3

9
3

文字

分享

3
9
3

從數學、邏輯到審美,演算法的極限是何處?——《再.創世》專題

再・創世 Cybernetic_96
・2021/09/27 ・5256字 ・閱讀時間約 10 分鐘
  • 作者/魏澤人|陽明交通大學 智慧計算與科技研究所

在一般印象中,”美” 是與藝術、哲學、文學、音樂這些人文領域相連的。受到教育制度的影響,理工與人文,在普遍認知中是二元對立的。而數學,是理工科目中最硬核的部分。物理、化學實驗中,各種顏色的液體、晃動的單擺或本生燈的火焰,也許還隱隱約約帶有一絲美的影子,但冷冰冰的數學公式,在許多人的求學經驗中,與美根本就是互斥的概念。

但是,懂數學的人都知道,數學是美的。甚至可以說,美是數學中不可或缺的部分。

圖/Pexels

著名的英國數學家哈代(Godfrey Harold Hardy)說:”數學家的創造形式,與畫家及詩人一樣,必須是美的: 將概念(就像顏色及詞語)以和諧的方式組合起來。美是最重要的條件,醜陋無法長存於數學之中。”。哈代的著作 “一個數學家的辯白”(A Mathematician’s Apology),在數學圈外有一定的名氣,前面的那段話也出自本書。但讓他”出圈”的主要原因,是他發掘了傳奇數學天才拉馬努金(Srinivasa Ramanujan)。這個故事在 2015 年被拍成了電影 “天才無限家” The Man Who Knew Infinity)。

這也不是哈代獨創之見解,法國最偉大的數學家之一龐加萊(Henri Poincare)說:”研究自然不是因為有用,而是因為喜悅。而喜悅是因為美。”。其他比方像是羅素(Bertrand Russell)、艾狄胥(Paul Erdos)也留下不少關於數學與美的金句。

數學的美,不只是許多偉大的數學家的共同體驗。絕大多數的數學愛好者、數學工作者都有相同的體驗,只是比較不容易留下知名金句。Danica McKellar 也許不是能和羅素、龐加萊、艾狄胥比肩齊名的數學家,但她說過一句很有意思的話: “數學是唯一一個真與美是同義詞的世界”。

McKellar 是一位有知名度的美國演員,她曾演出過白宮風雲(The West Wing),也曾在 NCIS、宅男行不行(The Big Bang Theory)及追愛總動員(How I Met Your Mother)中客串。但真正讓她出名的,是 80 末、90 初的影集兩小無猜(The Wonder Years),故事主軸是主角凱文回憶少年成長的過程,而 McKellar 飾演主角的鄰居溫妮,兩人發展出分分合合的戀愛關係。用現代的話來講, McKellar 可以說是當時少年界的國民女友。另外 2010 開始,她也在動畫影集少年正義聯盟中為火星小姐配音。

Danica McKellar ,攝於2018。圖/WIKIPEDIA

演員什麼會與數學扯上關係呢?其實她大學就是學數學的,而且學得很好,在 1998 年以最傑出的成績取得加州大學洛杉磯分校的數學學士學位。不只如此,大學時期與教授 Chayes 及同學 Winn 發表了一篇統計力學的論文,其中的主要結果被稱為 Chayes-McKellar-Winn theorem. 在 2008 年,她出了一本針對中學女孩的數學書 “Math Doesn’t Suck: How to Survive Middle School Math without Losing Your Mind or Breaking a Nail.” ,頗受好評也很暢銷,之後也接續出版了許多書。她表示,她想讓女孩們覺得數學是「可親、有意義、甚至有點迷人」,用來對抗這個社會傳達「女孩不適合數學」的這類負面訊息。除此之外,她也參與影集 Project Mc2 的演出。 這部影節的目標是向全球的青少女們證明,科學、科技、STEAM(Science, Technology, Engineering, Arts, Mathematics)是有趣且平易近人的。

