1

11
3

文字

分享

1
11
3

【2021諾貝爾化學獎】更高效率且環保的化學合成——「不對稱有機催化劑」

PanSci_96
・2021/10/06 ・1998字 ・閱讀時間約 4 分鐘

2021年諾貝爾化學獎得主於10月6日揭曉!由德國學者李斯特(Benjamin List)和美國學者麥克米倫(David MacMillan)共同獲獎;他們的獲獎原因是推動了「不對稱有機催化劑」(asymmetric organocatalysis)的發展;諾貝爾委員會指出,他們開發出的有機催化劑不但對藥物研究產生巨大影響,也使化學合成的過程更加環保。

催化劑與不對稱催化

在日常生活當中,催化劑的應用極為常見:藥品、塑料、香水和香料,據估世界上35%的GDP是與某種化學催化有關。在2000年以前發現的所有催化劑,不是金屬就是酵素(也被稱為「酶」)。尤其是金屬,因為它們在化學反應發生時能暫時容納或是提供電子的特性,使得金屬成為很好的催化劑。

但金屬催化劑也有些問題:其一是有些對氧氣和水特別敏感,需要在無水無氧的環境操作,且部分價格相當昂貴,這在工業化製程當中很難實現;另一個是許多金屬催化劑是重金屬,對環境有害。第二種催化劑是與人體生理反應息息相關的「酵素」,所有生物體內成千上萬種的反應都與此有關,它們通常是由數百種氨基酸構成的巨大分子。

李斯特(Benjamin List)和麥克米倫(David MacMillan)在 2000 年時,各自在有機小分子(small organic molecules)的基礎上開發了第三種催化劑:不對稱有機催化劑。有機催化劑的應用在2000年後迅速擴展,主因是它們能夠驅動不對稱催化(asymmetric catalysis)。

有一種異構物,兩者在結構上就像你的兩隻手,長得很像但不能疊合,這種異構物稱為「對應異構物」。為了區分兩者,我們會用「左/右手性」、「左/右掌性」或「左/右旋光性」來描述結構上的差異。

-----廣告,請繼續往下閱讀-----
掌性示意。圖 / Wikipedia

對應異構物結構上的差異,也會影響到它的性質,例如:人體只能吸收右旋光性維他命 C (附註:市面上的左旋 C 並不是光左旋,而是左型右旋維他命 C)。而人工合成維他命 C 的時候,通常不可能全部變成右旋光性維他命 C,造成原物料的浪費。

在構建分子時,經常會出現兩種不同的分子可以形成的情況,就像人類的左右手一樣,是彼此的鏡像,但化學家通常只需要其中一種,尤其是在生產藥品時。

2001 年諾貝爾化學獎頒給了「不對稱催化劑」,這種催化劑可以讓化學反應的產物,多數變為某種對應異構物,以上述為例,若在人工合成維他命 C 的化學反應中,加入非對稱催化劑,能夠有效的生產右旋光性維他命 C,減少浪費。

催化,能不能再更簡單一點?

班傑明.李斯特 (Benjamin List) 在研究*催化性抗體的時候,開始思考酵素的工作原理。酵素是由氨基酸所構成,有些還含有有助於推動化學反應的金屬,但重點是:許多酵素是在沒有金屬的情況下催化化學反應的,且反應是由酵素中一個或少數幾個氨基酸所驅動的。這讓 Benjamin 在想,氨基酸一定得要是酵素的一部分才能催化化學反應嗎?單個氨基酸、或是類似的簡單分子,可以勝任這些工作嗎?

-----廣告,請繼續往下閱讀-----
  • 催化性抗體:具有加速化學反應特性的抗體,以酵素反應過程中受質的過度態類似物為抗原。

Benjamin 知道,早在 25 年前、1970 年代就有人在研究以脯氨酸 (proline) 用做催化劑,但卻沒有人繼續研究下去,Benjamin 認為可能是其效果不甚理想。因此在不抱任何的期待下,Benjamin 測試了是否能夠催化讓兩個碳原子結合的羥醛反應 (aldol reaction) 。這個簡單的嘗試,卻有令人驚訝的結果:它相當的有效。

