光勝地前很久的事。當時野草叢生的花園大得驚人,我能輕易想像孟德爾曾經在那裡種植著一排排豌豆的情景。他曾經在維也納大學攻讀自然科學,雖沒有成為合格教師,但他並沒有遺忘自己在物理學方面所受的訓練。他明白自己需要很多資料,因為龐大的樣本更有可能發現重要的模式。他有些實驗包含了一萬多種不同的豌豆植物,在他之前未曾有植物育種家採行過如此縝密和大量的方式來進行研究。

為了降低實驗的複雜度,孟德爾只專注在有顯示明確差異的特徵上。他多年來小心記錄他所設計的混種結果,並發現了其他人沒注意到的模式。更重要的是,他觀察到在這些豌豆中會有特定比例出現某些特徵,特定比例缺少某些特徵,像是特定花色或種子形狀等。關鍵之一就是孟德爾用了數學級數的方式來描述這些比例,這讓他可以主張豌豆花內的雄性花粉和雌性胚珠含有他稱為「元素」的事物,這些元素就和親株的不同特徵有關聯。當這些元素透過受精結合,就會影響下一代植物的特徵。但孟德爾當時並不知道這些元素是什麼,或者會怎麼運作。

當時有個有趣的巧合,另一位知名的生物學家達爾文(Charles Darwin)大約在同一時間也在研究金魚草這種植物的混種,他觀察到類似的比例,但並沒有試著解釋那些數值可能代表的意義。總之,孟德爾的研究幾乎被當代完全忽視,直到一整個世代後,才有人認真看待他的研究。

接著,在約莫 1900 年時,有一些獨立研究的生物學家重複了孟德爾的研究,將這些研究進一步發展,並開始對於遺傳如何運作這件事做出更明確的預測,進而促進為了紀念孟德爾而命名的「孟德爾定律」和遺傳學的誕生,世界開始注意到這個議題。

──本文摘自三采文化《生命之鑰:諾貝爾獎得主親撰 一場對生命奧祕的美麗探索》/ 保羅.納斯爵士,2021 年 12 月,三采

文章難易度
三采文化集團_96
25 篇文章 ・ 7 位粉絲
閱讀在生活中不曾改變, 它讓我們看見一句話的力量,足以撼動你我的人生。而產生一本書的力量,更足以改變全世界

1

27
3

文字

分享

1
27
3
【2022 年諾貝爾生理或醫學奬】復現尼安德塔人消逝的 DNA,也映襯我們何以為人
寒波_96
・2022/10/06 ・8169字 ・閱讀時間約 17 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

人對自身歷史的好奇歷久彌新。最近十年古代 DNA 研究大行其道,光是發表於 Cell、Nature、Science 的論文就多到要辛苦讀完,加上其他期刊更是眼花撩亂。「古代遺傳學」的衝擊毋庸置疑,開創者帕波(Svante Pääbo)足以名列歷史偉人;然而,得知 2022 年諾貝爾生理或醫學獎由他一人獨得 ,還是令人吃驚——諾貝爾獎竟然會頒給人類演化學家?

諾貝爾獎有物理獎、有化學獎,但是沒有生物學獎,而是「生理或醫學獎」。帕波獲獎的理由是:「發現滅絕人類的基因組以及研究人類演化」。乍看和生理或醫學沒有關係,深入思考……好像還真的沒有什麼關係。

偷用強者我朋友的感想:「應該就是選厲害的。第一個和生理或醫學無關的生理或醫學獎得主,聽起來滿屌的」。

帕波直接的貢獻非常明確,在他的努力下,重現消失數萬年的尼安德塔人(Neanderthal)基因組。他為什麼想要這樣做,過程中經歷什麼困難,發現又有什麼意義呢?