回到前面那句”數學是唯一一個真與美是同義詞的世界”。追求美是人之天性,但很多情境下,美或者美化這些詞,常常帶了一點隱藏真實的意味。像是修圖軟體、美顏相機、化妝(與素顏對比)、醫美、Autotune。當然明顯太假也不符合多數人的審美觀,真正美之極致,往往也需要展現事物的本質與真實特色。但現實是資源有限,平庸普通還是多數,不然,也不會有”這裡的風景美得像幅畫”一樣的形容詞方式了。一般日常中,美的實際執行過程還是得靠挑選和遮掩。「真」與「美」是需要取捨的。這也就是這句話耐人尋味的地方了,因為這句話如果成立,那在數學,也許就提供了現實世界中「真」與「美」之間內在衝突的解法了。

但問題是,數學家們感受到的美感是否真的是美?定理與證明真的可以用美或不美來形容呢?還是只是數學家們普遍缺乏人文薰陶產生的代償性錯覺呢?

2019 年時,英國巴斯大學管理學院的 Samuel G.B. Johnson 及美國耶魯大學數學系的 Stefan Steinerberger 發表了一篇論文 “Intuitions about mathematical beauty: A case study in the aesthetic experience of ideas”,其中的研究證據,支持一般人可能也跟數學家一樣,能感受到數學論證的美感。在其研究中發現,人們對數學的「美感」,就跟對古典鋼琴樂曲及風景畫產生的美感相似,有其內在的一致性。另外也發現這種數學美感的評判,跟與音樂、畫作美感一樣,和優雅性、深度、清楚性有關。

就像十九世紀英國數學家 James Joseph Sylvester 說的:「數學就是論證的音樂」。愛因斯坦也說:「純數學是一首以其自有方式將邏輯概念寫成的詩」。這句話出自他寫給 Emmy Noether 的訃聞。 Noether 是有名的德國數學家,對抽象代數有極大的貢獻,巧妙的利用升鏈條件來研究代數性質,此後符合這個條件的數學物件我們都會冠以 Noetherian 來稱呼,以紀念 Noether 的貢獻。此外,她的 Noether Theorem 也被稱之為影響物理學最重要的定理之一。

Noether 與兄弟們的合照。圖/WIKIPEDIA

除了主觀上對於美的感受外,數學與藝術之間,也有很多直接的關聯性。以音樂來說,音律就與數學上的對數(也就是大家所認識的 \(\log\))有關。人類發展音律有很長的歷史,因為這不是一個簡單的問題。我們現在知道,和弦時,不同音階的頻率要接近簡單的有理數倍聲音才會悅耳。傳說畢達哥拉斯經過一家鐵店,聽到鐵鎚打鐵的聲音,覺得很悅耳,他走入店裡,發現四個鐵鎚的重量比為 12:9:8:6,其中 9 是 6 與 12 的算術平均,8 是 6 與 12的調和平均, 9, 8 與 6, 12 的幾何平均相等這些巧妙的關係。這些鐵鎚之間的聲音配合起來非常悅耳。他進一步用弦樂器實驗驗證,得到的結論是,弦長為一些簡單有理數比的時候,會得到和諧的聲音。而後來更進一步改進而成的十二平均律,也反映出中國及歐洲在計算 \(\sqrt[12]{\frac{1}{2}}\) 的歷史進展。這背後還有更深刻的問題,因為很容易可以發現,\(\sqrt[12]{\frac{1}{2}}\) 並不是個有理數。對音樂或數學有興趣的朋友,可以繼續深入了解一下背後的學問。

另一個大家也觀察到的現象是,數學能力和藝術能力之間似乎有一些相關性,特別是音樂能力。常被拿來說的是愛因斯坦喜愛音樂且從小學習小提琴。可能你認識的人中,應該也有許多同時精通數理及音樂的人。過去一些研究也發現發現了數理能力及音樂能力中的相關性。但是,這個相關性會不會與能力本身無關呢?比方顯而易見,學科能力與學習音樂的條件,都與家庭背景與社經地位有關。