透過實驗,Benjamin 不僅證明脯氨酸是一種有效的催化劑,也證明了這種氨基酸可以驅動不對稱催化。與最開始研究脯氨酸作為催化劑的研究人員不同,Benjamin 了解它可能具有的巨大潛力,與金屬和酶相比,分子簡單、更容易合成且環保的脯氨酸,對化學家來說夢寐以求的工具。當他在 2002 年 2 月發表時,Benjamin 認為有機分子的不對稱催化是一個在未來會很有潛力的新概念。

讓不對稱催化劑投入量產

而大衛麥克米倫(David MacMilan)為了能夠讓不對稱催化劑用在大規模工業生產,開始改良非對稱催化劑,由於在金屬的不對稱催化劑上沒有進展,他決定改變方向,嘗試以簡單的有機分子作為不對稱催化劑。

左圖為原本的金屬催化劑,銅原子是相對脆弱的部分,這使催化劑容易變質,增加使用上的難度。右圖為麥克米倫的有機分子催化劑。麥克米倫為了解決金屬催化劑中,金屬原子在結構中相對脆弱的問題,他決定開發一種沒有金屬原子的催化劑,後稱為「有機分子催化劑」。

-----廣告,請繼續往下閱讀-----

透過有機催化劑驅動的化學反應,可讓研究人員更有效率的建構新藥物,甚至是太陽能電池中可捕獲光的分子。透過這些應用,有機催化劑為人類帶來極大的貢獻。而在李斯特與麥克米倫發現有機分子催化劑之後,也持續設計出了大量廉價且穩定的有機催化劑,讓不同的化學反應使用。

參考文獻

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
PanSci_96
1265 篇文章 ・ 2620 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3286字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
242 篇文章 ・ 318 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
0

文字

分享

0
2
0
「別來無恙」不只是招呼
顯微觀點_96
・2025/04/12 ・2349字 ・閱讀時間約 4 分鐘

本文轉載自顯微觀點

圖/照護線上

我最親愛的 你過的怎麼樣  沒我的日子 你別來無恙   -張惠妹《我最親愛的》

常常聽到「別來無恙」的問候,其中的「恙」就是指「恙蟲」。在唐朝顏師古的《匡謬正俗》一書中便提到:「恙,噬人蟲也,善食人心。古者草居,多移此害,故相問勞,曰無恙。」用以關心久未見面的朋友沒有染讓恙蟲病、一切安好。

而清明節一到,衛福部疾管署便會提醒民眾上山掃墓或是趁連假到戶外踏青,要小心「恙蟲病」,就是因為每年恙蟲病的病例數從4、5月,也就是清明假期左右開始上升;到6、7月達最高峰。

Qingming Or Ching Ming Festival, Also Known As Tomb Sweeping Day In English, A Traditional Chinese Festival Vector Illustration.
圖/照護線上

但恙蟲病到底是什麼樣的疾病呢?恙蟲病古時被稱為沙虱,早在晉朝葛洪所著的醫書《肘後方》提及,「初得之,皮上正赤,如小豆黍米粟粒;以手摩赤上,痛如刺。三日之後,令百節強,疼痛寒熱,赤上發瘡。」

-----廣告,請繼續往下閱讀-----

恙蟲病是一種病媒傳播的人畜共通傳染病,致病原為恙蟲病立克次體(Orientia tsutsugamushi或Rickettsia tsutsugamushi),被具傳染性的恙蟎叮咬,經由其唾液使人類感染立克次體。而感染立克次體的恙蟎,會經由卵性遺傳代傳立克次體,並在每個發育期中,包括卵、幼蟲、若蟲、成蟲各階段均保有立克次體,成為永久性感染。

感染恙蟲病可能引起危及生命的發燒感染。常見症狀為猝發且持續性高燒、頭痛、背痛、惡寒、盜汗、淋巴結腫大;恙蟎叮咬處出現無痛性的焦痂、一週後皮膚出現紅色斑狀丘疹,有時會併發肺炎或肝功能異常。 恙蟲病的已知分佈範圍不斷擴大,大多數疾病發生在南亞和東亞以及環太平洋地區的部分地區;台灣則以花東地區、澎湖縣及高雄市為主要流行區。

