0

12
4

文字

分享

0
12
4

【2013 諾貝爾化學獎】用程式計算化學:電腦模擬催化知識發展!

諾貝爾化學獎譯文_96
・2022/01/11 ・4460字 ・閱讀時間約 9 分鐘

本文轉載自諾貝爾化學獎專題系列,原文為《【2013 諾貝爾化學獎】將實驗帶入網際空間

  • 譯者/曹一允|美國德州農工大學 Karen Wooley 教授指導下取得博士,現於日本萊雅公司進行研究。
  • 譯者/蔡蘊明|台大化學系名譽教授

化學反應以閃電的速度進行著;電子在原子核間跳躍,閃避著化學家們虎視眈眈的雙眼。2013 年的諾貝爾化學桂冠得主們利用電腦,讓化學的神祕路徑得以現形。對於化學運作的細部暸解,使得催化劑、藥物以及太陽能電池的最佳化變得更有效率。

將實驗帶入網際空間

全世界的許多化學家幾乎每天在電腦上設計以及執行實驗,透過馬丁.卡普拉斯(Martin Karplus)、麥可.李維特(Michael Levitt)以及艾瑞.瓦歇爾(Arieh Warshel)於 1970 年代所發展的方法,化學家們檢視著用肉眼無法看到的複雜化學過程之中的每一個小小的步驟。

爲了讓讀者感受到人類如何因此而受惠,讓我們用一個例子來開頭。請穿上你的實驗衣,因為我們要給你一個挑戰:創造人工光合作用。這個在綠葉中進行的化學反應,讓大氣充填了氧氣,也是地球上有生命存在的必要條件之一。但是從環境的角度來看,這是很有意義的,因為如果你能夠模擬光合作用,就能創造更有效率的太陽能電池。當水分解時會產生氧氣,但隨伴產生的氫氣則可以用於驅動我們的車輛。因此你有十足充分的理由參與這個計畫,假若你成功了,對解決溫室效應的問題,你也會有所貢獻。

一張圖超過千言萬語──但並非全部

做為第一步,你應該會上網去找尋那些控制光合作用的蛋白質的三維結構圖像。這些圖像均可從網路裡自由的取得,你可將圖像在電腦上隨意旋轉和扭曲,它揭露了巨大的蛋白質分子裡數以萬計的原子。在其中心某處,有一個小小的區域,被稱為反應中心,這就是水分子被裂解的地方。不過只有幾個原子是直接參與這個反應的。圖像很清楚的顯示了原子與離子相互坐落的位置,但卻無法說出這些原子與離子如何運作,這就是你需要搞清楚的。不知如何地,電子必須從水分子中取出,另有四個質子(H+)必須處理,這到底如何發生呢?

-----廣告,請繼續往下閱讀-----
現在的化學家在電腦上做實驗幾乎與在實驗室做實驗一般頻繁,從電腦上得到的計算結果經由真實的實驗得到證實後,讓我們對原子的世界如何運作得到新的線索。此可謂理論與實踐相輔相成。圖/諾貝爾化學獎專題系列

這個過程用傳統的化學方法基本上是無法弄清楚的,有太多的事情發生在一個毫秒(10-3秒)之內,這種速度排除了用試管實驗來研究之可能。從你的電腦圖像也仍然很難猜測反應的過程,因為圖像是在靜態取得的,然而當太陽照射在綠葉上時,那些蛋白質充滿了能量,而整個分子的結構改變了。為了瞭解這個化學反應,你需要知道充填了能量的分子結構是什麼樣子。

這就是需要召喚電腦程式來幫助你的時刻,而這些電腦程式就是基於 2013 年的諾貝爾化學獎得主們所奠定的基石。

理論與實踐──一個成功的相輔相成

利用這種電腦程式,你可以計算各種可能的反應路徑,這被稱為模擬(simulation or modeling),此法讓你對那些原子在化學反應的不同階段扮演的角色有些概念,而當你有一個可能的反應路徑時,會較容易執行真實的實驗,來證實電腦的對錯,這些實驗反過來提供了新的線索,以導致更好的電腦模擬結果;理論與實踐達到相輔相成的效果。結果是,化學家們花在電腦前面的時間,與花在試管之間的時間幾乎一樣多!