喜愛古埃及的演化遺傳學家

帕波公元 1955 年在瑞典出生,獲獎時 67 歲。他從小對古埃及有興趣,大學時選擇醫學仍不忘古埃及,但是一生都在追求新奇的帕波,嫌埃及研究的步調太慢,後來走上科學研究之路。1980 年代初博士班時期,他使用當時最高端的分子生物學手段探討免疫學,成果發表於 Cell 等頂尖期刊,可謂免疫學界的頂級新秀。

然而,他始終無法忘情逝去的世界。1984 年美國的科學家獲得斑驢的 DNA 片段,轟動一時。斑驢已經滅絕一百年,能夠由其遺骸取得古代 DNA,令博士生帕波大為震撼。他很快決定結合自己的專業與興趣,嘗試由古埃及木乃伊取得 DNA,並且獨立將結果發表於 Nature 期刊。

古代 DNA。圖/取自 參考資料 1

博士畢業後,帕波義無反顧地轉換領域,遠渡美國追隨加州柏克萊大學的威爾森(Allan Wilson)。威爾森在 1970 年代便開始探討分子演化,後來又根據不同人類族群間粒線體 DNA 的差異,估計非洲以外的人群,分家只有幾萬年,支持智人出非洲說。

帕波正式投入相關研究後意識到,從古代樣本取樣 DNA 的汙染問題相當嚴重。這邊「汙染」的意思是,並非抓到樣本內真正的古代 DNA 目標,而是周圍環境、實驗操作者等來源的 DNA;包括他自己之前的木乃伊 DNA,很可能也不是真正的古代 DNA。另一大問題是,生物去世後 DNA 便會開始崩潰,經歷成千上萬年後,樣本中即使仍有少量遺傳物質殘存,含量也相當有限。

帕波投入不少心血改善問題。例如那時新發明的 PCR 能精確並大量複製 DNA,他馬上用於自己的題目(更早前是利用細菌,細菌繁殖時順便生產 DNA)。多年嘗試後,他決定放棄埃及木乃伊(埃及木乃伊的基因組在 2017 年成功),改以遺傳與智人差異較大的尼安德塔人為研究對象。

取得數萬年前尼安德塔人的 DNA

根據現有的證據,尼安德塔人是距今約 4 萬到 40 多萬年前的古人類。確認為尼安德塔人的第一件化石,於 1856 年在德國的尼安德谷發現,並以此得名(之前 2 次更早出土化石卻都沒有意識到)。這是我們所知第一種,不是智人的古代人類(hominin)。

對於古人類化石,一百多年來都是由考古與型態分析。帕波帶著遺傳學工具投入,不但增進考古和古人類學的知識,也拓展了遺傳學的領域。他後來前往德國的慕尼黑大學,幾年後又被挖角到馬克斯普朗克研究所,領導萊比錫新成立的人類演化部門,多年來培養出整個世代的科學家,也改變我們對人類演化的認知。

不同個體的粒線體 DNA 之間差異,智人與黑猩猩最多,智人與智人最少,智人與尼安德塔人介於期間。圖/取自 參考資料 2

帕波在 1996 年首度取得尼安德塔人的 DNA 片段,來自粒線體。他為了確認結果,邀請一位美國小女生重複實驗,驗證無誤,她就是後來也成為一方之霸的史東(Anne Stone)。比較這段長度 105 個核苷酸的片段,尼安德塔人與智人間的差異,明顯超過智人與智人。

然而,粒線體只有 16500 個核苷酸,絕大部分遺傳訊息其實藏在細胞核的染色體中。想認識尼安德塔人的遺傳全貌,非得重現細胞核的基因組。

可是一個細胞內有數百套粒線體,只有 2 套基因組,因此粒線體 DNA 的含量為細胞核數百倍;而且染色體合計超過 30 億個核苷酸,數量無比龐大。可以說,細胞核基因組可供取材的 DNA 量少,需要復原的訊息又多,比粒線體更難好幾個次元。

