Loading [MathJax]/extensions/tex2jax.js

1

8
3

文字

分享

1
8
3

不會跑跳的兔子會倒立,竟是基因突變所導致!

Carol
・2021/08/07 ・3137字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

大部分的哺乳動物可以隨意地轉換不同的姿態,例如步行、跑步、小跑及奔跑,有利於改變移動的速度,並且可以適應地形的改變。協調的肢體運動對於動物的生存及繁殖相當重要,位處於脊髓的中樞神經網絡則是負責調控四肢運動的能力,例如:左右腿的協調。不同動物會使用不一樣的運動方式。兔子可以跳躍,當他們進行跳躍運動(saltatorial locomotion)時,前肢會有節奏地向前移動,後肢則協調的雙側運動(bilateral movement),後肢的肌肉會同時收縮,產生移動的力量,袋鼠及其他齧齒類動物也會使用類似的動作跳躍。

一般的兔子是可以正常跳躍的。圖/Pexels

會倒立的兔子「sauteur d’Alfort

研究團隊觀察到某些馴化的家兔不能正常地用四肢跳耀,而是將後腳抬離地面僅用前腿來行走移動,看起來就像是「倒立」一樣。而這個會「倒立」的兔子,就名為 sauteur d’Alfort(後續簡稱為 sauteur)。相較於野生型(wild-type)兔子的跳躍運動,他們的運動行為很不尋常。他們經常僅使用兩隻前腳來移動,而不是使用四隻腳跳躍。在緩慢運動時,sauteur 兔子會將後肢大幅度地舉起且離開地面,來進行擺動。在高速運動時,牠們的後肢並不會和前肢協調地同步移動,而是後肢會產生偏移。這前肢與後肢不一致、不協調的擺動造成 sauteur 兔子無法有效率進行跳躍運動,因此他們在快速或長距離運動時僅會由前肢支持身體,看起來就像是人類倒立或是耍雜技。

sauteur 兔子的典型姿勢,在長距離或快速移動時會將後肢懸離地面,身體垂直,呈現類似「倒立」的姿勢,並透過前肢交替行走來移動。圖/PLOS Genetics

不但不能正常跳躍,還有盲眼的缺陷

sauteur 兔子除了無法正常跳躍之外,同時擁有視網膜缺陷的問題,牠們的眼睛天生雙盲,並且在出生的第一年就會罹患白內障。研究團隊藉由將公的 sauteur 與母個野生種兔子進行雜交。sauteur 和野兔皆為同型合子[註1]sauteur 為(sam/sam),野生兔子則為紐西蘭白種兔(+/+),並將其產下的後代進行基因比對。進一步地,藉由基因圖譜(genetic mapping)分析,並將 sauteur 兔子與野生型的紐西蘭白兔進行雜交來了解可能突變的基因區域。進而了解之所以發育缺陷,是因為 RORB 基因突變。

視網膜畸形的 sauteur 兔子。圖/PLOS Genetics

倒立兔子的外表型,與基因突變相關

從基因圖譜分析中,發現 sauteur 兔子特別的行為及外表特徵,可能與 RORB 基因有關。RORB 基因為 NR1 核激素受體家族的成員之一,先前已報導 RORB 基因缺陷的老鼠,具有視網膜退化並有運動障礙,走路的型態會像一隻鴨子般。在 RORB 基因的剪切位置(splice site)突變,會影響 RORB 正常剪切。因此,RORB 基因可作為最好的候選名單,來解釋 sauteur 兔子不正常的運動行為,及視網膜缺陷。

-----廣告,請繼續往下閱讀-----
在 RORB 基因的第九個外顯子(exon)的末端有個剪貼位突變,這導致了三個主要的突變異構型(isoform)。圖/PLOS Genetics

RORB 基因無法正常轉錄

僅發現倒立兔子們不正常運動的基因,當然無法滿足研究人員的好奇心。他們進一步想了解的是,RORB 基因剪接位的突變,會對於 sauteur 兔子有什麼樣的影響?