音樂教育學者 Martin J. Bergee 原本也是這樣認為的。他覺得只要能控制相關的根本性變因,如種族、收入、教育背景,就能夠破除音樂與數學能力相關性的迷思。於是他就設計並展開了研究。結果讓他非常震驚,兩者的關聯性不但沒有消失,而且還非常強。在 2021 年他的研究團隊發表了一篇名為 “Multilevel Models of the Relationship Between Music Achievement and Reading and Math Achievement” 的論文。他們調查了不同學區背景的一千多位中學生,在盡可能排除其他因素的干擾下,他們不得不承認音樂及數學能力之間的有統計上顯著的關聯。

音樂與數學能力被證實有很高的相關性。圖/Pixabay

他表示很抱歉實驗設計得非常複雜,”因為排除所有的相關影響並不容易,可能從個人、教室、學校、學區等等不同層級來產生影響。”。雖然他原本是支持相反的結論,但這個結果讓他思考了很多,”微觀技術來說,可能在音樂中的音準、音程、節拍,可能語言認知的基礎相關,而巨觀技術上的調式與調性,可能在心理學或神經學上與數學認知有關。”

除此之外,還有非常多的例證。比方 2015 年神經科學家 Semir Zeki 及艾提亞爵士(Michael Atiyah 當代最偉大數學家之一,費爾茲獎得主)發表的論文指出,經由 fMRI 掃描 15 名數學家的腦部,發現數學家在評斷數學式子美感時,動用到眼額皮質外側的 A1 區域,與察覺其他來源美感所動用到的區域一樣。而前面比較沒有提到數學與視覺藝術的關聯,因為這部分更為大家所熟知。像是從古希臘幾何就知道的黃金分割比,繪畫中的用到的透視原理、對稱性。可以說,美與數學並不是感性與理性的對立,而是互相包含。就像浪漫派詩人約翰濟慈所說:”美即是真,真即是美。這就是你在世上所知道和需要知道的一切”,而數學以及其背後的邏輯,就是人類對於”真”的具像。

評斷數學式子美感或觀察其他美感事物時,數學家大腦活耀的區域相同。圖/Pexels

可以說在知識份子階層中,數學即美是個主流觀點。當然主流不一定代表唯一或正確,像前述 Bergee 也試圖證明相關的主流看法是個迷思。但一旦理解了這種切入點,人工智慧是否能創造藝術作品這個問題,至少在心理層面就不是太大問題了。人工智慧遵照一些演算法運作,可以說就是數學及邏輯的程式碼實作。以近幾年最主流的深度學習神經網路來說,就是許多線性映射與激活函數的合成函數,藉由梯度下降法,收斂到的穩定數學解。既然數學即美,那由數學建構的人工智慧,能產生美的事物,也不是太不能接受的事。

生成模型也是近幾年深度學習熱門的領域之一。常見的生成任務就是藉由觀察抽樣的樣本,設法模仿出一樣的機率分佈。白話一點來講,就是給電腦看一些李白的詩,希望電腦能創造出新的李白風格的詩。給電腦聽一些貝多芬的音樂,希望電腦能創造出新的貝多芬音樂。現在的深度學習技術,已經能讓人工智慧能藉由學習,”創造”出視覺、音訊及語言的”作品”。

Inception 網路是一個有名的深度學習模型,其名稱取自於同名的電影(全面啟動),當時主要是在圖片辨識任務上,取得很好的成果。2015 年時, Google 工程師 Alexander Mordvintsev 巧妙的利用事先訓練好 Inception 模型,讓他將圖片變成夢一般的迷幻風格。他把這種方法取名叫 DeepDream。不久後,Leon Gatys 等人用類似的方法,設計一套演算法,能將畫家的畫風轉移到照片上,典型的例子是將風景、建築照片,轉成梵谷的星空風格。後面有很多後續的研究,一般稱為 Neural Style Transfer. 2016 年 Google 利用 AI 生出的畫作,拍賣得到進十萬美元。而其實早在 2014 年時, Ian Goodfellow 等人就提出了生成對抗網路(Generative Adversarial Network),是一個更廣泛而通用的生成模型。這個模型後續開啟了極大量的相關研究,現在的深度學習模型,在一些領域中,已經能生出非常高品質的成品。比方 Nvidia 研究的 StyleGAN 系列模型,能生出幾可亂真的人臉。現在,在手機上,能使用 APP,將你的照片轉成迪士尼的畫風。