那麼這次諾貝爾化學獎得主們發展的電腦程式,到底有何神奇之處呢?

-----廣告,請繼續往下閱讀-----

將兩個世界最好的整合起來

過去,當科學家們要在電腦上模擬分子時,他們擁有的程式不是基於古典牛頓物理,就是基於量子物理,二者各有其長處與短處。基於古典物理的程式能計算與處理大的化學分子,它們只能顯示靜態的分子,給予化學家們關於分子內的原子的相對位置很好的圖像,可是你無法用這些程式去模擬化學反應。在化學反應時,分子是充滿能量的,處在激發的狀態,古典物理就是無法理解這些狀態,而這就成為一個嚴重的限制。

牛頓與薛丁格的貓:從前,古典物理與量子化學分屬兩個相互對抗的世界,2013 年的諾貝爾化學獎得主們替這兩個世界打開了一扇大門,帶來了暢旺的合作。圖/諾貝爾化學獎專題系列

當科學家們要模擬化學反應時,他們需要轉而求助量子物理;其二元理論(dualistic theory)將電子視為同時具有粒子與波動的雙重性質,其中著名的「薛丁格的貓」,藏在盒中,可能是活的也可能是死的。量子物理的強項在於它是沒有偏見的,其模型不包括科學家們的預測,因此這樣的模擬較為真實。但其缺點在於計算需要耗費龐大的電腦資源,因為電腦需要處理分子中的每一個電子以及原子核。這就好像一張數位圖像的像素(pixel)數目,像素越多,解析度越佳,但是需要較多的電腦空間。類似地,透過量子物理的計算,雖然可以描繪化學反應中的詳細過程,但是需要強大的電腦。在 1970 年代,這意味著科學家們只能對小分子進行計算。在模擬時,他們被迫忽略分子與周遭環境的作用,雖然真實世界中的化學反應大都在某些溶液中進行,但是假若科學家們計算時,要電腦將溶劑也一併考慮的話,他們將需要等待個幾十年才能得到結果。

所以古典物理與量子化學是兩個本質上不同,而且在某些方面相互衝突的世界。但是 2013 年的諾貝爾化學獎得主們,替這兩個世界打開了一扇大門。在他們的模型裡,牛頓與他的蘋果,跟薛丁格和他的貓合作。

量子化學與古典物理合作

在 1970 年代,在美國劍橋哈佛大學卡普拉斯的實驗室裡,開展了合作的第一步。卡普拉斯具有深厚的量子背景,他的研究小組發展的電腦程式,藉著量子物理的幫助可以模擬化學反應。他也發展了所謂的「卡普拉斯方程式」應用於核磁共振(NMR),那是一個化學家熟知的方法,乃基於分子的量子化學性質所建立的。當瓦歇爾完成他的博士學位後,在 1970 年進入了卡普拉斯的實驗室。他的博士學位是在以色列 Rehovot 的 Weismann 科學研究院所獲得的,該研究院擁有一台能力強大的電腦,被稱為 Golem,那是取自猶太傳說中的一位有生命的泥人的名字。透過 Golem 的幫助,瓦歇爾與李維特基於古典理論,發展了一個突破性的電腦程式,此程式能夠模擬各種分子,甚至於真正很大的生物分子。

-----廣告,請繼續往下閱讀-----

當瓦歇爾加入卡普拉斯在哈佛大學的研究小組時,帶著他那古典的電腦程式,以這個程式為起點,他與卡普拉斯發展了一個新的程式,以不同的方式計算不同的電子。在大部分的分子中,每一個電子繞著特定的原子核運行,但是在某些分子中,某些電子可以毫無阻礙的在數個原子核間移動,這些「自由電子」可以存在於像是視網醛(retinal)這個分子中,此分子是嵌在眼睛的視網膜上。卡普拉斯對於視網醛有著長期的興趣,因為這個分子的量子化學性質,影響了某些生物的功能;當光照射在視網膜上,視網醛的自由電子就會得到能量,因此改變了分子的形狀,這是人類視覺的第一步。