比細菌還小的立克次體

立克次體算是格蘭氏陰性菌,有細胞壁,無鞭毛,革蘭氏染色呈陰性。但它雖然是細菌,但是嚴格來說,更像是細胞內寄生生命體,生態特徵多和病毒一樣。例如不能在培養基培養、可以藉由陶瓷過濾器過濾、只能在動物細胞內寄生繁殖等。大小介於細菌和病毒之間,呈球狀或接近球形的短小桿狀直徑只有0.3-1μm,小於絕大多數細菌。

最早發現的立克次體感染症的是洛磯山斑疹熱(Rocky mountain spotted fever);由美國病理學家立克次(Howard Taylor Ricketts,1871-1910)所發現。

-----廣告,請繼續往下閱讀-----

1906年立克次到蒙大拿州度假,發現當地正在流行一種叫做洛磯山斑疹熱的傳染病,病患會出現頭痛、肌肉痛、關節疼痛的症狀,之後皮膚會出現出血性斑塊。當時沒有人知道是什麼原因造成這個疾病。

立克次一開始以顯微鏡觀察病患血液,發現一種接近球形的短小桿菌,但卻無法體外培養。而他將帶有「短小桿菌」的血液注射進天竺鼠體內,或是以壁蝨吸食患者血液再咬天竺鼠,發現天竺鼠也會染病。另外,他試驗各種節肢動物來做為媒介,發現只有壁蝨能夠成為傳染窩進行傳播。

立克次釐清了洛磯山斑疹熱的成因與傳染途徑,但因為無法在體外培養基培養這個病原菌,他並未加以命名。

後來其他研究者從斑疹傷寒等其他疾病也發現無法在培養基生長、必須絕對寄生宿主細胞的類似細菌,並為了紀念立克次的貢獻,而命名為「立克次體」。

-----廣告,請繼續往下閱讀-----

而立克次體不只一種,因此引起的疾病也不只有恙蟲病。在台灣列為法定傳染病的還有由普氏立克次體(Rickettsia prowazekii )引起的流行性斑疹傷寒,透過體蝨在人群間傳播;由斑疹傷寒立克次氏體(Rickettsia typhi)造成的地方性斑疹傷寒,由鼠蚤傳播至人體。另外還有由立氏立克次體(Rickettsia rickettsii)所引致的洛磯山斑疹熱等。

立克次體透過傳統革蘭氏染色的效果非常弱;因此常用一種對卵黃囊塗片中立克次體進行染色的方法,以利光學顯微鏡觀察。現在,這項技術常用於監測細胞的感染狀態。

受限於光學顯微鏡的解析度,許多科學家也使用電子顯微鏡來對立克次體與宿主細胞相互作用的精細結構進行分析。例如分別引起流行性斑疹傷寒、洛磯山斑疹熱和恙蟲病的立克次體,外膜組織就能透過電子顯微鏡看到些許的差別,有的外膜較厚,有的則是外膜內葉和外葉倒置。

立克次
卵黃囊塗片立克次體的顯微影像,其尺寸範圍為 0.2μ x 0.5μ 至 0.3μ x 2.0μ。立克次體通常需要使用特殊的染色方法,例如Gimenez染色。圖片來源:CDC Public Health Image Library

做好預防就能別來無「恙」

根據疾管署統計,今(2024)年至 4 月 1 日恙蟲病確定病例已累計至 2 8例,高於去年同期。

-----廣告,請繼續往下閱讀-----

立克次菌無法在一般培養基培養,雖然可用接種天竺鼠或雞胚胎來分離病原確診,但基於實驗室生物安全操作規定,通常以免疫螢光法、間接血球凝集、補體結合等檢查抗體的方式來檢驗。

恙蟲病可用抗生素治療,若不治療死亡率達 60%。但最好的預防方式還是避免暴露於恙蟎孳生的草叢環境,掃墓或是戶外活動最好穿著長袖衣褲、手套、長筒襪及長靴等衣物避免皮膚外露。離開草叢後也要盡速沐浴和更換全部衣物,以防感染。

參考資料

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
44 篇文章 ・ 10 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