研究團隊藉由 PCR 的方式,將野生型以及 sauteur 兔子脊髓及視網膜的 RORB 序列片段放大,並比較在野生型、sauteur 兔子及野生型和 sauteur 交配後所產生的後代,其體內的 RORB mRNA 片段,藉此可了解 sauteur 兔子 RORB 基因剪接位的突變對於體內生成 mRNA(信使核糖核酸)的影響。從下圖結果可發現野生型的兔子,其 RORB mRNA 不管在脊髓或視網膜都是屬於剪接位點未突變第一型(isoform 1)。不過,若是在 sauteur 兔子的 RORB mRNA,則會同時具有四種異構型(isoform 1 到 isoform 4)。因此可知,在 sauteur 兔子中,大部分的 RORB 是不正常轉錄,這也顯示與 RORB 剪切位點突變有因果關係。

橫軸顯示為不同基因型的兔子,野生型(WT)為+/+,sauteur 為 sam/ sam,而有野生型和 sauteur 雜交的兔子為 +/sam。Retina 為位於視網膜的 mRNA,spinal cord 為位於脊髓的 mRNA。 不同顏色的柱狀圖顯示為不同的 RORB mRNA 異構型。縱軸為相對比例。圖/PLOS Genetics

基因突變讓脊髓中的神經元數目大幅減少

一般來說,RORB 蛋白質會出現在兔子的神經系統,但若是 RORB 基因突變,則會導致在兔子脊髓中產生 RORB 蛋白質的神經元顯著減少。並且,sauteur 兔子在脊髓的不正常轉錄,就是因為 RORB-positive 神經元大幅減少,這個缺陷進一步導致兔子運動異常。

藉由免疫組織化學染色法(immunohistochemistry, IHC)可觀察到,相較於野生種(Wild-type),野生種與 sauteur 雜交,帶有異型合子(+/sam)的兔子後代,可以發現其表達 RORB 的神經元數量明顯下降,少了約 25%。相對地,帶有同型合子(sam/sam) 的 sauteur 兔子則無法偵測到會表現 RORB 的神經元。這顯示高比例 RORB 基因不正常轉錄會導致會表現 RORB 的神經元劇烈減少,且這樣的缺陷會導致 sauteur 兔子有著異常的外表型。

在野生型(Wild-type)的兔子中,可以偵測到許多會表現 RORB 的神經元,+/samsauteur 兔子脊髓中的神經元數目則相對野生型兔子來說減少許多。sam/samsauteur 兔子的脊髓中,則是偵測不到會表現 RORB 的神經元。圖/PLOS Genetics

綜括上述,我們可知造成 sauteur 兔子有如此的外表型,是因為轉錄因子 RORB 基因中第 9 個內插子(intron)的第一個核甘酸(nucleotide)突變。RORB 基因突變不僅倒致兔子無法跳耀,更會使得表現 RORB 的神經元大幅減少,並導致脊髓分化有缺陷,中間神經元異常分化,表達 RORB 的神經元減少,引起四肢失調,轉譯出的蛋白質也會影響脊髓正常運作。除此之外,RORB 基因所突變的核甘酸位置,在 70 個歐亞哺乳類中都是呈現保守性的。此研究結果,也與先前報導 Rorb 老鼠(RORB 基因突變的老鼠)有著退化的視網膜以及像鴨子般走路型態相以佐證。在老鼠的脊髓中,會表現 RORB 的神經元會對於把關內感感覺器(proprioceptive sensors)的資訊相當重要,可以確認突觸前抑制。在兔子的脊髓中也可能有著相似的運作機制,並導致如 sauteur 兔子的特別運動型態。RORB 除了會表現在脊髓,也會表現在腦部的許多區域,例如:主要體感覺皮質區、聽覺皮質區、運動皮質及下視丘等。因此,RORB 於腦部的功能改變於進而影響 sauteur 兔子的運動型態亦是不能被忽視的。