最後,卡普拉斯與瓦歇爾終於能夠處理視網醛,不過他們是從具有簡單結構的類似分子開始的。他們發展了一個電腦程式,運用量子物理來處理自由電子的計算,但是用簡單的古典理論來處理其它的電子以及所有的原子核。在 1972 年,他們發表了研究結果,這乃是第一次有人能夠透過古典與量子物理的合作來處理化學相關的問題,但是此法僅能處理具有鏡面對稱性的分子(像人一般有一面鏡子在身體正中央而左右對映)。

一個萬用程式來計算生命的化學

在哈佛大學待了兩年之後,瓦歇爾又與李維特合作。此時李維特已經完成了英國劍橋大學的博士訓練,正值全球尖端的研究都在於探討像是 DNA、RNA 以及蛋白質這類的生物分子。他企圖用他的古典電腦程式,來對生物分子的結構做進一步的瞭解,然而限制仍然存在,僅能觀察靜態的分子。

李維特與瓦歇爾瞄準了一個很高的目標,他們想要發展一個程式用來研究酵素;也就是生命活體中,控制與催化化學反應的許多蛋白質。早在瓦歇爾還是一位年輕的學生時,他就對於酵素如何運作很好奇。透過酵素間的相互合作,生命才可能存在,它們控制了基本上所有生命體內的各種化學,如果你想要瞭解生命,你就必須瞭解酵素。

-----廣告,請繼續往下閱讀-----

爲了能夠模擬酵素的反應,李維特與瓦歇爾必須讓古典與量子物理的合作更為順暢,這花了他們許多年去克服各種障礙。他們的探索始於 Weismann 科學研究院,但是當李維特在數年後完成了他的博士後研究的訓練,他回到了劍橋,在那裡瓦歇爾也來加入。在 1976 年,他們達成了目標,並發表了第一個酵素反應的電腦模擬,他們的程式是革命性的,因為它可以用在各種分子上,在模擬化學反應時,大小已經不成問題。

聚焦於運作的心臟

現在當化學家模擬化學反應時,他們需要時就會運用這種力量。他們對每一個直接影響化學過程的電子與原子核,進行吃力的量子物理計算,這樣,他們取得關鍵所在儘可能最佳的解析,分子其他的部分則用古典的方程式來模擬。

爲了不浪費電腦的能力,李維特與瓦歇爾將計算的負載進一步修減,電腦不需要一直處理分子中不重要部分的每一個原子,他們展示了可以將多個原子合併計算。

現在的計算中,科學家還在模擬時加入了第三個層次。簡單的來說,電腦可將離化學反應中心很遠的原子們包裹在一起,成為一個均勻的質體。在科學圈內,這被稱為介電介質(dielectric medium)。

-----廣告,請繼續往下閱讀-----
現今化學家們模擬分子的運作時,若有需要就會運用電腦的力量。量子物理的計算成為了此一系統的核心,其外則是基於古典物理的處理,而在最外層的原子和分子則視為聚集在一起的一團均勻物質,這種簡化的方式,讓我們能用計算來處理那些巨大的化學體系。圖/諾貝爾化學獎專題系列

模擬將帶我們進展至多遠決定在未來

因為現今的科學家可以用電腦來進行實驗,這讓我們對化學反應如何的進行得到了更深的理解。卡普拉斯、李維特以及瓦歇爾發展的方法的強度在於它們是萬用的,它們可以用來研究各種化學;從生命的分子到工業上的化學反應,科學家可以將太陽能電池、汽車用的催化劑或甚至於藥物最佳化,而這僅是舉幾個例子而已。

不過進展不會停在那裡,在李維特的一篇論文中,寫到了他的夢想:在分子的層次模擬生命體,那真是個極為誘人的想法。由 2013 年的諾貝爾化學獎得主們發展的電腦模擬,是極為有力的工具,到底它可將我們的知識推進到多遠,只有未來才能決定。

