大部分的哺乳動物可以隨意地轉換不同的姿態,例如步行、跑步、小跑及奔跑,有利於改變移動的速度,並且可以適應地形的改變。協調的肢體運動對於動物的生存及繁殖相當重要,位處於脊髓的中樞神經網絡則是負責調控四肢運動的能力,例如:左右腿的協調。不同動物會使用不一樣的運動方式。兔子可以跳躍,當他們進行跳躍運動(saltatorial locomotion)時,前肢會有節奏地向前移動,後肢則協調的雙側運動(bilateral movement),後肢的肌肉會同時收縮,產生移動的力量,袋鼠及其他齧齒類動物也會使用類似的動作跳躍。
會倒立的兔子「sauteur d’Alfort」
研究團隊觀察到某些馴化的家兔不能正常地用四肢跳耀,而是將後腳抬離地面僅用前腿來行走移動,看起來就像是「倒立」一樣。而這個會「倒立」的兔子,就名為 sauteur d’Alfort(後續簡稱為 sauteur)。相較於野生型(wild-type)兔子的跳躍運動,他們的運動行為很不尋常。他們經常僅使用兩隻前腳來移動,而不是使用四隻腳跳躍。在緩慢運動時,sauteur 兔子會將後肢大幅度地舉起且離開地面,來進行擺動。在高速運動時,牠們的後肢並不會和前肢協調地同步移動,而是後肢會產生偏移。這前肢與後肢不一致、不協調的擺動造成 sauteur 兔子無法有效率進行跳躍運動,因此他們在快速或長距離運動時僅會由前肢支持身體,看起來就像是人類倒立或是耍雜技。
不但不能正常跳躍,還有盲眼的缺陷
sauteur 兔子除了無法正常跳躍之外,同時擁有視網膜缺陷的問題,牠們的眼睛天生雙盲,並且在出生的第一年就會罹患白內障。研究團隊藉由將公的 sauteur 與母個野生種兔子進行雜交。sauteur 和野兔皆為同型合子[註1]。sauteur 為(sam/sam),野生兔子則為紐西蘭白種兔(+/+),並將其產下的後代進行基因比對。進一步地,藉由基因圖譜(genetic mapping)分析,並將 sauteur 兔子與野生型的紐西蘭白兔進行雜交來了解可能突變的基因區域。進而了解之所以發育缺陷,是因為 RORB 基因突變。
倒立兔子的外表型,與基因突變相關
從基因圖譜分析中,發現 sauteur 兔子特別的行為及外表特徵,可能與 RORB 基因有關。RORB 基因為 NR1 核激素受體家族的成員之一,先前已報導 RORB 基因缺陷的老鼠,具有視網膜退化並有運動障礙,走路的型態會像一隻鴨子般。在 RORB 基因的剪切位置(splice site)突變,會影響 RORB 正常剪切。因此,RORB 基因可作為最好的候選名單,來解釋 sauteur 兔子不正常的運動行為,及視網膜缺陷。
RORB 基因無法正常轉錄
僅發現倒立兔子們不正常運動的基因,當然無法滿足研究人員的好奇心。他們進一步想了解的是,RORB 基因剪接位的突變,會對於 sauteur 兔子有什麼樣的影響?
研究團隊藉由 PCR 的方式,將野生型以及 sauteur 兔子脊髓及視網膜的 RORB 序列片段放大,並比較在野生型、sauteur 兔子及野生型和 sauteur 交配後所產生的後代,其體內的 RORB mRNA 片段,藉此可了解 sauteur 兔子 RORB 基因剪接位的突變對於體內生成 mRNA(信使核糖核酸)的影響。從下圖結果可發現野生型的兔子,其 RORB mRNA 不管在脊髓或視網膜都是屬於剪接位點未突變第一型(isoform 1)。不過,若是在 sauteur 兔子的 RORB mRNA,則會同時具有四種異構型(isoform 1 到 isoform 4)。因此可知,在 sauteur 兔子中,大部分的 RORB 是不正常轉錄,這也顯示與 RORB 剪切位點突變有因果關係。
基因突變讓脊髓中的神經元數目大幅減少
一般來說,RORB 蛋白質會出現在兔子的神經系統,但若是 RORB 基因突變,則會導致在兔子脊髓中產生 RORB 蛋白質的神經元顯著減少。並且,sauteur 兔子在脊髓的不正常轉錄,就是因為 RORB-positive 神經元大幅減少,這個缺陷進一步導致兔子運動異常。
藉由免疫組織化學染色法(immunohistochemistry, IHC)可觀察到,相較於野生種(Wild-type),野生種與 sauteur 雜交,帶有異型合子(+/sam)的兔子後代,可以發現其表達 RORB 的神經元數量明顯下降,少了約 25%。相對地,帶有同型合子(sam/sam) 的 sauteur 兔子則無法偵測到會表現 RORB 的神經元。這顯示高比例 RORB 基因不正常轉錄會導致會表現 RORB 的神經元劇烈減少,且這樣的缺陷會導致 sauteur 兔子有著異常的外表型。
綜括上述,我們可知造成 sauteur 兔子有如此的外表型,是因為轉錄因子 RORB 基因中第 9 個內插子(intron)的第一個核甘酸(nucleotide)突變。RORB 基因突變不僅倒致兔子無法跳耀,更會使得表現 RORB 的神經元大幅減少,並導致脊髓分化有缺陷,中間神經元異常分化,表達 RORB 的神經元減少,引起四肢失調,轉譯出的蛋白質也會影響脊髓正常運作。除此之外,RORB 基因所突變的核甘酸位置,在 70 個歐亞哺乳類中都是呈現保守性的。此研究結果,也與先前報導 Rorb 老鼠(RORB 基因突變的老鼠)有著退化的視網膜以及像鴨子般走路型態相以佐證。在老鼠的脊髓中,會表現 RORB 的神經元會對於把關內感感覺器(proprioceptive sensors)的資訊相當重要,可以確認突觸前抑制。在兔子的脊髓中也可能有著相似的運作機制,並導致如 sauteur 兔子的特別運動型態。RORB 除了會表現在脊髓,也會表現在腦部的許多區域,例如:主要體感覺皮質區、聽覺皮質區、運動皮質及下視丘等。因此,RORB 於腦部的功能改變於進而影響 sauteur 兔子的運動型態亦是不能被忽視的。
所以日後,我們看到兔子運動的樣子,可能就不再只是一般的跳躍模式,還可能看到如馬戲團般倒立走路兔子,而造成這種兔子運動方式的改變,是源自於基因變異。
註解
- 同型合子:個體內組成基因型的兩個基因相同,如:TT 或 tt。
參考文獻
- Carneiro, M., Vieillard, J., Andrade, P., Boucher, S., Afonso, S., Blanco-Aguiar, J. A., … & Andersson, L. (2021). A loss-of-function mutation in RORB disrupts saltatorial locomotion in rabbits. PLoS genetics, 17(3), e1009429.
- Rossignol, S., Dubuc, R., & Gossard, J. P. (2006). Dynamic sensorimotor interactions in locomotion. Physiological reviews, 86(1), 89-154.
- Grillner, S. (1985). Neurobiological bases of rhythmic motor acts in vertebrates. Science, 228(4696), 143-149.
- Ten Cate, J. (1964). Locomotory movements of the hind limbs in rabbits after isolation of the lumbosacral cord. Journal of Experimental Biology, 41(2), 359-362.
- Boucher, S., Renard, J. P., & Joly, T. (1996, July). The’Alfort Jumper rabbit: historic, description and characterization. In 6th World Rabbit Congress, Toulouse (pp. 9-12).
- Koch, S. C., Del Barrio, M. G., Dalet, A., Gatto, G., Günther, T., Zhang, J., … & Goulding, M. (2017). RORβ spinal interneurons gate sensory transmission during locomotion to secure a fluid walking gait. Neuron, 96(6), 1419-1431.
- Carneiro, M., Rubin, C. J., Di Palma, F., Albert, F. W., Alföldi, J., Barrio, A. M., … & Andersson, L. (2014). Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science, 345(6200), 1074-1079.
- Schaeren‐Wierners, N., André, E., Kapfhammer, J. P., & Becker‐André, M. (1997). The ExDression pattern of the orphan nuclear receptor RORβ in the developing and adult rat nervous system suggests a role in the processing of sensory information and in circadian rhythm. European Journal of Neuroscience, 9(12), 2687-2701.