-----廣告,請繼續往下閱讀-----

所以日後,我們看到兔子運動的樣子,可能就不再只是一般的跳躍模式,還可能看到如馬戲團般倒立走路兔子,而造成這種兔子運動方式的改變,是源自於基因變異。

註解

  1. 同型合子:個體內組成基因型的兩個基因相同,如:TT 或 tt。
  • Carneiro, M., Vieillard, J., Andrade, P., Boucher, S., Afonso, S., Blanco-Aguiar, J. A., … & Andersson, L. (2021). A loss-of-function mutation in RORB disrupts saltatorial locomotion in rabbits. PLoS genetics17(3), e1009429.
  • Rossignol, S., Dubuc, R., & Gossard, J. P. (2006). Dynamic sensorimotor interactions in locomotion. Physiological reviews86(1), 89-154.
  • Grillner, S. (1985). Neurobiological bases of rhythmic motor acts in vertebrates. Science228(4696), 143-149.
  • Ten Cate, J. (1964). Locomotory movements of the hind limbs in rabbits after isolation of the lumbosacral cord. Journal of Experimental Biology, 41(2), 359-362.
  • Boucher, S., Renard, J. P., & Joly, T. (1996, July). The’Alfort Jumper rabbit: historic, description and characterization. In 6th World Rabbit Congress, Toulouse (pp. 9-12).
  • Koch, S. C., Del Barrio, M. G., Dalet, A., Gatto, G., Günther, T., Zhang, J., … & Goulding, M. (2017). RORβ spinal interneurons gate sensory transmission during locomotion to secure a fluid walking gait. Neuron96(6), 1419-1431.
  • Carneiro, M., Rubin, C. J., Di Palma, F., Albert, F. W., Alföldi, J., Barrio, A. M., … & Andersson, L. (2014). Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science345(6200), 1074-1079.
  • Schaeren‐Wierners, N., André, E., Kapfhammer, J. P., & Becker‐André, M. (1997). The ExDression pattern of the orphan nuclear receptor RORβ in the developing and adult rat nervous system suggests a role in the processing of sensory information and in circadian rhythm. European Journal of Neuroscience9(12), 2687-2701.
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
Carol
7 篇文章 ・ 5 位粉絲
Carol|生科系畢業,喜歡植物,喜歡小丑魚。

0

0
0

文字

分享

0
0
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
「魔術子彈」來了:HER2 基因突變肺癌的致命克星
careonline_96
・2024/10/20 ・2755字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

圖/照護線上

剛診斷為第四期肺癌的患者都相當沮喪,但現在對於晚期肺癌的治療已有長足的進展!新光醫院血液腫瘤科林瑛珠醫師指出,以前第四期肺癌患者的存活期大約只有6個月,隨著標靶治療的進步,若能找到合適的藥物,便有機會讓病情得到長期穩定控制,患者的存活期便能有望延長。抗癌藥物的進展日新月異,如今抗體藥物複合體(Antibody-drug conjugate ; ADC)漸漸運用於具有 HER2 基因突變的非小細胞肺癌,像魔術子彈一般精準攻擊癌細胞,幫助提升治療成效,讓患者多一項選擇。

肺癌治療已進入精準醫療時代,除了考量病理組織型態,也可透過基因檢測來幫助擬定治療策略。林瑛珠醫師指出,次世代基因定序檢測(NGS,Next Generation Sequencing)可一次檢測數十個甚至上百個基因變異,讓醫師能夠依照基因檢測結果來選擇對應的藥物。

在肺腺癌患者中,大約有 50%~60% 的病人可以找到基因突變,最常見的是 EGFR 突變,其他還有 KRASALKHER2ROS1BRAFMET 等。以具 EGFR 點突變的患者為例,使用相對應的標靶藥物已能有效延長患者的存活時間。林瑛珠醫師指出,一般大眾對 HER2 突變的印象多與乳癌相關,而肺腺癌的 HER2 基因突變佔比約為 3% 至 6%,且多為女性、非吸菸者,不容忽視。因為HER2基因突變與癌細胞的惡性度有關,具有 HER2 基因突變的腫瘤較容易轉移,且對化學治療和免疫治療的反應較差,也較容易復發。

圖/照護線上

過去沒有針對 HER2 基因突變的非小細胞肺癌的治療藥物,患者大多是使用化學治療、免疫治療來進行全身性治療,缺少直接作用於癌細胞的標靶藥物,治療成效較有限。林瑛珠醫師指出,過往討論度很高的 HER2 突變乳癌標靶藥物「魔術子彈」在乳癌治療成效良好,目前已新取得 HER2 基因突變的非小細胞肺癌適應症,讓患者有更多的治療可搭配選擇,有望突破 HER2 基因突變之非小細胞肺癌的治療瓶頸。