參考資料

-----廣告,請繼續往下閱讀-----
文章難易度
諾貝爾化學獎譯文_96
15 篇文章 ・ 24 位粉絲
「諾貝爾化學獎專題」系列文章,為臺大化學系名譽教授蔡蘊明等譯者,依諾貝爾化學獎委員會的新聞稿編譯而成。泛科學獲得蔡蘊明老師授權,將多年來的編譯文章收錄於此。 原文請參見:諾貝爾化學獎專題系列

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
1

文字

分享

0
2
1
跨越五十年的醣化學之旅——翁啟惠院長專訪
研之有物│中央研究院_96
・2022/11/19 ・7078字 ・閱讀時間約 14 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

台灣知名科學家:翁啟惠院長

如果問民眾「臺灣有哪些知名的科學家?」翁啟惠肯定是經常出現的答案。翁啟惠是國際知名醣化學家,曾擔任兩屆中央研究院院長,任期內積極將基礎科學與生醫產業串連起來。另一方面,翁啟惠也是投身研究 50 年的資深學者與好老師,共培養超過 500 位優秀弟子;他同時也是中研院、美國國家科學院的院士,更獲得沃爾夫化學獎、威爾許化學獎、四面體化學獎等榮譽。中研院「研之有物」專訪院內基因體研究中心合聘特聘研究員翁啟惠院士,向讀者介紹他一路走來的心路歷程。

圖│研之有物(資料來源|翁啟惠)

從臺大、中研院到 MIT的化學之旅

翁啟惠學術能量依舊飽滿,他是斯克里普斯研究院(Scripps Research)與中研院合聘的研究人員,兩邊各自都有實驗室和學生,受訪當天他本人在美國加州,透過視訊與「研之有物」團隊連線。

至今已 74 歲的醣化學大師翁啟惠,他是嘉義出生的子弟,初中考上臺南一中,高中三年級本已保送清華大學化學系,不過因為想挑戰臺大醫學系而赴考,可惜生物不好,加上自己喜歡化學,便進了第二志願臺大農業化學系。大學畢業,退伍後他隨即投身於科學研究,算算日子,已經是漫長的 50 年時光。

-----廣告,請繼續往下閱讀-----

翁啟惠原本就喜歡研究,他退伍後跟著恩師臺大化學系王光燦教授擔任助教一年後,再跟王教授來到中研院擔任助理,當時(1972 年)正值中研院生物化學研究所草創時期。後來翁啟惠升任「助理研究員」(類似大學的講師,目前已無此職位),前後服務長達 8 年,期間於 1977 年在職獲得碩士學位,碩論主要為臺灣蛇毒蛋白的合成,是翁啟惠多年來的研究成果。

王光燦(左)帶領翁啟惠(右)進入化學的研究殿堂,圖為 1999 年王光燦的退休餐會上,翁啟惠贈與恩師紀念品。
圖│翁啟惠

儘管翁啟惠出國前已發表超過 30 篇論文,小有所成,他依然希望更上層樓,因此 1979 年前往美國的麻省理工學院深造,接受恩師化學系教授喬治·懷特賽茲(George M. Whitesides)的指導。翁啟惠回憶,自己後來教育學生的理念與作法,多源自懷特賽茲的啟發。具備相當基礎之下,翁啟惠花費 3 年取得有機化學博士學位,又經歷 1 年哈佛大學的博士後研究,1983 年他就成為德州農工大學(Texas A&M University)的助理教授。

冷門且困難的「醣化學」

翁啟惠擅長的領域是「酵素化學」與「醣化學」,醣化學是什麼呢?翁啟惠解釋,維繫生命的蛋白質、核酸、脂質、醣類這些物質,以醣類最為複雜。除了材料化學的應用之外,翁啟惠選擇探索醣分子在生物醫學方面的應用。

醣類的結構變化多端,而且不容易人工合成。而翁啟惠的過人之處,正是出色的醣類合成能力!後來讓他奠定宗師地位的一鍋式酵素合成法程式化一鍋合成法醣晶片,到最近的廣效去醣化疫苗等研究主題,都歸功於他堅強的化學合成基礎。