方法學與時俱進:從 PCR 到次世代定序

一開始,帕波與合作者使用 PCR,但是帕波知道這是死路一條。取樣 DNA 會破壞材料,尼安德塔人的化石有限;PCR 一次又只能復原幾百核苷酸,要完成 30 億的目標遙遙無期。

帕波持續努力克服難關。2000 年人類基因組首度問世,採取「霰彈槍」定序法,大幅提升效率;也就是將 DNA 序列都打碎,一次定序一大堆片段,再由電腦程式拼湊。帕波因此和 454 生命科學公司合作,改用新的次世代定序法,偵測化石中的古代 DNA。2006 年發表的論文可謂里程碑,報告次世代定序得知的 100 萬個尼安德塔人核苷酸,足以進行一些基因體學的分析。

帕波當時在美國的合作者魯賓(Edward Rubin)持續使用 PCR,雙方分歧愈來愈大,終於分道揚鑣。所以很可惜地,2010 年尼安德塔人基因組論文發表時,魯賓沒有參與到最後。這是人類史上第一次,取得滅絕生物大致完整的基因組,也是帕波獲頒諾貝爾獎的直接理由。

帕波戰隊。圖/取自 The Neandertal Genome Project

鐵證:尼安德塔人與智人有過遺傳交流

這份拼湊多位尼安德塔人的基因組,儘管品質不佳,卻足以解答一個問題:尼安德塔人與智人有過混血嗎?答案是有,卻和本來想的不一樣。尼安德塔人沒有長居非洲,主要住在歐洲、西南亞、中亞,也就是歐亞大陸的西部。假如與智人有過混血,歐洲人應該最明顯。結果並非如此。

帕波的組隊能力無與倫比,他廣邀各領域的菁英參與計畫,不只取得 DNA 資料,也陸續研發許多分析資料的手法,其中以哈佛大學的瑞克(David Reich)最出名。

分析得知,非洲以外,歐洲、東亞、大洋洲的人,基因組都有 1% 到 4% 能追溯到尼安德塔人(後來修正為 2% 左右)。所以雙方傳承至今的混血,發生在智人離開非洲以後,又向各地分家以前;並非尼安德塔人主要活動的歐洲。

首度由 DNA 定義古代新人類:丹尼索瓦人

復原古代基因組的工作相當困難,不過引進次世代定序後,從不可能的任務降級為難題,尼安德塔人重出江湖變成時間問題。出乎意料,同樣在 2010 年,帕波戰隊又發表另外 2 篇論文,描述一種前所未知的古人類:丹尼索瓦人(Denisovan)。不是藉由化石,而是首度由 DNA 得知新的古代人種。

根據細胞核基因組,尼安德塔人、丹尼索瓦人的親戚關係最近,智人比較遠,三群人類間有過多次遺傳交流。圖/取自 參考資料 1

丹尼索瓦人得名於出土化石的遺址(地名來自古時候當地隱士的名字),位於西伯利亞南部的阿爾泰地區,算是中亞。帕波對這兒並不陌生,之前俄羅斯科學家在這裡發現過尼安德塔人化石,而且由於乾燥與寒冷,預計化石中的古代 DNA 保存狀況應該不錯。

帕波戰隊對丹尼索瓦洞穴中的一件小指碎骨定序,首先拼裝出粒線體,驚訝地察覺到這不是智人,卻也不是尼安德塔人,接下來的細胞核基因組重複證實此事。它們變成前後 2 篇論文,帕波出名的不喜歡物種爭論,不使用學名,所以直稱其為「丹尼索瓦人」。

還有幾顆丹尼索瓦洞穴出土的牙齒也尋獲粒線體,而且這些臼齒特別大,型態前所未見。奇妙的是,丹尼索瓦人粒線體、基因組的遺傳史不一樣;和智人、尼安德塔人相比,尼安德塔人的粒線體比較接近智人,細胞核基因組卻比較接近丹尼索瓦人。