0
0

文字

分享

0
0
0
缺席的普拉修,2008 年諾貝爾化學獎第 4 位得主 (3)
顯微觀點_96
・2025/03/13 ・3195字 ・閱讀時間約 6 分鐘

本文轉載自顯微觀點

圖/顯微觀點

科學:一場每天進行的淘汰賽

在以錦標賽理論(tournament theory)運作的專門領域中,贏家獲得的獎勵將遠超出輸家,即使兩者的實際表現、累積貢獻僅有毫釐之差。就像奧運百米賽跑,0.005 秒決定了金牌與銀牌,只慢了 0.01 秒的第四名沒有資格出現在頒獎台。

諾貝爾獎、終身職制度、學術獎金、研究計畫的經費審核,也依照近乎贏者全拿的錦標賽理論運作。錦標賽制度在運動賽事中可以促進選手與隊伍不斷提高表現水準,但在科學領域呢?

諾貝爾獎作為額外的最高榮譽,嚴格維持其傳統限制(獎項最多由 3 人共享、僅頒發給在世者),許多傑出科學家成為遺珠,但這不阻礙他們在專業領域得到足以安心的資源,作出重要貢獻。

-----廣告,請繼續往下閱讀-----
2008nobel Prize Group Photo 2
2008 年,諾貝爾獎得主合照。左一為錢永健,左二為下村脩,左四為查菲。普拉修曾想像自己置身其中,並得到更光明的學術前途。Courtesy of Nobel Prize website.

但是,目標包含鼓勵尖端學術研究、探索重要問題的學術終身職制度與計畫審查系統,它們的錦標賽特質卻在普拉修身上呈現負面效果。

若說錦標賽模式的獎勵機制可以鼓勵科學家投入潛力豐厚的研究題材,以及努力實踐靈感的能力。那麼普拉修和查菲一樣,及早意識到能夠獨立發光的 GFP 是生物學研究的金礦,可以用來追蹤活體細胞中的基因與蛋白質表現。而且普拉修更早著手研究,優先踏上 GFP 基因轉殖的跑道。

「要是我們在普拉修完成 GFP 序列後馬上展開合作,他應該不需要離開伍茲霍爾。」
說起自己與普拉修在 1989 年到 1992 年之間的失聯,查菲如此猜測

查菲和錢永健之所以能夠找到普拉修,搶先實現 GFP 應用(當時有其他競爭團隊在研發細胞內的螢光標記),是因為當時網路快速發展,使美國國家醫學圖書館(NLM)的線上文獻查詢系統 Medline 在 1992 年進入大學圖書資訊系統,他們才能起身實踐靈感,唾手找到普拉修的最新研究。

就普拉修的運氣來說,網路卻發展得不夠快。在 1990 年代中期開始流行的電子郵件若早個幾年普及化,普拉修更可能維繫與查菲的合作,及時得到經費與GFP轉殖成果,並晉升終身職。

-----廣告,請繼續往下閱讀-----

當年普拉修的電話留言渺無回音,他以為查菲退出學術圈(查菲年輕時確實曾刻意遠離科學)。而查菲則猜測普拉修挫敗於GFP基因選殖,連個通知都沒有。在網路、電子郵件還不普及的 1990 年,要維持與合作者的聯繫需要付出更多心力與時間。通訊的困難與少許不足的人際積極性,導致兩年的延遲發表,讓普拉修耗盡研究經費與終身職的機會。

查菲的gfp線索筆記
查菲的 GFP 線索筆記,普拉修出現在右下區,線索的末端。他的前雇主科米爾、GFP 純化者下村脩(Shimomura)也出現在上方。查菲在回憶錄中說,這些線索引導他實現後來的成就。Courtesy of M. Chalfie

查菲團隊實現 GFP 基因轉殖的時候,實驗室裡甚至連一台螢光顯微鏡都還沒添購,他們必須和其他學者借用、排隊等候系所共用的共軛焦顯微鏡,才能觀察大腸桿菌與線蟲體內新生的螢光。後來,查菲多次要求顯微鏡供應商帶螢光顯微鏡來提供「試用」,團隊才得以更便利地檢驗轉殖成果。

GFP 的應用需求,大力刺激光學顯微技術的進展。它最早期的轉殖實驗成果,竟是由免費試用的螢光顯微鏡呈現。這聽起來是令人莞爾的科學史軼聞,但能夠靈活周轉的人脈、儀器,也是孤立的普拉修和著名大學教授查菲的學術資本落差之一。

透過改變訓練技巧與累積訓練量、最大化優勢、競賽當下的意志與觀察力,運動員偶有逆轉資本落差的機會,以黑馬之姿獲勝。但是在學術領域,研究題材的重要性與個人的才華、執行能力卻不像跑道上的衝刺秒數一樣清晰。

-----廣告,請繼續往下閱讀-----

「他們大可以把我從諾貝爾獎名單去掉,換上普拉修。」
查菲總是對媒體表示,普拉修的貢獻不可忽視

在科學這個由同儕評價定勝負的錦標賽中,多數科學家難以逆轉經費、人脈等資本差距,也很難讓不同領域的專家了解自己的研究重要性,只能努力支撐、累積資本,期待自己贏得經費與知名度的時刻。等待運氣與環境好轉的餘裕,得以截長補短的經濟與社會資本,卻正是學術領域錦標賽中多數年輕科學家所缺乏的。

落敗的運動員至少獲得在競賽中表現的機會,以及某個程度的肯定。論文發表日期稍微落後競爭對手的科學家,則連努力被看見的機會都非常稀少。

普拉修與諾貝爾化學獎失之交臂、鬱鬱不得志的職涯是段引人喟嘆的個人史,並非科學體系的挫敗。他只是科學錦標賽持續依照慣例淘汰的諸多優秀人才中,有幸被贏家們提及的一位。

比普拉修年輕一歲,學術晉升之路卻順暢許多的錢永健曾說,「下村脩和普拉修對 GFP 研究的貢獻是無可取代的。」而且在普拉修 1992 年發表 GFP 基因的純化與定序,並且樂意對任何人分享之後,

-----廣告,請繼續往下閱讀-----

「後面那些以研發 GFP 獲得榮譽的人,與其他人的不同可能只有些微的進度落差。」

錢永健在 2004 年至 2008 年之間,積極地建議諾貝爾獎委員會頒獎給下村脩與普拉修,但結果並非如此。

生命中的萬花筒 陳樂融
源自錢永健開發的多種螢光蛋白,形成 brainbow 技術。作品名:生命中的萬花筒,作者:陳樂融 Courtesy of Taiwan顯微攝影競賽

後續發展

普拉修從斯德哥爾摩回到亨茨維之後,受到包括國家公共廣播電台(National Public Radio)、《科學》期刊、亨茨維時報等美國媒體關注。但在訪談與報導的熱潮過後,普拉修依然坐困時薪 8.5 美元的豐田接駁車裏頭。

從諾貝爾頒獎典禮的輝煌榮譽,回到乏味、有時不受尊重的駕駛座上,失落的普拉修不敢相信自己依然找不到科學研發相關的工作。他喪氣地想,「經歷了這一切,我竟然還是沒有辦法回到科學領域。這中間一定出了什麼錯。」

在最憂鬱的那天,普拉修一度把接駁車停在路邊,撥號向亨茨維自殺防治熱線求助。過不多時,他在 2010 年找到科技研發的職位,2012 年他接受錢永健的提議,進入他的實驗團隊擔任研究員。重新在一個充滿支持與資源的環境投入科學研究,讓普拉修再度感到生活的動力與快樂。

-----廣告,請繼續往下閱讀-----

2016 年錢永健逝世,實驗團隊解散,而普拉修在前一年就已離開 UCSD,從此沒有留下任何公開痕跡。曾被自殺防治熱線的機械式留言激怒到啞然失笑,決定繼續活下去的普拉修今年已經 73 歲,科學錦標賽的勝負再也不能困擾他,但科學思考帶給他的樂趣或許能夠不斷更新。

Prasher In Ucsd
普拉修在錢永健實驗室的照片。讓他對人生更加滿意的不是體面的加州大學聖地牙哥分校制服,而是可以實現對科學的好奇與想像,並得到周遭的支持。Courtesy of San Diego Union Tribune

延伸閱讀:

參考資料:

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
44 篇文章 ・ 10 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。