-----廣告,請繼續往下閱讀-----

我們已經知道翁啟惠是醣化學的先驅,不過其實到博士畢業前,他大部分仍著重於蛋白質的合成,直到獨當一面後,才正式投身醣類。因為在當時的學界,核酸、蛋白質才是顯學,醣化學是非常冷門的領域,即便今日也不算太熱門,更是難以想像應用於研究疾病。

因此,翁啟惠早期在美國當助理教授時,曾經無法申請到研究經費,甚至有計畫評審認為他誤入歧途,所幸他的前瞻理念於 1986 年受到美國總統年青化學家獎(Presidential Young Investigator in Chemistry)的賞識,支持他站穩腳步,1987 年升任教授,才有後來的持續突破。

使用「酵素」來合成醣類

過去醣類研究不但冷門,而且難以合成,翁啟惠為什麼有勇氣選擇如此困難的題材?他的信心來自「酵素」 ,也就是生物用來催化反應的特殊蛋白質。傳統化學手段難以合成的複雜產物,有機會利用酵素來克服。

翁啟惠提到,1970 年代分子生物學興起,新問世的基因改造潛力無窮,人造胰島素開啟生技產業的濫觴;但是 1980 年代時,化學家多半仍很少接觸基因重組技術。他算是首波使用基因重組酵素,實現醣分子的化學合成。

-----廣告,請繼續往下閱讀-----

翁啟惠強調,很多新聞報導說他是生物醫學或生物科技專家,但其實他本質上一直是化學家,探索分子層次的操作,研究醣分子與醣蛋白的有機合成,只是醣化學研究的應用涉及生物醫學領域,介於化學和生物的交界。

做出過人成績後,翁啟惠成為各大研究機構爭邀合作的化學人才,本來預備前往加州的史丹佛大學。不過同樣在加州的斯克里普斯研究院(Scripps Research)半途冒出,院長勒納(Richer Lerner)親自邀請他過去瞧瞧。當時擅長生醫的 Scripps 想拓展至化學領域,正在招募人才,而涉足生物的化學專家翁啟惠正是合適人選。

Scripps 研究院是世界最好的研究機構之一,只收博士生,不僅有多位諾貝爾獎得主,更培育出不計其數的人才。翁啟惠回憶,他原本也對 Scripps 研究院不熟,Scripps 當時還沒有化學部門,但沒想到相談甚歡,1989 年他受邀擔任新成立的化學系講座教授,一做就做到 2006 年。現在,Scripps 研究院在化學生物領域是全美第一。

圖│翁啟惠

Scripps 研究院不僅環境怡人,學術資源也豐沛,讓翁啟惠能專注研究,而不必為經費擔憂。如今,他再度成為 Scripps 研究院的講座教授(Chair Professor),美國講座教授會有一筆來自民間的捐助基金,有充裕的學術資源可供自由運用。翁啟惠感慨地說,臺灣的學術捐款多為建造大樓等硬體,可是支持人才更重要, 這是未來臺灣值得學習的方向。

-----廣告,請繼續往下閱讀-----

醣化學原本是乏人問津的領域,然而翁啟惠開創了醣分子的有機合成方法,讓醣化學逐漸受到重視,他也獲得一系列耀眼成就。翁啟惠 2002 年當選美國國家科學院的院士,接著又榮獲多項化學領域的一級大獎:2014 年得到沃爾夫獎(The Wolf Prize),2021 年是威爾許獎(Welch Award),2022 年又獲頒四面體獎(Tetrahedron Prize)。

翁啟惠近年在化學領域不斷獲獎,也讓許多人好奇,再來會是諾貝爾化學獎嗎?