-----廣告,請繼續往下閱讀-----

「魔術子彈」屬抗體藥物複合體 ADC,是藉由連接子將 HER2 單株抗體與化療藥物組合而成,林瑛珠醫師解釋,因為單株抗體會與癌細胞表面抗原結合,癌細胞會將抗體藥物複合體內化至細胞內,連接子被癌細胞高度表現的酵素切斷後能釋出化療藥物,所以能夠精準地將化療藥物運送至癌細胞內產生毒殺效果,並且化療藥物可以穿透細胞膜到鄰近沒有表現 HER2 的癌細胞,克服腫瘤異質性問題而達到更好的腫瘤毒殺效果(旁觀者效應)。

非小細胞肺癌患者搭配次世代基因定序檢測 NGS,如果檢測發現具有 HER2 基因突變,便可以考慮使用魔術子彈。林瑛珠醫師指出,由於抗體藥物複合體 ADC 的作用機轉更精準,讓化療藥物直接作用在腫瘤細胞,有望提升腫瘤反應率和存活期,是這類患者的新抗癌利器。不過藥物治療仍須注意藥物相關的副作用,如噁心、疲倦等,因此醫師仍會根據病人的身體狀況,決定合適的治療選擇並妥善安排後續的監測計畫,以確保用藥安全。

圖/照護線上

日前次世代基因定序檢測 NGS(Next Generation Sequencing, NGS)已納入健保給付,可一次檢測多種基因變異,針對非小細胞肺癌實體腫瘤的基因檢測有健保給付相關方案,減輕患者經濟負擔。林瑛珠醫師指出,現在大多會建議患者在確定診斷時便進行次世代基因定序檢測,因為透過切片取得的肺癌檢體相當珍貴,及早進行次世代基因定序檢測,有機會找到最適合的標靶藥物,獲得越多的資訊,對治療的選擇很有幫助。

圖/照護線上

肺癌的治療持續進步,陸續也有新藥被研發出來,讓醫師有更多的武器來對抗肺癌。患者務必和醫師密切合作,善用各種治療工具,達到較佳的治療成效!

-----廣告,請繼續往下閱讀-----

筆記重點整理

  • 如果基因檢測發現非小細胞肺癌具有 HER2 基因突變,可以考慮使用魔術子彈。抗體藥物複合體 ADC 的性質,能夠讓化療藥物直接作用在腫瘤細胞,有望提升腫瘤反應率和存活期。不過藥物治療仍須注意藥物相關的副作用,如噁心、疲倦等,因此醫師仍會根據病人的身體狀況,決定合適的治療選擇並妥善安排後續的監測計畫,以確保用藥安全。次世代基因定序檢測 NGS 已納入健保給付,現在大多會建議患者在確定診斷為肺癌時便進行次世代基因定序檢測,因為透過切片取得的肺癌檢體相當珍貴,及早進行次世代基因定序檢測,獲得越多的資訊,對治療的選擇很有幫助。
  • 肺癌治療已經進入精準醫療時代,除了考量病理組織型態,還可透過基因檢測,幫助擬定治療策略。次世代基因定序檢測(NGS)可一次檢測數十個甚至上百個基因變異,讓醫師能夠依照基因檢測結果選擇對應的藥物。
  • 在肺腺癌患者中,HER2 基因突變大概佔 3% 至 6%,但也不容忽視。因為 HER2 基因突變與癌細胞的惡性度有關,具有 HER2 基因突變的腫瘤較容易轉移,對化學治療和免疫治療的反應較差,而且較容易復發。
  • 治療 HER2 基因突變之肺癌「魔術子彈」屬於抗體藥物複合體 ADC,是藉由連接子將 HER2 單株抗體與化療藥物組合而成,因為單株抗體會與癌細胞表面抗原結合,癌細胞會將抗體藥物服和體內化至細胞內,連接子可被癌細胞高度表現的酵素切斷後釋出化療藥物,所以能夠精準地將化療藥物運送至癌細胞產生毒殺效果,並且化療藥物可以穿透細胞膜到鄰近沒有表現 HER2 的癌細胞,克服腫瘤異質性問題而達到更好的腫瘤毒殺效果(旁觀者效應),就像「魔術子彈」一樣。
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

0
0

文字

分享

0
0
0
白內障手術使用延焦段散光矯正人工水晶體,助高度近視、散光患者擺脫厚重眼鏡!
careonline_96
・2024/08/02 ・2020字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

「他是位 60 歲的男性,高度近視達 1300 度,且有白內障及黃斑部退化的狀況。」垂楊大學眼科謝旻蒼醫師表示,「由於患者常在夜間駕車,工作上也有較高的中距離用眼需求,所以患者選擇使用延焦段散光矯正人工水晶體。」

延焦段散光矯正人工水晶體能同時幫患者矯正近視、散光,並提升中距離的視覺品質,在日常生活中幾乎都不需要配戴眼鏡。高度近視、散光患者在術後能夠擺脫配戴多年的厚重眼鏡,生活品質與滿意度也大幅提升!

為響應每年六月為白內障衛教月,謝旻蒼醫師特別來跟民眾分享白內障的相關資訊。

簡單來說,白內障是眼睛的水晶體從清澈逐漸變得混濁,進而影響視力。而白內障最常見的原因是與年紀有關的自然老化,多發生在 50 歲以上的民眾。其他還有一些會讓白內障提早發生的原因,包括曝曬過多紫外線、高度近視、糖尿病、眼睛外傷、長期使用類固醇等,都可能讓患者在 40 歲就出現白內障。

-----廣告,請繼續往下閱讀-----

白內障最直接的症狀就是視力模糊,患者也會覺得視野變暗、色調改變、容易眩光,有時候還會出現晶體性近視,近視度數明顯上升。

當白內障已對生活、工作造成影響時,通常醫師便會建議接受白內障手術。謝旻蒼醫師說,如果置之不理,白內障過度成熟不只讓手術難度提高、增加併發症風險,也可能導致青光眼,進一步對視力造成永久性傷害。

白內障手術幫助重見光明

倘若白內障已影響視力,勢必要進行白內障手術才有辦法確實的改善視力。

白內障手術是利用超音波將混濁老化的水晶體乳化並移除,然後置入人工水晶體來取代原有的水晶體功能,也能同步矯正近視、遠視、散光甚至老花眼,讓視力最佳化。拜微創手術技術之賜,白內障手術時間大約只需要 20 分鐘,待恢復後便能重見光明。

-----廣告,請繼續往下閱讀-----

傳統的單焦點人工水晶體能夠讓患者看清楚遠距離的物體,至於散光以及中、近距離便需在術後配戴眼鏡輔助。而多焦點人工水晶體能夠讓患者看清楚位於遠、中、近焦點處的物體,但在焦點與焦點之間,影像的不連續性可能會讓視覺受到干擾,夜間駕車也容易有眩光問題。

為了有夜間駕車同時也有中近距離用眼需求的族群,而發展出的延焦段人工水晶體,是利用延長視覺景深來提供遠距離至中近距離的連續清晰視力。中距離為大約一個手臂的距離,是日常生活中最常用的視距範圍,例如開車看導航、使用電腦、煮飯做菜等都屬於中距離視距。

延焦段人工水晶體還具有低夜間光學干擾、不過濾健康藍光的特性,提升夜視清晰度,幫助患者達到日間方便、夜間安全。另外,延焦段人工水晶體能適應多種眼睛條件之患者,例如角膜狀況不佳、黃斑部疾病、做過屈光雷射手術等,都能事先與醫師討論。

台灣的近視盛行率很高,有許多高度近視的年輕患者也出現了早發性白內障的情況,這時可以考慮使用延長焦段水晶體,能夠一併矯正近視,並提供中距離視力,日常生活更加方便。而且延焦段水晶體能提升夜視清晰度,夜間開車也比較安全。

-----廣告,請繼續往下閱讀-----

除了矯正近視之外,延焦段人工水晶體還可選配散光矯正功能。謝旻蒼醫師說,散光會讓影像出現疊影,干擾視覺品質,所以建議高度散光可一併使用人工水晶體來矯正,讓術後的視力更清晰,提升患者術後視覺品質,減少術後的眼鏡配戴率。

貼心小提醒

除了人工水晶體,白內障手術的設備也持續進步,謝旻蒼醫師說,近年還發展出飛秒白內障雷射技術,能夠讓手術過程更精準,進一步降低手術風險,提升安全性,同時也提高術中及術後穩定性,能讓傷口跟視力更快恢復。

每年六月是白內障衛教月,醫師提醒,如果發現有近視度數突增、視力模糊、視野變暗、色調改變、容易眩光等現象,一定要盡快就醫,確認眼睛的狀況,並及早接受治療!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

careonline_96
559 篇文章 ・ 279 位粉絲
台灣最大醫療入口網站