這反映古代人類群體間的遺傳交流相當複雜,不只是智人、尼安德塔人,也不只有過一次。後來又在丹尼索瓦洞穴發現一位爸爸是丹尼索瓦人、媽媽是尼安德塔人的混血少女,更是支持不同人群遺傳交流的直接證據。

遠觀丹尼索瓦洞穴。圖/取自論文〈Age estimates for hominin fossils and the onset of the Upper Palaeolithic at Denisova Cave〉的 Supplementary information

回溯分歧又交織的人類演化史

重現第一個尼安德塔人基因組後,帕波戰隊持續改進定序與分析的技術,也獲得更多樣本,深入不同族群的分家年代、彼此間的混血比例等問題,新知識不斷推陳出新。

丹尼索瓦人方面,如今仍無法確認他們的活動範圍,不過很可能是歐亞大陸偏東部的廣大地區。一如尼安德塔人,丹尼索瓦人也與智人有過遺傳交流。

最初估計某些大洋洲人配備 4% 到 6% 的丹尼索瓦人血緣,後來修正為 2% 左右(不同方法估計的結果不一樣,總之和尼安德塔血緣差不多)。不同智人具備丹尼索瓦 DNA 的比例差異頗大,某些大洋洲人之外,東亞族群也具備些許,歐亞大陸西部的人卻幾乎沒有。

到帕波獲得諾貝爾獎為止,古代 DNA 最早的紀錄是超過一百萬年的西伯利亞古代象。圖/最早古代 DNA,超過一百萬年的西伯利亞象

至今年代最古早的人類 DNA,來自西班牙的胡瑟裂谷(Sima de los Huesos),距今 43 萬年左右(最早的是超過一百萬年的古代象,由受到帕波啟發的其餘團隊發表)。根據 DNA 特徵,胡瑟裂谷人的細胞核基因組更接近尼安德塔人,可以視作初期的尼安德塔人族群。然而,他們的粒線體卻更像丹尼索瓦人。

帕波開發的研究方法,不只針對消逝的智人近親,也能用於古代智人與其他生物,累積一批數萬年前智人的基因組。釐清近期的混血事件外,還能探討不同人群當初分家的時期。估計尼安德塔人、丹尼索瓦人約在 40 多萬年前分家,他們和智人的共同祖先,又能追溯到距今 50 到 80 萬年的範圍。

智人何以為智人?遠古血脈的傳承,磨合,新適應

消逝幾萬年的尼安德塔人、丹尼索瓦人,皆為智人的極近親。由於數萬年前的遺傳交流,仍有一部分近親血脈流傳於智人的體內。這些血脈經過數萬年,早已融入成為我們的一部分。

人,人,人,人呀。圖/取自 參考資料 2

智人的某些基因與基因調控,受到遠古混血影響。最出名的案例,莫過於青藏高原族群(圖博人或藏人)的 EPAS1 基因繼承自丹尼索瓦人,比智人版本的基因更有利於適應缺氧。另外也觀察到許多案例,與免疫、代謝等功能有關。

近年 COVID-19(武漢肺炎、新冠肺炎)席捲世界,觀察到感染者的症狀輕重受到遺傳差異影響;其中至少兩處 DNA 片段,一處會增加、另一處降低住院的機率,都可以追溯到尼安德塔人的遠古混血。

非洲外每個人都有 1% 到 2% 血緣來自尼安德塔人,不同人遺傳到的片段不一樣。將不同智人個體的片段拼起來,大概能湊出 40% 尼安德塔人基因組(不同算法有不同結果),也就是說,當初進入智人族群的尼安德塔 DNA 變異,不少已經失傳。

失傳可能是機率問題,某一段 DNA 剛好沒有智人繼承。但是也可能是由於尼安德塔 DNA 變異,對智人有害或是遺傳不相容,而被天擇淘汰。遺傳重組之故,智人基因組上每個位置,繼承到尼安德塔變異的機率應該差不多;可是相比於體染色體,X 染色體的比例卻明顯偏低;這意謂智人的 X 染色體,不適合換上尼安德塔版本。

例如 2022 年發表的論文,比較 TKTL1 基因上的差異對智人、尼安德塔人神經發育的影響。圖/取自〈Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals

智人之所以異於非人者幾希?藉由比較智人的極近親尼安德塔人,能深入思考這個大哉問。是哪些遺傳改變讓智人誕生,後來又衍生出什麼不可取代的遺傳特色?另一方面也能反思,某些我們以為專屬智人的特色,其實並非智人的專利。

分析遺傳序列,畢竟只是鍵盤辦案,一向雄心壯志的帕波,當然想要更進一步解答疑惑。比方說,尼安德塔人、智人間某處 DNA 差異對神經發育有什麼影響?體外培養細胞、模擬器官發育的新穎技術,如今也被帕波引進人類演化學的領域。

瑞典與愛沙尼亞之子,德國製造,替人類做出卓越貢獻的人

回顧完帕波到得獎時的精彩成就,他的工作與生理或醫學有哪些關係,各位讀者可以自行判斷。我還是覺得沒什麼直接關係,如遠古混血影響病毒感染的重症機率這種事,那些 DNA 變異最初是否源自尼安德塔人,其實無關緊要。不過多少還是有些影響,像是為了研究古代基因組而研發出的基因體學分析方法,應該也能用於生醫領域。

《尋找失落的基因組》台灣翻譯本。

帕波 2014 年時發表回憶錄《尋找失落的基因組》,自爆許多內幕。台灣的翻譯出過兩版,可惜目前絕版了。我在 2015 年、2019 年各寫過一篇介紹。書中有許多值得玩味之處,不同讀者會看到不同重點,有興趣可以找來閱讀,看看有什麼啟發。

主題是諾貝爾獎就不能不提,帕波得獎也讓諾貝爾新添一組父子檔,他的爸爸伯格斯特龍(Sune Karl Bergström)是 1982 年生理或醫學獎得主。為什麼父子不同姓?因為他是隨母姓的私生子,父子間非常不熟。

他的媽媽卡琳.帕波(Karin Pääbo)是愛沙尼亞移民瑞典的化學家,2007 年去世前曾在訪問提及,她兒子在 13、14 歲時從埃及旅遊回來,對科學產生興趣。帕波獲頒諾貝爾獎後受訪提到,可惜媽媽已經去世,無法與她分享榮耀。移民異國討生活的單親媽媽,能夠養育出得到諾貝爾獎的兒子,也可謂偉大成就。

人類演化的議題弘大淵博,但是究其根本,依然要回歸到一代一代的傳承。每個人都無比渺小,卻也是全人類中的一份子,親身參與其中。諾貝爾生理或醫學獎 2022 年的頒獎選擇,乍看突兀,仔細思索卻頗有深意。帕波的研究也許很不生理或醫學,卻再度強化諾貝爾奬設立的精神:「獎勵替人類做出卓越貢獻的人」。

  • 帕波得獎後接受電話訪問:

延伸閱讀

參考資料

  1. Press release: The Nobel Prize in Physiology or Medicine 2022. NobelPrize.org. Nobel Prize Outreach AB 2022. Wed. 5 Oct 2022.
  2. Advanced information. NobelPrize.org. Nobel Prize Outreach AB 2022. Wed. 5 Oct 2022.
  3. Geneticist who unmasked lives of ancient humans wins medicine Nobel
  4. Ancient DNA pioneer Svante Pääbo wins Nobel Prize in Physiology or Medicine
  5. Nature 論文蒐集「Nobel Prize in Physiology or Medicine 2022
  6. Estonian descendant Svante Pääbo awarded Nobel prize

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

所有討論 1
寒波_96
178 篇文章 ・ 709 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。