對於這個問題,翁啟惠認為可遇不可求,得獎也講究機運。不過每次獲獎,他都覺得是很好的鼓勵,激勵他繼續往前走。更重要的是,翁啟惠不是單打獨鬥,每次獎項表揚的成就,背後都是整個團隊的努力,因此這些榮譽正是對他整個團隊的肯定。

教師之夢:遍布全世界的學生

說到培養人才,這也是翁啟惠的強項,可惜過去媒體報導翁啟惠時卻很少觸及教育。談論如何作育英才的心得,翁啟惠眼睛炯炯有神,隔著太平洋都能感受到湧出螢幕的教育熱情。

-----廣告,請繼續往下閱讀-----

翁啟惠表示他小學時就想當老師,也是一輩子的志願。看到學生有成就,就會覺得很欣慰。他至今指導過的學生與博士後超過 500 位,遍及世界各地,包含美國、日本、韓國、英國、法國、德國、比利時等國家。儘管他自嘲也不是全世界都有,像是北韓就沒有學生。

翁啟惠對教學的想法,奠基於博士班老師懷特賽茲和自己長年的實踐經驗。談到臺灣學生,他特別指出必須加強兩點訓練:獨立思考與表達能力

表達為什麼重要?試想,一個人花費多年辛苦取得學位,去應徵工作,卻只有幾分鐘能夠展現。善於表達,才能讓人覺得你的工作重要,呈現意圖以實現目標。而翁老師的第一課,總是在他與學生第一次碰面立刻開始:「為什麼找我當指導教授?」。給他滿意的回答,才能成為他的學生,成績並非最優先的考量。

翁啟惠(左1)對教學的想法,奠基於博士班老師懷特賽茲(右1)和自己長年的實踐經驗。談到臺灣學生,他特別指出必須加強兩點訓練:獨立思考與表達能力。
圖│翁啟惠

培養學生獨立思考與研究的能力

翁啟惠的指導理念是「指示不要太詳細」,讓學生自己想問題、找資料、設計實驗。他只負責給大方向、從旁協助。因為講的太過具體,反而會限制學生獨立發展的空間。

-----廣告,請繼續往下閱讀-----

翁啟惠更精闢地剖析: 由學生獨立完成的成果,才會認為是自己的成績。否則即使成果再好,學生也可能覺得那是老師的東西,不是自己的成就。當學生獲得成功經驗,對自己有信心,此後便能更加獨立,建立正向循環。

另一方面,由於學生有大片空白可以填補,所以想法和能力不會受到過去積習所影響。翁啟惠提到,他有很多超乎預期的重要研究,是來自學生自己的嘗試。例如,研發出自動化一鍋式合成醣分子的歐曼(Ian Ollmann),原本在博士班四年級仍苦無突破,翁啟惠建議他發揮寫程式的專長,果然順利完成發表,後來甚至還轉戰高科技龍頭蘋果公司,至今已工作超過 20 年。

不過,讓學生自己摸索,失敗怎麼辦?翁啟惠認為失敗為成功之基礎,學生經歷失敗,才能培養耐心,累積應付挫折的經驗,打下未來成功的基礎。做研究的關鍵在於興趣,只要保持興趣,失敗也能學到新東西,而成功則能增強信心,有利於繼續成功。翁啟惠也鼓勵學生,與其等待老師指導,不如勇於嘗試、放手去做。

程式化一鍋多醣合成技術示意圖。
圖│研之有物(資料來源|中研院基因體中心資訊組)

研究院院長時期:積極推動產學交流與合作

翁啟惠任職 Scripps 研究院的期間,茁壯為世界第一流學者,各國爭相合作。如此耀眼的旅外人才,自然也受到當時中研院院長李遠哲賞識,促成翁啟惠於 2003 年回到臺灣,並在 2006 年到 2016 年擔任了兩屆院長。

-----廣告,請繼續往下閱讀-----

翁啟惠除了提升中研院的學術水準,他最重要的任務莫過於推動生物科技產業。因為翁啟惠認為產學互利共生很重要,有好的產業才能吸收廣泛的人才,例如臺灣的半導體產業,可以讓理工科系學生不愁出路,產生正向循環。

但另一方面,生物科技已成為各個科技大國的明星產業,臺灣每年有大批醫藥、生技的人才,卻沒有相應規模的產業,無法人盡其才。

為了推動生技產業,法規制度與產學合作園區都不可或缺。翁啟惠參考美國 1980 年的拜杜法案(Bayh-Dole Act),與專家合作完成臺灣版本的法規,將產學合作、技術轉移制度化。