讓生成模型想像生氣的亞洲人老醫生(自行 CLIP, StyleGAN2 生成)

2021 年時, OpenAI 釋出了 CLIP 模型,這是一個能整合圖片視覺及文字語意的模型。很多人嘗試利用 CLIP 和文字控制,來產生獨特和有創意的畫作。舉例來說,如果你畫了一張畫,或者拿到一張照片,你可以利用文字”更有喜感一點,更有亞洲風味一點”,來修改這張圖片讓人感受到”喜感”和”亞洲風”。在眾多嘗試中,大家試出了許多像”咒語”般的技巧,比方有個著名的 “unreal engine trick”,就是當你在控制產生圖片的句子中,加入 “unreal engine” 這個詞(unreal engine 是一個遊戲引擎),常常會讓產生品質更高的圖片。 乍看之下有點不明所以,但仔細一想,因為網路上會特別標明 unreal engine 的圖片,往往是強調其遊戲高畫質,久而久之, CLIP 看到這個詞,很自然就與高品質的含意產生連結。除了圖片外,人工智慧也能產生其他具有美的形式的作品,特別是文字作品。Open AI 開發的 GPT-3,已經能在用戶給出簡單的指示後,產生非常複雜的文字作品,除了詩、笑話、故事外,甚至連食譜、程式碼都可以。

讓生成模型想像亞洲的小甜甜布蘭妮(自行 CLIP, StyleGAN2 生成)

但這些,真的算是人工智慧的創作嗎?

在 2018 年時,由生成對抗網路生成的畫作 Edmond de Belamy,以美金 432,500 元賣出。這幅畫是誰創作的?這幅畫是由巴黎藝術集體 Obvious 生成的。而名稱 Belamy 的法語意思為”好朋友”,以致敬提出生成對抗網路的學者 Ian Goodfellow。而圖片右下角的簽名則是

\(\min_{\mathcal {G}}\max_{\mathcal {D}}E_{x}\left[\log({\mathcal {D}}(x))\right]+E_{z}\left[\log(1-{\mathcal {D}}({\mathcal {G}}(z)))\right]\) 這個數學式子,這個式子是生成對抗網路使用的目標函數,也就是引導模型訓練的數學式。而讓問題更複雜的是,生成這幅圖片的程式碼,是由與 Obvious 毫無關係的另外一位 AI 藝術家 Robbie Barrat 所寫的。甚至有人(如 AICAN)認為這個連創作都算不上。

人工智慧的創作《 Edmond de Belamy 》。圖/WIKIPEDIA

所以,這幅畫到底是誰的創作?物理學家海森堡曾說,即使在沒有足夠證據的支持下,”當自然引導我們得到極簡與美的數學式時”,”我們會不由自主的感受到,這就是自然真相被揭露的一角”。也許,真正創作者不是人工智慧,也不是人類,我們只是自然的一部分,有幸釋放了,並且有幸感受到了自然散發出的美之一角。

文章難易度
所有討論 3
再・創世 Cybernetic_96
8 篇文章 ・ 18 位粉絲
由策展人沈伯丞籌畫之藝術計畫《再・創世 Cybernetic》,嘗試從演化控制學的理論基礎上,探討仿生學、人工智慧、嵌合體與賽伯格以及環境控制學等新知識技術所構成的未來生命圖像。


0

0
0

文字

分享

0
0
0

什麼是「造父變星」?標準燭光如何幫助人類量測天體距離?——天文學中的距離(四)

