Loading [MathJax]/extensions/tex2jax.js

1

40
2

文字

分享

1
40
2

為什麼義大利名琴的音色難以複製?

科技大觀園_96
・2021/06/26 ・2165字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

戴桓青的研究發現,小提琴音色的秘密在於木材經過化學處理。圖/沈佩泠繪

戴桓青小時候學過幾年小提琴,但並不在行;在美國加州理工學院念博士班時,有位會拉小提琴的同學選擇以此為科普文章題目,發現很多名琴研究都是德州農工大學教授納吉瓦里 (Joseph Nagyvary) 所著,兩人決定利用耶誕假期前往拜訪,沒想到從此與小提琴研究締結不解之緣。戴桓青延續已退休的納吉瓦里針對小提琴木材的相關研究,分析名琴修復時留下的木屑,研判小提琴好聽的秘密,可能就存在小提琴的木材中。

名琴的音色秘密在木板?

戴桓青總共分析了八把史特拉底瓦里小提琴 (Stradivarius) 與二把耶穌.瓜奈里小提琴 (Guaneri del Gesù) 的木材,這兩類名琴在製琴界、演奏界皆以音色優美聞名。針對音色的定義,戴桓青表示:「聲音的屬性除了音高跟音量外,其他都叫做音色。音色很主觀,雖然科學家還不知道要怎麼去定義、分析音色,但演奏家對於音色上的共識認知是存在的,很少人會說其他琴比這兩種名琴好聽。」

戴桓青辦公室掛著名琴海報,左側為公認最完美的史特拉底瓦里小提琴。其名為 Messiah,產於 1716 年,保存於英國牛津阿什莫林博物館(Ashmolean Museum)。圖/文詠萱攝

世界上的木材上千萬種,而小提琴的木材萬中選一。前板得使用阿爾卑斯山南麓的雲杉,背板使用來自巴爾幹半島或是義大利平地的楓木。戴桓青針對木材解釋:「先前納吉瓦里教授分析這些名琴的光譜,發現這些製琴師應該不是直接使用天然木材,而是有經過處理,我們延續他的研究。過去針對這些名琴的研究,都是以研究幾何形狀為主,小提琴有很多曲線、細微的比例、木板不平均的厚度等,但大家模仿出來後,還是沒有辦法做到和這些名琴一樣的聲音,所以我們認為往材料的方向研究是正確的。」

製琴小鎮的配方對決

300 年前製琴師都在義大利北部的克里蒙納 (Cremona) 小鎮中製琴,「我們已經發表的論文,主要在分析這幾把名琴的背板楓木,發現木材確實有做過化學處理,但並不確定是由供應木材的供應商所處理,還是由製琴師處理。」

-----廣告,請繼續往下閱讀-----

至於前板雲杉,戴桓青的研究尚未發表,但針對木材處理來源,交叉比對後發現,那些化學處理的痕跡,應為每位製琴師的秘密配方。「近期的研究發現,小提琴三大家族所做出來的琴,配方都很明顯不一樣,也都相當複雜,因此可以排除是由木材供應商處理的可能性。這也相當合理,因為克里蒙納人很少,製琴的人彼此會互相競爭,各自有各自的配方並不奇怪。」

研究人員於小提琴前板與背板刮取木屑,用於研究分析。圖/文詠萱攝

外型幾何容易模仿,但木材的化學處理就很難用肉眼看出來。「配方我們尚未解出來,製琴是一項工藝,順序也是很關鍵的一件事,配方有可能很複雜地先泡再洗掉,還要考慮溫度、pH 值、處理時間等,沒有辦法從現在的化學分析回推工序與配方。」戴桓青用食物當做各家配方的例子:「就像炸雞排,每家店的原料都差不多,但炸出來味道都不一樣,你不可能買一塊雞排回來分析,就知道他的工序。」

影響琴聲音的可能性

也有許多研究是針對名琴的塗漆,想知道漆對聲音的影響,或是模仿名琴塗漆,看看是否能複製出名琴的聲音。對此,戴桓青認為,「塗漆是一定有影響的,上不同的漆會有不同的差別。但研究名琴塗漆這麼多年,漸漸發現裡面的成分都是我們已知的,但就是沒辦法只透過模仿塗漆和模型,複製出名琴的聲音。」

桌上的大書為名琴塗料研究相關書籍,書中分析不同琴的表面塗漆。圖/文詠萱攝

世界上有許多木製的樂器,很少會聽到樂器放越久越好聽。「我問過很多專家,只有兩種樂器會放久了聲音變好聽,一種是中國古琴,另一種就是義大利小提琴。至於為什麼會有這個現象,目前還有沒人理解,需要更多的研究。而有些樂器本來設計就不是可以用很久的,例如古箏。」

-----廣告,請繼續往下閱讀-----

關於小提琴纖維素分子研究,戴桓青團隊利用「同步輻射」小角度 X 光散射探照,發現琴的木頭纖維素是會重新排列的,「我們針對小提琴的木頭分析,發現纖維素分子之間本來有半纖維素把它們區隔開來,但隨著時間過去,半纖維素會自然分解,纖維素會重新排列。至於這件事對聲音的確切影響,目前還不是很清楚,只知道老的琴會有這樣的現象。」

針對這樣的研究,難免有人會懷疑這些名琴是不是真的比較好聽,畢竟這不是隨隨便便就可以聆聽現場演奏的珍品。戴桓青表示:「事實上,確實要近距離地聽很多把名琴來演奏,才能感受到他們的差異。可是通常一位演奏家表演或比賽,只會帶一兩把琴出門。若真的要做相關研究,首先盲測畢竟有其限制,且『音色』是人類很不了解的領域,很難用科學的方法去解釋和比較。」

戴桓青於實驗室介紹研究用樣本小提琴。圖/文詠萱攝
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
科技大觀園_96
82 篇文章 ・ 1126 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
鑑識故事系列:義大利煙火工廠爆炸
胡中行_96
・2023/08/10 ・1785字 ・閱讀時間約 3 分鐘

義大利南部每到新年,必要放煙火驅邪避凶。西西里島上,某家族經營的煙火工廠,隨著年關將近,如火如荼地籌措活動所需。2019 年 11 月 20 日,[1]突然發生巨大爆炸。[1, 2]該廠 20 年前的類似意外沒死人;這回可沒那麼幸運。[1]

2019 年義大利的某場新年煙火。圖/Marco Chilese on Unsplash

爆炸傷害

煙火以硝酸鉀(potassium nitrate)、煤粉(pulverised charcoal)及(sulphur)為主要成份。爆炸的時候,會壓縮空氣,並提高其壓力和溫度,產生殺傷力十足的爆炸波(blast wave)。[2]爆炸傷害大致可以分成 4 類:[2, 3]

  • 第一類:爆炸波直接傷害充滿氣體的臟器,例如:肺部、腸胃道或中耳等。[2, 3]若是太靠近源頭,或是爆炸的力道過強,則實心的內臟,像是肝臟與脾臟,也會受傷。[2]
  • 第二類:爆裂物本身或其他碎片造成的穿刺傷。[2, 3]比第一類的傷害來得普遍,而且是爆炸事件中,最常見的死因。[3]
  • 第三類:爆炸波使人體位移而撞上東西,或者遭毀壞的建物結構壓到,導致鈍器損傷、腦震盪、穿刺傷和各類骨折等。[2, 3]
  • 第四類:吸入有害氣體、燒傷、輻射,或其他間接的環境傷害,以及心理衝擊。[2, 3]

煙火工廠的死傷

西西里這家煙火工廠有16棟建物,編號 6 和 7 全毀;鄰近的8號著火;其他的所有建物,也遭到向周邊擴散的爆炸波衝擊,輕微損壞。7 名現場人員的創傷,涵蓋上述所有類型;其中死亡的 5 人,皆有至少 2 到 3 度燒傷。[2]以下死傷摘要,整理自新聞報導,以及現場鑑識、解剖驗屍和 3D 電腦斷層等結果:[1, 2](請慎入超連結附圖。)

  • 受害者 1:36 歲,男性;肺、肝、脾臟撕裂;肺部出血性水腫、急性肺氣腫;顱骨碎裂,右邊肋骨卡了建物碎屑,全身多處骨折;死於建物 6 和 7 附近。(照片[2]
  • 受害者 2:23 歲,男性;多處骨折;建物碎屑侵入左顳頂骨、前腹壁及各處的皮下組織;頭、頸、腹部撕裂;四肢瘀青且燒傷;死於建物6和7附近。(照片 [2]
  • 受害者 3:34 歲,男性;顱骨碎裂,內臟全毀,屍塊四散,遠過建物8。[2]
  • 受害者 4:71 歲,女性,即工廠老闆娘;[1, 2]急性肺氣腫、急性支氣管腺泡出血;多處骨折,塑膠物嵌入左頂骨;在建物8旁,幾乎完全燒成焦屍。[2]
  • 受害者 5:39歲,男性;全身多處撕裂及燒傷,肺部出血性水腫、急性局部肺氣腫,右脛骨開放性骨折;[註]送醫途中死亡。[2]
  • 受害者 6:工廠少東;[1, 2]嚴重燒傷,輕微骨折,兩側耳膜穿孔,治療後出院。[2]
  • 受害者 7:嚴重燒傷,輕微骨折,治療後出院。[2]

炸得面目全非,屍塊殘破的受害者 3,是所有死者中最難辨識的。於此情況下,DNA、指紋或牙齒都派得上用場。這個案件的鑑識團隊,靠死者父母提供的 DNA,比對身份。[2]

-----廣告,請繼續往下閱讀-----
a. 該煙火工廠的衛星空照圖;b.和c.分別為建物 7 與 8。圖/參考資料 2,Figure 1(CC BY 4.0)

還原事件

火災調查單位經過一番努力,還原事發過程:建物 6 到 8 的功能,分別是堆放成品、儲存染料與製造煙火。受害者 1、2、3 和 5,於建物 6 及 7 一帶,裝設新的拉門;其中受害者 3 在建物 7,焊接門軌的鐵製支撐結構。受害者 4,即工廠老闆娘,則從建物 8 的方向前來。另外,受害者 6 跟 7,也就是少東與一名工人,應該也在附近。 [2]

除了少數自殺案件,當事人把煙火塞進自己嘴裡;多數的煙火爆炸事故,起因於工作人員未受訓練,或者操作時沒遵守安全規定。[2]正確的焊接環境,必須保持通風,移除或隔絕可燃物。[4]這家煙火工廠依照相關法規施工,然而焊接的火花,卻還是引發爆炸,釀成5死2傷。也難怪司法單位一度懷疑,是勞資糾紛導致的惡意縱火,不過最後證據都指向意外。[2]

  

備註

原個案報告在文章中,描述受害者 4 右脛骨骨折;但是根據其表格 1 和 2,那應該是受害者 5 的創傷。[2]

-----廣告,請繼續往下閱讀-----
  1. Deadly fireworks explosion rocks Sicily’. (20 NOV 2019) Deutsche Welle, Germany.
  2. Baldino G, Stassi C, Mondello C, et al. (2021) ‘Forensic investigative issues in a fireworks production factory explosion’. International Journal of Legal Medicine, 135, 1647–1654.
  3. Jorolemon MR, Lopez RA, Krywko DM. (18 JUL 2022) ‘Blast Injuries’. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
  4. Welding processes – Code of Practice’. (JUL 2020) Safe Work Australia.
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

1
0

文字

分享

0
1
0
「我的愛像Lemon Tree」,詩人與他們芬芳的檸檬樹:柑橘樹種的傳播史──《馴果記》
臉譜出版_96
・2022/06/26 ・1916字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

長久以來,義大利一直是柑橘園的代名詞。但這個國家如何取得這樣的地位呢?

檸檬樹很早就在波斯種植,據傳,亞歷山大大帝在公元前 300 年左右將檸檬樹帶了回來。一百年後,希臘定居者將它們帶到巴勒斯坦。

不久,它們也傳到義大利,但這些樹被入侵者摧毀,唯有在科西嘉、薩丁尼亞和西西里等大型島嶼上的倖存下來。

它們的進一步傳播是因為阿拉伯人將檸檬樹和橙樹帶到伊比利半島南部的安達魯西亞,他們同時也帶了橄欖樹和釀酒葡萄,儘管《古蘭經》禁止飮酒。

-----廣告,請繼續往下閱讀-----

你知不知道那片檸檬樹生長的地方,
漆黑的樹葉中閃爍著金橙色光芒,
微風從純淨的藍天吹來,
桃金孃靜靜地站著,月桂樹高聳挺立?
你對它很熟悉嗎?
那就是我要去的地方,
和你在一起,啊,我心愛的人!

人們很容易以為德國詩人歌德是受到他的義大利傳奇之旅影響而寫下這些名句,但事實上,他是在前往義大利的三年前寫作了這首詩,而且還是在威瑪這個一點都不義大利的小鎭寫下的。

威瑪附近的美景宮(Belvedere Palace)有一座巴洛克式的橘園,內有兩座涼亭和一個封閉的庭院。溫室裡的花盆種著芳香的檸檬樹和橙樹,如此一來,夏天就可以把花盆搬去室外。

地中海一景,約1895年。圖/《馴果記

儘管難以與義大利的大片柑橘園相比,歐洲許多地方仍精心種植了一些柑橘樹,宮殿和其他貴族住宅尤其如此。它們為那些有幸在那裡度過時光的人們帶來幻想。

盧梭(Jean-Jacques Rousseau)曾在巴黎往北約 50 公里的蒙特莫朗西小城堡(Petit Château)待過,那段時間創作豐富,顯然對那裡有著美好的回憶:

-----廣告,請繼續往下閱讀-----

在這深刻且妙趣無窮的孤獨中,在樹林深處,各種鳥的歌唱與橙花的芬芳裡,我在一種連續不斷的狂喜中寫作了《愛彌兒》的第五卷,這本書的色彩很大程度上歸功於我從居住地得到的鮮活印象。

當然,前面提到的拉昆提涅也曾寫下他對栽種橙樹的想法——有關橘園園藝師專長的想法。這位園藝大師是這麼讚揚這些植物的:

在整座花園裡,沒有其他植物或樹木能在這麼長的時間內提供這樣的樂趣。一年之中,橙樹每一天都為其愛好者提供能讓人感到愉悅的東西,無論是它們的可愛綠葉,特有形狀的優雅,豐富芬芳的花朵,或果實的美麗、質感和長期供應等。我承認,不會有人比我更喜歡這一切了。

義大利博物學家阿爾德羅萬迪(Ulisse Aldrovandi,1522–1605)觀察到不同形狀的檸檬。圖/《馴果記

這本七十二頁的小冊子寫滿精確的指示。例如,樹冠的形狀應類似於「剛閉合的蘑菇或無邊便帽的形狀」,而且樹冠應該要飽滿,「內部不應雜亂無章」。

實現「完美的橙樹之美」還要求「它沒有各種難聞的氣味、灰塵與蚜蟲和螞蟻等昆蟲侵擾」。

那麼,橙樹到底該怎麼配植呢?

-----廣告,請繼續往下閱讀-----

如果溫室空間夠大,可以容納兩排橙樹,以能展現品味和各種對稱形式的方式擺放,就可以如此配置,並在中間留出一條路,這樣一來,就能邊走邊欣賞這些室內果樹的美。

德文園藝期刊的柑橘圖,19世紀早期。圖/《馴果記

拉昆提涅的思考方式,幾乎是 18 世紀所有法國園藝書籍的藍本。

可以同時開花和結果的檸檬樹,成了地中海地區的象徵,儘管這種植物起源於其他地方。

歌德有沒有問過自己,是誰把他讚美的檸檬樹帶進了義大利?據推測,他知道這些樹是阿拉伯人帶到地中海地區的。

從巴格達商人伊本.霍卡爾(Ibn Hawqal)的記述中,我們知道在10世紀時,巴勒莫(Palermo)附近就有一些像美索不達米亞地區那樣設有灌溉渠的花園。當時,那裡種植的植物已包括橙樹和檸檬樹。

-----廣告,請繼續往下閱讀-----

——本書摘自《馴果記》,2022 年 6 月,臉譜,未經同意請勿轉載

-----廣告,請繼續往下閱讀-----
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。