法規的主要精神,就是由政府補助學術研究,做出初步成果後,再技術轉移給業者尋求商業化,後續再回饋給學術形成正向循環。園區方面,國家生技研究園區、中研院南部院區,都隨著翁啟惠的規劃步上軌道,讓基礎研究和產業創新能夠連結。

當然,產學間的轉換並不總是那麼順利。不過翁啟惠認為,如果學者發表的論文成果,同時也能促進產業,讓社會一同受益更好。這倒不是說所有學者都要投入產學合作,而是要慢慢建立起產學合作的文化,將研發成果回饋給社會。

往好處看,臺灣的生技產業與產值都持續進步中,而這條路依然任重而道遠。

產學合作的新潛力

翁啟惠是純學術研究出身,為什麼後來卻相當熟悉產學合作呢?時光要回溯到 1985 年。那時翁啟惠獲頒席艾勒學者生物醫學獎(Searle Scholar Award in Biomedical Sciences)——這是他少數獲得的生醫獎項之一,加上總統年青化學家獎,使他在美國學術界站穩腳步,也讓他有擔任企業顧問的機會。

從杜邦公司開始,初出茅廬的翁啟惠自認什麼都不懂,跟著前輩們邊看邊學,解決一家又一家企業的疑難雜症,而業界的顧問經驗同時也支持著自己想做的研究。翁啟惠逐漸累積產業經驗後,發現產學目標很不一樣,學者要優先發表論文,企業則是產品導向,講究解決問題。

訪談之中,翁啟惠回顧幾件很有意思的顧問經驗。例如,有公司希望解決可樂中代糖「阿斯巴甜」(Aspartame)在高溫下產生甲醇毒素的問題。也有公司想要改良汽車外層鍍膜,避免鳥糞腐蝕。

另外還有一個香菸公司的邀請讓翁啟惠印象深刻,那時很多重度菸癮者抽到頭痛,產品只能先緊急下架,菸商損失慘重;後來查明是製菸的紙漿中存在微量有害物質,若短時間抽很多根菸,大量攝取下會有立即危害。

這些顧問工作,很多都和翁啟惠醣化學的本業無關,卻帶給他開闊的視野與企業經驗。我們也可以注意到,美國政府與產業界相當有心培育有潛力的人才,即便尚無業界經驗,也願意讓新人去嘗試擔任顧問。

翁啟惠提到,美國東岸的新英格蘭周邊,是產業歷史最悠久的地區,也分佈許多老牌大企業;西岸的加州則不同,主要是新創小公司。不同地方各有特色,衍生出多變的產學文化。

相比之下,臺灣也具備潛力,就看經營出什麼文化。翁啟惠認為,我們已經建立民主自由的社會,若要更上層樓,臺灣萬萬不可孤立,要主動與國際交流,並發展自己的特色。

有交流,創意的火花才有可能碰撞,或許那個坐在你隔壁的人,就是未來的合作夥伴!翁啟惠提到,總部位於加州聖地牙哥,以基因定序闖出名號,至今仍蓬勃發展的因美納(Illumina)公司,其共同創辦人沃特(David Walt),正是他在麻省理工學院實驗室的同儕!有次邀請沃特到 Scripps 演講,剛好聽眾中有兩位感興趣的投資者,演講結束之後,沃特便與兩位投資者私下討論,就創辦了 Illumina 公司。

醣無所不在!未解的謎題還等著研究

儘管投身學術研究 50 年,醣化學將近 40 年,翁啟惠絲毫沒有停下腳步的意思。當訪問到「醣化學還有什麼潛力?」,一如談教育時的熱情,翁啟惠又展現出科學家對研究的熱愛。

在翁啟惠眼中,醣類有太多謎團等待解答。生物基因以 DNA 承載遺傳訊息,製作蛋白質行使功能,但是時常還要加上醣的參與,偏偏醣類不像核酸、蛋白質容易摸索。醣分子無法複製,只能用化學合成,細胞表面佈滿的醣分子結構不對,功能就不同。