CASE PRESS_96
・2021/10/22 ・3033字 ・閱讀時間約 6 分鐘
  • 撰文|許世穎

「造父」是周穆王的專屬司機,也是現在「趙」姓的始祖。以它為名的「造父變星」則是標準燭光的一種,讓我們可以量測外星系的距離。這幫助哈柏發現了宇宙膨脹,大大開拓了人們對宇宙的視野。然而發現這件事情的天文學家勒梅特卻沒有獲得她該有的榮譽。

宇宙中的距離指引:標準燭光

經過了三篇文章的鋪陳以後,我們終於要離開銀河系,開始量測銀河系以外的星系距離。在前作<天有多大?宇宙中的距離(3)—「人口普查」>中,介紹了距離和亮度的關係。想像一支燃燒中、正在發光的蠟燭。距離愈遠,發出來的光照射到的範圍就愈大,看起來就會愈暗。

我們把「所有發射出來的光」稱為「光度」,而用「亮度」來描述實際上看到的亮暗程度,而它們之間的關係就是平方反比。一旦我們知道一支蠟燭的光度,再搭配我們看到的亮度,很自然地就可以推算出這支蠟燭所在區域的距離。

舉例來說,我們可以在台北望遠鏡觀測金門上的某支路燈亮度。如果能夠找到到那支路燈的規格書,得知這支路燈的光度,就可以用亮度、光度來得到這支路燈的距離。如果英國倫敦也安裝了這支路燈,那我們也可以用一樣的方法來得知倫敦離我們有多遠。

我們把「知道光度的天體」稱為「標準燭光(Standard Candle)」。可是下一個問題馬上就來了:我們哪知道誰是標準燭光啊?經過許多的研究、推論、歸納、計算等方法,我們還是可以去「猜」出一些標準燭光的候選。接下來,我們就來實際認識一個最著名的標準燭光吧!

「造父」與「造父變星」

「造父」是中國的星官之一。傳說中,「造父」原本是五帝之一「顓頊」的後代。根據《史記‧本紀‧秦本紀》記載:造父很會駕車,因此當了西周天子周穆王的專屬司機。後來徐偃王叛亂,造父駕車載周穆王火速回城平亂。平亂後,周穆王把「趙城」(現在的中國山西省洪洞縣一帶)封給造父,而後造父就把他的姓氏就從本來地「嬴」改成了「趙」。因此,造父可是趙姓的始祖呢!(《史記‧本紀‧秦本紀》:造父以善御幸於周繆王……徐偃王作亂,造父為繆王御,長驅歸周,一日千里以救亂。繆王以趙城封造父,造父族由此為趙氏。)

圖一:危宿敦煌星圖。造父在最上方。圖片來源/參考資料 2

回到星官「造父」上。造父是「北方七宿」中「危宿」的一員(圖一),位於西洋星座中的「仙王座(Cepheus)」。一共有五顆恆星(造父一到造父五),清代的星表《儀象考成》又加了另外五顆(造父增一到造父增五)。[3]

英籍荷蘭裔天文學家約翰‧古德利克(John Goodricke,1764-1786)幼年因為發燒而失聰,也無法說話。1784 年古德利克(John Goodricke,1764-1786)發現「造父一」的光度會變化,代表它是一顆「變星(Variable)」。2 年後,年僅 22 歲的他就當選了英國皇家學會的會員。卻在 2 週後就就不幸因病去世。[4]

造父一這顆變星的星等在 3.48 至 4.73 間週期性地變化,變化週期大約是 5.36 天(圖二)。經由後人持續的觀測,發現了更多不同的變星。其中一群變星的性質(週期、光譜類型、質量……等)與造父一接近,因此將這一類變星統稱為「造父變星(Cepheid Variable)」。[5]

圖二:造父一的亮度變化圖。橫軸可以看成時間,縱軸可以看成亮度。圖片來源:ThomasK Vbg [5]

勒維特定律:週光關係

時間接著來到 1893 年,年僅 25 歲的亨麗埃塔‧勒維特(Henrietta Leavitt,1868-1921)她在哈佛大學天文台的工作。當時的哈佛天文台台長愛德華‧皮克林(Edward Pickering,1846-1919)為了減少人事開銷,將負責計算的男性職員換成了女性(當時的薪資只有男性的一半)。[6]

這些「哈佛計算員(Harvard computers)」(圖三)的工作就是將已經拍攝好的感光板拿來分析、計算、紀錄等。這些計算員們在狹小的空間中分析龐大的天文數據,然而薪資卻比當時一般文書工作來的低。以勒維特來說,她的薪資是時薪 0.3 美元。順帶一提,這相當於現在時薪 9 美元左右,約略是台灣最低時薪的 1.5 倍。[6][7][8]

圖三:哈佛計算員。左三為勒維特。圖片來源:參考資料 9

勒維特接到的目標是「變星」,工作就是量測、記錄那些感光板上變星的亮度 。她在麥哲倫星雲中標示了上千個變星,包含了 47 顆造父變星。從這些造父變星的數據中她注意到:這些造父變星的亮度變化週期與它們的平均亮度有關!愈亮的造父變星,變化的週期就愈久。麥哲倫星雲離地球的距離並不遠,可以利用視差法量測出距離。用距離把亮度還原成光度以後,就能得到一個「光度與週期」的關係(圖四),稱為「週光關係(Period-luminosity relation)」,又稱為「勒維特定律(Leavitt’s Law)」。藉由週光關係,搭配觀測到的造父變星變化週期,就能得知它的平均光度,能把它當作一支標準燭光![6][8][10]

圖四:造父變星的週光關係。縱軸為平均光度,橫軸是週期。光度愈大,週期就愈久。圖片來源:NASA [11]

從「造父變星」與「宇宙膨脹」

發現造父變星的週光關係的數年後,埃德溫‧哈柏(Edwin Hubble,1889-1953)就在 M31 仙女座大星系中也發現了造父變星(圖五)。數個世紀以來,人們普遍認為 M31 只是銀河系中的一個天體。但在哈柏觀測造父變星之後才發現, M31 的距離遠遠遠遠超出銀河系的大小,最終確認了 M31 是一個獨立於銀河系之外的星系,也更進一步開拓了人類對宇宙尺度的想像。後來哈柏利用造父變星,得到了愈來愈多、愈來愈遠的星系距離。發現距離我們愈遠的星系,就以愈快的速度遠離我們。從中得到了「宇宙膨脹」的結論。[10]

圖五:M31 仙女座大星系裡的造父變星亮度隨時間改變。圖片來源:NASA/ESA/STSci/AURA/Hubble Heritage Team [1]

造父變星作為量測銀河系外星系距離的重要工具,然而勒維特卻沒有獲得該有的榮耀與待遇。當時的週光關係甚至是時任天文台的台長自己掛名發表的,而勒維特只作為一個「負責準備工作」的角色出現在該論文的第一句話。哈柏自己曾數度表示勒維特應受頒諾貝爾獎。1925 年,諾貝爾獎的評選委員之一打算將她列入提名,才得知勒維特已經因為癌症逝世了三年,由於諾貝爾獎原則上不會頒給逝世的學者,勒維特再也無法獲得這個該屬於她的殊榮。[12]

本系列其它文章:

天有多大?宇宙中的距離(1)—從地球到太陽
天有多大?宇宙中的距離(2)—從太陽到鄰近恆星
天有多大?宇宙中的距離(3)—「人口普查」
天有多大?宇宙中的距離(4)—造父變星

參考資料:

[1] Astronomy / Meet Henrietta Leavitt, the woman who gave us a universal ruler
[2] wiki / 危宿敦煌星圖
[3] wiki / 造父 (星官)
[4] wiki / John Goodricke
[5] wiki / Classical Cepheid variable
[6] wiki / Henrietta Swan Leavitt
[7] Inflation Calculator
[8] aavso / Henrietta Leavitt – Celebrating the Forgotten Astronomer
[9] wiki / Harvard Computers
[10] wiki / Period-luminosity relation
[11] Universe Today / What are Cepheid Variables?
[12] Mile Markers to the Galaxies

CASE PRESS_96
1 篇文章 ・ 3 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策