以抗體為例,抗體是一種醣蛋白,我們知道抗體靠著專一性辨識去附著目標,消滅病毒。相對卻少有人意識到,抗體的一端附著目標後,另一端還要連接免疫細胞轉入後續反應才能消滅病毒,這步正是依靠醣分子,因此醣類會影響抗體的免疫功能

相對的,病毒需要依賴宿主細胞以便大量複製。不同細胞會賦予蛋白質產物不同的醣化修飾。研究發現即使遺傳物質相同的病毒,假如病毒外頭的醣化修飾不同,也會影響感染能力及免疫反應。由上呼吸道細胞產生的新冠病毒,感染力就比其他細胞更強。

對於開發疫苗,翁啟惠近年投入不少心血。疫苗刺激產生的抗體講究專一性,研發者要想辦法針對病毒結構來調整抗體及 T 細胞反應。翁啟惠與研究團隊的思路卻是另闢蹊徑,並非將病毒露出來的表面設為目標,而是要去掉病毒外層的「醣」衣,也就是「去醣化疫苗」。

因為病毒暴露在外的部分會持續改變,躲避特定抗體,但是被醣基包裹的位置不太會變,或許是人體免疫記憶更好的訓練對象。以此概念製成的蛋白質或 mRNA 疫苗,若是成功,便有機會成為所謂的「廣效疫苗」,接種一款疫苗就能應付病毒的多型變化,特別是難纏多變的流感病毒、冠狀病毒(例如 SARS-CoV-2)。

新冠病毒(SARS-CoV-2)的棘蛋白上面有醣化修飾(標示為橘色),醣基包裹的位置不太容易突變,因此去除表面的醣化修飾之後,可以進一步製成廣效疫苗。
圖│研之有物(資料來源|翁啟惠、中研院基因體中心)

除此之外,翁啟惠團隊也持續開發廣效癌症疫苗。用抗體對付癌症的想法十分誘人,其難處在於,疫苗刺激產生抗體,辨識外來入侵的異物加以攻擊;但是癌細胞是人體細胞變異産生,上頭存在的成分正常細胞常常也有,設定癌細胞打擊,反而會造成自體免疫的悲劇。

好消息是,癌細胞外頭有些醣化修飾,不同於正常細胞。翁啟惠的隊伍尋獲 Globo H 等幾個醣類分子,適合作為疫苗針對的目標。相關技術已經轉移給業者,正在進行第三期人體臨床試驗。這些圍繞醣分子作文章的創新疫苗令人期待,最終是否能投入實戰,仍有待分曉。

關於醣化學,翁啟惠將持續探究細胞表面醣分子所扮演的角色,以及醣分子和疾病的關係。

給年輕學生的話:「興趣是研究的動力

翁啟惠語重心長地提到,醣化學領域如今的樣貌取決於他們這些開拓者,未來則要看能否引發年輕人的興趣,因為未來是年輕人的。

現今教育強調跨領域,翁啟惠自己無疑也是跨領域的知名化學家,但是他提醒年輕人,跨領域絕對不等於什麼都要學、都要會。基礎還是要打好,跨領域的關鍵是有能力與其他領域的人互動合作。

翁啟惠近期便以國家生技醫療產業策進會會長的角色,積極促進醫界與電子業的對話。因為醫界知道市場需求,但不懂得製造;電子業擅長製造,但是對醫療需求沒有深刻理解。他希望營造合作交流的環境,創造新的可能性。

最後,翁啟惠提醒學生,做研究一定要長期投入,深入鑽研,若是短短幾年就轉換領域,只會愈來愈迷茫。興趣對研究生涯最重要,有興趣才有動力,而興趣的培養則來自日常的自我探索。

翁啟惠建議學生在跨領域之前,基礎還是要打好,而跨領域的關鍵是有能力與其他領域的人互動合作。
圖│翁啟惠
-----廣告,請繼續往下閱讀-----
研之有物│中央研究院_96
296 篇文章 ・ 3808 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook