3

8
6

文字

分享

3
8
6

如何運用細胞機制改善脂肪肝?先來認識什麼是泛素與細胞自噬

研之有物│中央研究院_96
・2021/07/05 ・4727字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|寒波
  • 美術設計|林洵安

細胞小小一顆,內部運作卻複雜無比,堪比現代化城市,生產、物流、回收與廢棄物清運,每個環節都要考慮平衡,時時應付變局。中央研究院生物化學研究所的陳瑞華特聘研究員,發現細胞兩大資源回收系統的特殊互動:透過泛素─蛋白酶體系統來調控細胞自噬。簡單來說就是,細胞在一般狀況下如何維持平衡,面臨逆境時怎麼力挽狂瀾。在研究過程中,負責脂肪代謝的肝細胞當然也沒有缺席,將來我們對細胞自噬有更多瞭解時,就可能開發出有效控制非酒精性脂肪肝的藥物。論文於 2021 年 2 月發表於《自然通訊》(Nature Communications)。

細胞分解蛋白質的兩套系統:泛素與細胞自噬

細胞內的蛋白質零件如有損壞,就需要分解與回收,主要依靠各有所長、也能互補的兩套回收系統:一套是「泛素─蛋白酶體系統」(ubiquitin-proteasome system,簡稱 UPS ),另一套是「細胞自噬溶酶體系統」(autophagy-lysosome system)。

上圖是細胞內兩大資源回收系統,「泛素─蛋白酶體系統」與「細胞自噬─溶酶體系統」。
圖/研之有物(資料來源│陳瑞華)

雖然 autophagy 的中文翻譯為「細胞自噬」,不過當細胞自噬啟動時,其實不是直接自我毀滅,而是在受到外在壓力時改善狀態、自我拯救。此一領域的先驅大隅良典(Yoshinori Ohsumi)在 2016 年獲得諾貝爾生理學或醫學獎。如今我們知道,細胞自噬可分為多種,可針對細胞內各種老舊廢物和有害物質進行分解,包含可溶及不可溶的蛋白質以及非蛋白質分子(例如後續會提到的脂肪)。

另一套細胞清運系統「泛素─蛋白酶體系統」處理的對象通常是可溶蛋白質。泛素會直接與目標結合做上記號,標記的目標會送往蛋白酶體分解。羅斯(Irwin Rose)、赫什科(Avram Hershko)、切哈諾沃(Aaron Ciechanover)藉此獲得 2004 年的諾貝爾化學獎。隨著研究愈來愈多,有些學者發現,兩套系統有時候會互相影響。

-----廣告,請繼續往下閱讀-----

陳瑞華原本的研究對象是各種蛋白質修飾,而泛素化作用就是一種修飾蛋白質的方式,這使得她投入泛素的領域,開始探索蛋白質的分解與回收,也注意到泛素與細胞自噬有所聯繫的問題。道理其實不難想像:兩套系統的運作都涉及很多蛋白質,而這些蛋白質零件本身,也會成為需要分解或回收的對象。

泛素與細胞自噬的正向調控者「TRABID」

細胞自噬可分為很多種,陳瑞華關注的是依賴泛素的細胞自噬。一開始的切入點,是尋找促進細胞自噬的酵素。

把泛素加到目標蛋白質上頭的酵素叫作「泛素連接酶」(ubiquitin ligase),反之則是「去泛素酶」(deubiquitinating enzyme,簡稱 DUB)。人體有非常多種去泛素酶,測試 92 種之後,TRABID 最符合預期。增加這個酵素的作用能促進細胞自噬,可謂正向調控者。

泛素接合蛋白質分子的各種複雜情況,陳瑞華關注的酵素之一是負責切除 K29 與 K48 分支的去泛素酶「TRABID」。圖/研之有物(資料來源│陳瑞華)

泛素是由 76 個氨基酸組成的小型蛋白質,可以直接結合目標,也能互相串聯形成泛素鏈。

-----廣告,請繼續往下閱讀-----

泛素的序列中,第 1 個氨基酸是甲硫氨酸(methionine,縮寫為 M),再來還有 7 個離胺酸(lysine,縮寫為 K),這些位點都能夠彼此修飾串聯,因此形成複雜的排列組合,這樣就賦予了泛素鏈多變的形式。

如果整串泛素鏈皆由同一種串聯組成,稱為同型鏈(homotypic chain)。根據泛素串聯的位置,可分為 M1、K6、K11、K27、K29、K33、K48、K63 共 8 種;而整串泛素鏈由不同種串聯組成的叫作異型鏈(heterotypic chain),又可以分為非支鏈型和支鏈型(branched)。

抑制泛素,促進細胞自噬

每種酵素都有專屬的催化對象。去泛素酶 TRABID 促進細胞自噬的專屬催化對象又是誰呢?

TRABID 可以去除 VPS34 上面的泛素分支(K29、K48),促進細胞自噬作用。圖/研之有物(資料來源│陳瑞華)

關鍵在於另一個酵素 VPS34,VPS34 是形成自噬小體的重要蛋白,全名為第三類磷脂肌醇 – 3 – 激酶複合體(class III PI3-kinase complex)。VPS34 會受到 K29、K48 泛素化修飾,令其遭到分解;而去泛素酶 TRABID 可以去除泛素,使 VPS34 不被分解。如此一來,激酶 VPS34 便可以促進細胞自噬的發生。

-----廣告,請繼續往下閱讀-----

但這裡可看到一處蹊蹺:VPS34 受到 K29、K48 抑制,可是 TRABID 只能切到 K29,K48 應該不是它的處理範圍呀?合理的推論是:K29 和 K48 以異型鏈的形式一起作用,所以去泛素酶 TRABID 直接切除 K29 的同時,也間接切掉並不直接接觸的 K48。

圖片為 TRABID 切除泛素分支的細節,原來是在切除 K29 的同時,也間接去掉 K48。圖/研之有物(資料來源│陳瑞華)

泛素與細胞自噬的負向調控者「UBE3C」

細胞為了維持平衡,調控可謂一環扣著一環。既然存在針對激酶 VPS34 的去泛素酶,更早以前又是誰替 VPS34 加上泛素呢?過往研究發現,標記 K29、K48 的泛素連接酶叫作 UBE3C,而且是以支鏈連結。

調控基因表現可分為多個層次。基因會先轉錄為 mRNA,再轉譯為蛋白質;而泛素的調控屬於後轉譯修飾,也就是鎖定完工的蛋白質,卻不影響 mRNA 的階段。實驗結果指出,泛素連接酶 UBE3C 的作用一旦增強,激酶 VPS34 的 mRNA 表現量並不改變,但是蛋白質量下降,符合泛素該有的後轉譯調控方式。

TRABID 與 UBE3C 共同調控 VPS34 的示意圖,TRABID 會促進細胞自噬作用;反之,UBE3C 則會抑制細胞自噬。圖/研之有物(資料來源│陳瑞華)

泛素連接酶 UBE3C 作用下會減少細胞自噬,可謂細胞自噬的負向調控者。但是問題又來了,如何證明 UBE3C 催化激酶 VPS34 進行 K29、K48 支鏈型泛素化?之前的研究方法僅能提供間接證據。

-----廣告,請繼續往下閱讀-----

幸運的是,陳瑞華領導的這項研究還沒結束時,另一位專精泛素的學者發表一種新的分析方法,剛好可以回答上述問題。前面提過,泛素有很多種結合型式,理想的分析應該能區別支鏈型和非支鏈型泛素化,這就是「泛素剪裁法」(Ub-clipping)。

釐清泛素與泛素的連結──改造自口蹄疫病毒的分析工具

許多分子生物學的工具最初來自微生物,如限制酶(restriction enzyme)、PCR,以及當紅的 CRISPR 基因編輯,泛素剪裁法也不例外。

口蹄疫病毒(foot-and-mouth disease virus)感染細胞時,一如所有入侵者會受到抵抗;細胞利用 ISG15 蛋白質攻擊病毒,而病毒也會用蛋白酶(protease)反擊。有科學家注意到: ISG15 的形狀就像兩個泛素的合體,而口蹄疫病毒的蛋白酶專門針對這種結構。既然如此,這類蛋白酶是不是能用於切割連成一串的泛素呢?

上述構想後來成功,人為改造過的蛋白酶「Lbpro」,能精確地切割泛素與泛素之間的「RGG」氨基酸連結。被蛋白酶切完落單的泛素,上頭會連著兩個甘胺酸(glycine,縮寫為 G),假如本來是直鏈只會有 1 個 GG,原本為支鏈則會有 2 個 GG。

-----廣告,請繼續往下閱讀-----

1 或 2 個 GG,這就造成重量上的落差。分子間這般的重量差異儘管很小,仍然足以被質譜儀分辨出來,這就是泛素剪裁法的威力。

透過口蹄疫病毒的啟發,人工合成的蛋白酶 Lbpro 可以精準切割泛素之間的 R-GG 鏈結,讓研究人員得以透過質譜分析,輕易辨識出泛素的直鏈與支鏈結構及相對含量。圖/研之有物(資料來源│陳瑞華)

藉由新法助陣,陳瑞華團隊取得可靠的證據,看到泛素分支確實形成,證明泛素連接酶 UBE3C 確實將 K29 和 K48 以支鏈的形式標記到激酶 VPS34 之上。這也是泛素剪裁法,首度被用於細胞自噬的相關研究。

日常保持平衡,危局力挽狂瀾

在瞭解泛素、VPS34、TRABID 與 UBE3C 之後,我們來梳理一下資訊吧。所謂開關、開關,有開就要有關。一系列實驗指出,是否啟動細胞自噬受到 3 個酵素影響:一旦泛素連接酶 UBE3C 加上支鏈修飾,令激酶 VPS34 被拖去摧毀,細胞自噬將受到阻止;若是去泛素酶 TRABID 發揮作用,令 VPS34 保持穩定,細胞自噬就會發生。

細胞處於普通或匱乏(starvation)狀態時,加泛素與去泛素的酵素,以互相對抗的態勢保持平衡。細胞面對危局時,原本的平衡遭到打破,細胞自噬成為一種自我救贖的手段。

-----廣告,請繼續往下閱讀-----

陳瑞華團隊進一步實驗發現,內質網與蛋白質毒性壓力(ER and proteotoxic stresses)之下,泛素連接酶 UBE3C 會轉移位置到蛋白酶體;除掉拘束器(也就是UBE3C)之後,激酶 VPS34 便能促進細胞自噬發生,改善細胞狀態,提高生存機率。

上圖是細胞處於普通或匱乏狀態時,平衡的細胞自噬活動。下圖則是細胞在內質網與蛋白質毒性壓力之下,開始觸發增進細胞自噬的活動,確保內質網與蛋白質正常。圖/研之有物(資料來源│陳瑞華)

未來有望應用到脂肪肝治療

細胞自噬是大部份細胞自我調整、保持平衡的重要手段,在某些特殊組織更扮演重要角色,例如肝細胞的代謝。過去研究發現,如果細胞自噬功能缺失,容易導致脂肪肝形成。

陳瑞華團隊使用小鼠作實驗動物,探討細胞自噬在非酒精性脂肪肝疾病(non-alcoholic fatty liver disease,簡稱 NAFLD)中的角色。在連續 12 週餵食高脂肪飲食後,享受高油脂大餐的快樂小鼠們體型明顯增大,對照組注入一般腺病毒,實驗組則注入帶有 TRABID 基因的腺病毒,繼續觀察 4 週。

細胞在受到高脂食物的刺激下,傾向降低細胞自噬活動,VPS34 經過泛素化之後降解。肝臟代謝功能受到影響,促進肝臟脂肪推積。圖/研之有物(資料來源│陳瑞華)
餵食高脂肪飼料之後,對照組與實驗組小鼠的肝臟示意圖。圖/研之有物(資料來源│陳瑞華)

兩種不同處理之下,高脂餵食且注入一般腺病毒的對照組,肝臟細胞皆充滿脂肪,而且去泛素酶 TRABID 和激酶 VPS34 的表現量,以及細胞自噬的活性都明顯降低。而注射了 TRABID 基因的實驗組,因為人為促進了去泛素酶 TRABID 的表現,引發細胞自噬作用防止肝臟脂肪形成。

-----廣告,請繼續往下閱讀-----

從實驗組的數據可以發現,小鼠多項脂肪相關的指標都有所降低,證實細胞自噬確實有阻止脂肪肝的作用,對肝臟代謝十分重要。這次的動物實驗是透過注射基因提升 TRABID 表現,如果未來能找到促進 TRABID 表現的藥物或關鍵小分子,則可望應用在非酒精性脂肪肝的治療或保健食品。

調控機制的平衡與不平衡

陳瑞華的研究成果讓我們對細胞自噬的調控又多一分認識。看起來好像很難,但是概念歸納起來並不複雜。調節細胞自噬的邏輯是一來一往的平衡(homeostasis),正向調控者作用,細胞自噬發生,反之亦然。

細胞自噬的基本機制,各種細胞多半是共通的;泛素在其中扮演阻止的角色,藉由控制泛素,便能有效影響細胞自噬。假如碰上逆境,需要促進細胞自噬時,抑制泛素即可達到目的。

在肝細胞中,細胞自噬有其特殊作用。假如細胞自噬的功能缺失,會影響脂肪代謝,長期下來可能導致脂肪肝病變;反之,若能在需要時能夠促進細胞自噬,未來脂肪肝治療就有新的契機。

延伸閱讀

文章難易度
所有討論 3
研之有物│中央研究院_96
296 篇文章 ・ 3420 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

2
0

文字

分享

0
2
0
一場意外,發現神奇的醣結合蛋白——半乳糖凝集素與劉扶東
研之有物│中央研究院_96
・2023/04/17 ・6037字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文/陳其暐
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

神奇的醣結合蛋白

半乳糖凝集素(galectin)是什麼呢?它是一種醣結合蛋白(carbohydrate-binding protein),有許多不同的家族成員,例如半乳糖凝集素 -3、-8 及 -9 等等。研究發現,當人體細胞遇到外來有害物質,包括細菌或病毒時,除了促進吞噬作用等先天免疫反應之外,半乳糖凝集素會快速聚集到被這些物質破壞的胞器上,與裸露的醣分子結合。同時半乳糖凝集素還會結合與免疫相關的細胞內各種蛋白質,影響細胞反應,例如消除病菌。

中央研究院「研之有物」專訪院內的前任副院長,現為生物醫學科學研究所的通信研究員劉扶東院士,劉院士是研究半乳糖凝集素的專家,他將和我們分享半乳糖凝集素的故事。

劉扶東院士談論半乳糖凝集素。圖/研之有物

「最讓人挫折的地方,也是最令人興奮的地方。」劉扶東如此形容他的研究。

-----廣告,請繼續往下閱讀-----

劉扶東描述那些從研究半乳糖凝集素中所發生的故事,一一告訴我們許多半乳糖凝集素的發現過程,以及中途遇到的種種挑戰。即使他第一次發現半乳糖凝集素的時刻距今已有 30 多年,他依然可以細數研究過程中的各種轉折。特別的是,半乳糖凝集素的發現完全是一場意外,沒想到竟一路成為劉扶東最具標誌性的研究主題。

「半乳糖凝集素是什麼?」對於這個問題,科學家已有明確的定義:它是一種醣結合蛋白(carbohydrate-binding protein),顧名思義,這種蛋白質都具有至少一個醣類辨識區塊(carbohydrate recognition domain)可以結合在醣分子上的 β-半乳糖苷(β-galactose)。

可是若你接著問,「半乳糖凝集素有什麼功能?」劉扶東說,這個問題可能一整天都談不完,甚至他會說,半乳糖凝集素相當複雜,還有很多我們不知道的地方。

但這些未知的答案並沒有阻擋他繼續深入研究半乳糖凝集素,他還希望藉由分享更多半乳糖凝集素的研究成果,以此激發更多人投入這塊領域。一如他當年曲折的際遇。

-----廣告,請繼續往下閱讀-----

幸運的發現

中研院前任副院長、現為生醫所通信研究員的劉扶東,同時擁有多重身分——教授、科學家,及醫師。早在「跨領域」這個名詞蔚為風潮之前,劉扶東就在化學、生物學,接著到免疫學、醣科學、醫學研究等領域累積豐富的研究成果。劉扶東之所以能在多種領域自在轉換,或許從求學時期開始便可見端倪。

劉扶東回憶,由於當年他從成功高中畢業時成績很好,得以保送至臺大化學系。大三念了生物化學之後,開始對生物產生興趣。1970 年,劉扶東從化學系畢業,和許多同學一樣選擇出國念書。可能是因為芝加哥大學特別喜歡臺大化學系的畢業生,劉扶東順利進入該大學的研究所深造。

進入芝加哥大學後,他以化學為基礎,跟著指導教授涉略生物相關的題目,僅僅四年就取得博士學位,接著在伊利諾大學化學系擔任研究員,一步一步朝生物領域發展。後來在指導教授的引薦下,得以前往斯克里普斯研究院(The Scripps Research Institute),從事免疫相關的研究。

在 Scripps 研究院期間,劉扶東對過敏反應產生興趣,而過敏反應的重要媒介之一是免疫球蛋白 E(IgE),於是他便決定探索 IgE 的一個重要受體。當時恰好碰上基因重組技術(Recombinant DNA Technology)出現,科學家紛紛採用這種技術來表現特定基因片段,藉此製造出特定蛋白質。

-----廣告,請繼續往下閱讀-----

劉扶東也使用了基因重組技術來嘗試選殖出(clone)IgE 受體,結果沒有成功,卻發現另一種蛋白質,會結合 IgE 上的半乳糖。後來,這蛋白質就被命名為半乳糖凝集素-3。

半乳糖凝集素的示意圖,大致可以分為三大類,原型、嵌合型和串聯重複型,三者都具有至少一個醣類辨識區塊。其中半乳糖凝集素-3 是屬於嵌合型,保留了一個可以結合更多分子的空位(N-Terminal)。圖/研之有物、林威翰、陳宏霖

猶如一場賭注

過往,科學家就發現過凝集素,劉扶東舉例,植物體內就含有凝集素,例如植物血凝素(phytohaemagglutinin);從流行性感冒病毒(influenza)表面則可找到血球凝集素(hemagglutinin),讓病毒得以附著於動物細胞上。

而會與醣類結合且來自動物的蛋白質,其實也有先例可循,例如在 1980 年代發現的選擇素(selectin)家族屬於一種細胞黏附分子,會參與發炎反應,促進白血球與血管內皮細胞的交互作用。還有一類稱為唾液酸結合蛋白(siglec)的家族,會調控免疫細胞的活化或抑制。

至於半乳糖凝集素,科學家陸續找到一種、兩種、三種……至今已發現有 15 種半乳糖凝集素,分布於人體的各種細胞之中,是一個大的家族。

-----廣告,請繼續往下閱讀-----

不同半乳糖凝集素之間,大約僅有 40% 的相似度,之所以隸屬同個家族,是因為它們都具有某段特定序列,而且都會結合半乳糖。

可是對於 30 年前的劉扶東而言,一切都是未知,尤其當時他在免疫領域已有成果,此刻要轉而花費心力在一個全新的領域,猶如一場賭注。

為了找出半乳糖凝集素在生物體的角色,他們便將半乳糖凝集素加到生物樣本中,看見細胞會因此凝集,便認定這就是半乳糖凝集素的功能。然而,不久後劉扶東就發現,這件事可能沒有想像中那麼簡單。

他舉例,「把植物裡的凝集素,加到紅血球之中,紅血球就會被凝集起來,可是這是不是它的功能?不是,因為植物裡面沒有紅血球。」他接著說,半乳糖凝集素沒有跨膜結構域(transmembranedomain),不會鑲嵌在細胞膜上;而且不帶有訊息序列(signal sequence),無法透過高基氏體運送到細胞外。

-----廣告,請繼續往下閱讀-----

絕大部分的半乳糖凝集素都會存在於細胞質或細胞核中。

因此劉扶東認為,關鍵的問題應該是:「內源性半乳糖凝集素的功用是什麼?是不是有在細胞裡面的功用?」

絕大部分的半乳糖凝集素都會存在於細胞質或細胞核中。上圖為動物細胞結構示意圖,最外層是細胞膜,中間橘紅色核心是細胞核,兩者之間的膠狀質地就是細胞質。細胞核外面淡黃色網狀結構是內質網,深藍色層狀結構是高基氏體,中間一顆一顆小小的橢圓膠囊是粒線體。圖/iStock

首次發現內源性功能

劉扶東認為,半乳糖凝集素的成員眾多,在細胞裡必定有相當的重要性。但唯一證明的方法,就是透過不斷的實驗。在探求解答的過程中,他沒有駐足,「我一直在思考,怎麼樣能做得更好?」

他不斷尋找讓自己成長的機會。在 Scripps 研究院內,有許多研究者從事醫學研究,加上對於過敏、免疫反應的興趣,激發了他念醫學院的動力。因此當他得知邁阿密大學提供了一個兩年即可取得醫學學位的方案,便毅然地前往就讀。他描述,要在極短的時間內讀完所有基礎及臨床醫學學科,壓力相當大。

但他依然保持熱誠,唸完學科後,他又花了四年做實習醫師及到皮膚科做住院醫師。同時,他並沒有放棄原本的研究項目,在念醫學院時他定期從邁阿密到聖地牙哥兩地奔波。而做住院醫師時也在 Scripps 研究院繼續經營實驗室。最後,他成功取得皮膚科的專科醫師執照,之後前往加州大學戴維斯分校醫學院皮膚系擔任教授兼主任。

-----廣告,請繼續往下閱讀-----

同一時期,劉扶東的實驗室在半乳糖凝集素的研究上也取得突破。1996 年,他們成為第一個找到半乳糖凝集素內源性功能的團隊,他們發現半乳糖凝集素-3 會抑制 T 細胞的凋亡。其他科學家的研究也發現,「心衰竭的病人,血液循環裡的半乳糖凝集素-3 會增加。」這種現象或許就可以做為臨床檢測的因子,來判斷受試者是否可能患有心衰竭。

另外,劉扶東也利用基因剔除鼠(knockout mice,意指小鼠的特定基因被破壞而無法表現)來觀察缺少特定種類的半乳糖凝集素會有什麼反應,進而驗證半乳糖凝集素的重要性與疾病模式。

他發現,剔除半乳糖凝集素-12 基因的雌鼠會變瘦,而半乳糖凝集素-12 主要便是在脂肪細胞中表現,具有抑制脂肪細胞的脂肪分解功能。他說,「做這塊領域,要一直學習新的東西。」原本做免疫的他,對脂肪細胞非常陌生,幸好團隊中的研究人員有興趣持續鑽研,同時與加州大學戴維斯分校的其他專家合作,才能夠找出隱藏其中的故事。

在加州大學戴維斯分校待了近十年後,劉扶東決定回臺貢獻所學,接任中央研究院生物醫學科學研究所所長,開始在院內推動免疫、醣科學等領域,也持續研究半乳糖凝集素。

-----廣告,請繼續往下閱讀-----

劉扶東與團隊找出了半乳糖凝集素-7 與乾癬之間的關聯。乾癬是一種由免疫失調所導致的慢性皮膚發炎,身上會反覆長出紅色斑塊,約有 2% 人口患有這種病症。他們發現,半乳糖凝集素-7 在乾癬患者的皮膚中表現較少。而半乳糖凝集素-7 具有抑制角質形成細胞(keratinocyte)增生的功能。

半乳糖凝集素-7 的蛋白質結構。劉扶東院士發現半乳糖凝集素-7 具有抑制「角質形成細胞」增生的功能。圖/Wikipedia

持續探索未知

劉扶東不斷透過研究探索半乳糖凝集素的作用機制,雖然每一步都得花費不少時間,但發表成果後,「這些研究成果得到認可,就覺得很有意義。」分享故事的過程中,也為他帶來許多樂趣。

他解釋,雖然半乳糖凝集素是一種醣結合蛋白,但它不必與醣結合,也能夠參與細胞內的各種生化反應,像是與細胞內的調控因子作用,促進激素的製造。甚至也可能與疾病機制有關,例如,半乳糖凝集素-1 在許多癌症中會大量表現,讓癌細胞可以規避免疫反應;半乳糖凝集素-3 在淋巴瘤、肝癌細胞中的表現量會升高,讓癌細胞存活更久。

另外,在患有中風、神經退化疾病或多發性硬化症的病患大腦中也發現高濃度的半乳糖凝集素-3,若是抑制其表現,就可以減緩發炎反應,進而改善病程。

那麼,半乳糖凝集素會在細胞內與醣結合產生功能嗎?劉扶東解釋,醣蛋白一般只會出現在胞器內或細胞膜表面上,因此半乳糖凝集素「通常」沒有機會與醣結合。

然而,有學者發現,胞器或胞內體在某些情況下會破裂,此時胞器內部的醣就會裸露,讓半乳糖凝集素得以結合上去,誘發細胞的自噬作用(autophagy),讓受損胞器交由溶酶體降解。

甚至,有些細胞機制會受到這些裸露的醣與半乳糖凝集素的結合所調控,產生細胞凋亡、發炎反應,因而形成疾病。劉扶東團隊也持續發現半乳糖凝集素-3 與 -8 在上述機制中的功能。最近更進一步發現,半乳糖凝集素在細胞内可與侵入細胞的病原體上的醣結合,進一步影響細胞對抗病原體的反應。

上圖為半乳糖凝集素在細胞內機制的示意圖。左邊是細胞表面醣化修飾的形成過程,右邊則是半乳糖凝集素對應外來有害物質的機制,當核內體的膜破裂時,裡面的醣分子得以裸露,半乳糖凝集素快速聚集,並與這些醣分子結合,同時也會結合更多蛋白質幫手,一起設法解決外來有害物質。圖/研之有物、林威翰、陳宏霖
上圖為李斯特菌進入細胞後,半乳糖凝集素-3 快速聚集反應,並由免疫系統排除的過程。半乳糖凝集素-3 為綠色,李斯特菌為紅色,溶酶體為藍色,其中的第 64 分鐘到第 79 分鐘,半乳糖凝集素-3 快速聚集。圖/Glycobiology

至於半乳糖凝集素在細胞「外」的功能?對於這個問題,劉扶東坦承,「雖然知道半乳糖凝集素這麼久了,半乳糖凝集素在人體細胞外面有什麼功能,我們真的不知道,不過已有無數的文章有敍述在試管内(in vitro)看到的功能。」半乳糖凝集素在少數情況下會離開細胞,並可能與細胞膜或其他蛋白質上的醣類結合,然而細胞外的半乳糖凝集素在活體內實際去了哪裡,產生了什麼作用,還有待科學進一步探究。

如果可以在細胞外專一追蹤半乳糖凝集素家族,對於生醫藥物發展會相當有用,但是目前的科學技術還無法做到。

創造更多突破

劉扶東強調,半乳糖凝集素的內源性功能已有許多研究成果證實。時至今日,若在期刊網站搜尋,可以在全世界找到近萬篇與半乳糖凝集素有關的科學文獻,每年的相關研究多到劉扶東難以一一追蹤。

如此豐富的研究成果,已成為臨床醫藥的新發展方向。目前已有生技公司著手研發半乳糖凝集素抑制劑(inhibitor),來抑制細胞不正常的發炎反應,例如瑞典公司 Galecto 即以抑制半乳糖凝集素-3 為目標,已研發出小分子藥物(galectin-3 inhibitor, GB0139, formerly TD139)來對抗特發性肺纖維化(idiopathic pulmonary fibrosis)並已得到歐洲藥品管理區(EMA)及美國食品藥物管理局(FDA)核准。

除了半乳糖凝集素-3,劉扶東認為,半乳糖凝集素-7、半乳糖凝集素-8、半乳糖凝集素-12 都有可能進一步發展藥物。若能組成專業團隊,加上跨領域合作,結合不同領域的知識與技術,就能彼此加成,找到更多突破機會。

許多科學創新,不單單只靠一個人就能達成,「我很幸運,實驗室裡有很多優秀的人才一起研究,也和許多團隊合作。」劉扶東期待能夠在臺灣促成更多的合作機會,讓不同實驗室之間結盟,就能凝聚成更大的力量。

延伸閱讀

  1. Liu, F. T., & Stowell, S. R. (2023). The role of galectins in immunity and infectionNature Reviews Immunology
  2. Cummings, R. D., Liu, F.-T., Rabinovich, G. A., Stowell, S. R., & Vasta, G. R.(2022). Chapter 36 Galectins. In Essentials of Glycobiology (4th ed.). Cold Spring Harbor Laboratory Press. 
  3. Wang, S., Hung, Y., Tsao, C., Chiang, C., Teoh, P., Chiang, M., . . . Liu, F.-T. & Chen, H. (2022). Galectin-3 facilitates cell-to-cell HIV-1 transmission by altering the composition of membrane lipid rafts in CD4 T cellsGlycobiology, 32(9), 760–777.
  4. Hong, M.-H., Weng, I.-C., Li, F.-Y., Lin, W.-H., & Liu, F.-T. (2021). Intracellular galectins sense cytosolically exposed glycans as danger and mediate cellular responsesJournal of Biomedical Science, 28(1). 
  5. Lo, T. H., Chen, H. L., Yao, C. I., Weng, I. C., Li, C. S., Huang, C. C., Chen, N. J., Lin, C. H., & Liu, F. T. (2021). Galectin-3 promotes noncanonical inflammasome activation through intracellular binding to lipopolysaccharide glycansPNAS, 118(30). 
  6. Weng, I.-C., Chen, H.-L., Lo, T.-H., Lin, W.-H., . . . Liu, F.-T. (2018). Cytosolic galectin-3 and -8 regulate antibacterial autophagy through differential recognition of host glycans on damaged phagosomesGlycobiology, 28(6), 392–405. 
  7. Johannes, L., Jacob, R., & Leffler, H. (2018). Galectins at a glanceJournal of Cell Science, 131(9). 
  8. 中央研究院(2023)。腸細胞內辨識細菌表面聚糖的分子為控制腸道感染的重要關鍵,中研院生物醫學科學研究所。
  9. 慈濟大學醫學院(2022)。《大師傳習系列之十》劉扶東院士講座,YouTube。
  10. 興大通識中心(2020)。疾病治療新展望:聚焦醣科學-劉扶東院士,YouTube。
  11. 黃彥維、黃耿祥、楊智惠、劉潔(2020)。醣分子科學新知(二):半乳糖凝集素與腫瘤治療,科技大觀園。 
  12. 中央研究院(2017)。免疫療法抗癌新曙光|生物醫學科學研究所 劉扶東院士,YouTube。
  13. 中央研究院(2017)。發炎反應與疾病―亦敵亦友的微妙關係|生物醫學科學研究所 劉扶東院士,YouTube。
研之有物│中央研究院_96
296 篇文章 ・ 3420 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

2

6
2

文字

分享

2
6
2
有這麼好的事?吃起來是糖,卻幾乎沒有熱量:新型甜味劑「阿洛酮糖」
羅紹桀
・2021/07/29 ・7503字 ・閱讀時間約 15 分鐘

本文首次發表於原作者的個人網站:阿洛酮糖:醫療價值、淺在功效及副作用,以及烘焙應用-別人Google了什麼。

阿洛酮糖(allulose)吃起來是糖的味道,化學式與果糖相同,用於烘焙時會跟一般蔗糖、果糖一樣焦糖化,卻幾乎沒有熱量也不會影響血糖?世界上有這麼好的事?

阿洛酮糖是市面上的一種新型甜味劑,它具有糖的味道和質地,但含有極少的的卡路里和碳水化合物,早期研究更表明它可能對健康有益。然而,與任何代糖一樣,目前現有研究可能無法預測長期食用的對安全和健康影響。本文將整理現有研究對阿洛酮糖的了解,以幫助讀者在與醫師討論之後,判斷是否該使用阿洛酮糖作為糖的替代產品。

在進入文字細節之前,可以先看一下我整理的PAA阿洛酮糖影片,快速先了解重點(直接播放就會有中文字幕):

阿洛酮糖:真的糖,嘗起來像糖,但幾乎不含卡路里? 真有這麼好的事?

看完影片了嗎?(喜歡就順便按一下訂閱吧!)接下來我們就要來談更多阿洛酮糖的細節,先從什麼是阿洛酮糖開始吧!

-----廣告,請繼續往下閱讀-----

什麼是阿洛酮糖?

阿洛酮糖(allulose)又被稱作 D-阿洛酮糖(D-psicose)。它被歸類為“稀有糖”(rare sugar),因為在天然的情況下,極微量的阿洛酮糖存在於某些食物中。含有微量阿洛酮糖的食物包含小麥、無花果等等。

像葡萄糖和果糖一樣,阿洛酮糖是一種單醣(monosaccharide)。我們一般使用的蔗糖,則是由葡萄糖和果糖結合而成的二糖(disaccharide)。

阿洛酮糖的化學式與果糖相同,但排列方式不同。但也因為如此,這種結構上的差異會導致的身體代謝阿洛酮糖方式跟代謝果糖的方式完全不同。根據一篇 2010 年發表於《Metabolism》期刊的研究,人體攝入的的阿洛酮糖會有 70-84% 被從消化道吸收到血液之中,但它不會被作為身體所需的熱量使用,而是會直接從尿液中被排出。[1]

對於患有糖尿病或正在血糖不穩定的人來說,阿洛酮糖是很好的代糖,因為它不會提高血糖或胰島素水平。阿洛酮糖每克僅 0.2-0.4 卡路里的熱量,約為一般食用糖卡路里的 1/10。

-----廣告,請繼續往下閱讀-----
阿洛酮糖的熱量,約為一般食用糖卡路里的 1/10。圖/pexels

此外,2015 年發表於《Pharmacology & therapeutics》期刊的研究更發現阿洛酮糖具有抗炎性(Anti-inflammatory),也有助於預防肥胖和降低其他並發患慢性病的風險。

雖然在某些食物中含有極微量的阿洛酮糖,但因為量實在太少難以量產,製造商因此開發出使用酶將玉米和其他植物中的果糖轉化為阿洛酮糖的量產發方式,終於能實現量產。 [3]

阿洛酮糖是一種稀有糖,其化學式與果糖相同。 但因為它不會被身體代謝,所以它不會升高血糖或胰島素水平,卡路里也極低。

阿洛酮糖也許能幫助血糖控管

阿洛酮糖或許有潛力成為糖尿病患者的替代糖,並幫助血糖控管。神奇的是,這裡講的可能不只是阿洛酮糖代糖功能而已,許多研究認為阿洛酮糖有能在「同樣程度的飲食狀態下」,潛在降低血糖的功能。

事實上,許多動物研究發現,它可以通過保護胰腺中產生胰島素的 β 細胞,進而降低血糖、增加胰島素敏感性並降低患 2 型糖尿病的風險。[4][5][6][7]

-----廣告,請繼續往下閱讀-----

一項 2012 年發表於《Biochemical and biophysical research communications》期刊的研究比較給予過胖的大鼠阿洛酮糖、水或葡萄糖,發現食用阿洛酮糖的大鼠比其他兩組具有改善的 β 細胞功能、更好的血糖反應和較少的腹部脂肪增加。需注意的是以上研究結果為動物實驗,阿洛酮糖是否對人體有相似或相同的功能,還有待後續研究證實。[7]

2012 年的研究結果顯示,食用阿洛酮糖的大鼠有更好的血糖反應和較少的腹部脂肪增加。圖/pexels

人類研究的部分,一些初步研究也發現阿洛酮糖可能對人類的血糖調節能產生有益影響。[8][9] 一項2008年發表於《Journal of nutritional science and vitaminology》的研究招募了 20 名健康的年輕人並分成兩組,一組食用了了 5-7.5 克阿洛酮糖和 75 克糖麥芽糊精(maltodextrin),另一組只單獨服用麥芽糊精,結果發現與「單獨服用麥芽糊精組」相比,「同時服用阿洛酮糖組」的受試者血糖和胰島素水平有顯著的降低。[8]

另一項發表於 2010 年發表於《Bioscience, biotechnology, and biochemistry》期刊的雙盲安慰劑對照試驗研究則招募了26 名成年人,這項研究中部分受試者為糖尿病前期患者(prediabetes)。研究者使用把受試者分為兩組,一組直接用餐,另一組則同時食用 5 克阿洛酮糖。飯後兩個小時,受試者每 30 分鐘測量一次血糖。研究人員發現,服用阿洛酮糖的參與者在 30 和 60 分鐘時血糖水平顯著降低。

要注意的是,以上皆為小樣本小規模的研究,因此阿洛酮糖潛在治療糖尿病和糖尿病前期患者的功能還有待後續研究才能確保是否能作為長期治療的應用,但迄今為止的科學證據都偏向正面。

-----廣告,請繼續往下閱讀-----

在動物和人類研究中,已發現阿洛酮糖可能可以降低血糖水平、增加胰島素敏感性並有助於保護產生胰島素的胰腺 β 細胞。但長期使用的效果和副作用尚未明朗,還有待後續研究追蹤。

阿洛酮糖或許能幫助脂肪燃燒!

許多大鼠進行的動物實驗發現,阿洛酮糖也可能有助於促進脂肪燃燒。

在一項於 2012 年發表於《Journal of food science》期刊的研究中,過胖的大鼠被餵食含有阿洛酮糖、蔗糖或赤蘚糖醇(Erythritol ,為另一種市面上常見的代糖)的高脂肪飲食八週。結果發現,與餵食赤蘚糖醇或蔗糖的大鼠相比,餵食阿洛酮糖的大鼠八週內增加的腹部脂肪比較少。

很有趣的地方是,與阿洛酮糖一樣,赤蘚糖醇也幾乎沒有卡路里,也不會升高血糖或胰島素水平。儘管如此,此研究發現阿洛酮糖除了可以和赤蘚糖醇一樣作為代糖,還有減少脂肪形成的額外功能。[11]

另一項 2014 年發表於《International journal of food sciences and nutrition》期刊的研究中,食用高糖飲食的大鼠被同時餵食含有 5% 的纖維素(cellulose)或 5% 的阿洛酮糖。與纖維素組的大鼠相比,阿洛酮糖組夜間燃燒了更多的卡路里和脂肪,進而因高糖飲食而導致的脂肪增加少很多。

-----廣告,請繼續往下閱讀-----

阿洛酮糖的燃脂以及防止體脂肪形成功能也受到目前一些小規模人體實驗的支持,一項於 2018 年發表於《Nutrients》期刊的雙盲安慰劑對照試驗研究探討阿洛酮糖是否有助於減少體脂、影響血液膽固醇和影響糖尿病標誌物。結果表明,與服用安慰劑的人相比,飲用高劑量阿洛酮糖飲料的人的體脂百分比、體脂量和 BMI 指數都顯著降低。[14] 這項研究招募了 121 名 20-40 歲不等的南韓受試者,將其分為三組,一組服用蔗糖(0.012 g × 2 次/每日)、一組服用少量阿洛酮糖(4 g × 2 次/每日)、一組服用高劑量阿洛酮糖(7 g × 2 次/每日)。

研究人員接著使用 CT 掃描來檢查參與者腹部脂肪區域的變化。在研究結束時,與服用安慰劑的人相比,飲用高劑量阿洛酮糖組的人的總脂肪面積顯著減少。

這項研究的結果表明,用阿洛酮糖作為代糖可能可以為超重的人帶來潛在的額外好處。然而這項研究為小樣本研究,因此研究人員在未來需要在更多樣化的樣本中進行進一步研究以證實這些結果。

研究的結果表明,用阿洛酮糖作為代糖可能可以為超重的人帶來潛在的額外好處。圖/pexels

動物實驗與小樣本人體實驗表明,阿洛酮糖可能會增加脂肪燃燒並有助於預防肥胖。然而,研究人員在未來需要在更多樣化的樣本中進行進一步研究以證實這些結果。

阿洛酮糖或許能助於預防脂肪肝

一些對大鼠和小鼠的動物研究發現,除了防止體重增加外,阿洛酮糖似乎還可以減少肝臟中的脂肪儲存。[15][16] 一項 2010 年發表於《Journal of food science》期刊的研究中,患有遺傳性糖尿病的小鼠被給予阿洛酮糖、葡萄糖、果糖或無糖飲食,結果發現與無糖飲食的小鼠相比,阿洛酮糖組小鼠的肝臟脂肪減少了 38%。同時與其他組相比,阿洛酮糖組小鼠的體重增加較少,血糖水平也較低。

-----廣告,請繼續往下閱讀-----

阿洛酮糖或許能幫助減少脂肪同時保留肌肉

很多人在減脂的過程中最害怕的就是同時流失肌肉,一項以小鼠為樣本的研究發現,阿洛酮糖除了能潛在促進肝臟和身體脂肪減少,它很有可能還可以同時防止肌肉流失。[17]這項 2015 年發表於《Journal of food science》期刊的研究發現小鼠攝入阿洛酮糖十五週後顯著降低了體重和肝臟的重量,並且體重的減輕與包括腹部內臟脂肪在內的總脂肪量的減少有關,而不是非脂肪包括肌肉等的體重。這些結果表明,在沒有運動療法或飲食限制的情況下,補充阿洛酮糖可能可以改善餐後高血糖和肥胖相關的肝脂肪指數。因此,阿洛酮糖可作為潛在預防和改善肥胖和肥胖相關疾病的補充劑。

阿洛酮糖或許能幫助減少脂肪同時保留肌肉。圖/pexels

當然啦,由於以上皆為動物實驗,還要再觀望後續的人體研究才得以證實相同功效能也能在人體產生。

對小鼠和大鼠的研究發現,阿洛酮糖也許可以降低患脂肪肝的風險,也可能在促進脂肪減少的同時幫助保留肌肉。但由於目前研究數量有限且多為動物實驗,我們可能要繼續觀望將來對人體進行的研究才能下結論。

阿洛酮糖安全嗎?有什麼副作用嗎?

很多人看到這裡一定覺得「天底下哪有這麼好的事!」,竟然有一種糖不但吃了不會變胖、不會升高血糖、不會引響胰島素分泌,還能減脂預防脂肪肝?不可能!阿洛酮糖一定跟其他的代糖一樣有不為人知的副作用!本段就來討論目前對於阿洛酮糖的研究中,對於阿洛酮糖副作用的已知資訊,以及美國食藥署與歐盟對阿洛酮糖目前的管制狀態。

2012 年 6 月,美國食品藥品監督管理局 (FDA) 首次接受了南韓食品公司 CJ CheilJedang, Inc. 的通報,准許將阿洛酮糖作為各種特定食品類別中的代糖,並被 FDA 認可為「普遍認為安全」 (generally recognized as safe,GRAS),不過在當時,食品公司還是必須在產品包裝上將阿洛酮糖視為一般糖類,標注在食品標示上的總糖分和添加糖的糖分。2019 年 10 月,FDA 宣布阿洛酮糖可以不用算在營養標籤上的總糖量和添加糖量中,但必須把每公克 0.4 卡路里的碳水化合物標示上去。目前為止,歐盟則尚未允許阿洛酮糖的使用。

-----廣告,請繼續往下閱讀-----

就目前研究結果而言,阿洛酮糖「似乎是」安全的。兩項以大鼠作為樣本的動物實驗,持續餵食大鼠 3 至 18 個月的阿洛酮糖,研究結果均沒有發現阿洛酮糖對大鼠產生毒性或其他健康相關問題。[18][19]在一項研究中,大鼠被餵食每磅(0.45 公斤)體重約 1/2 克的阿洛酮糖,持續 18 個月。 到研究結束時,阿洛酮糖組的大鼠沒有發現明顯的副作用,也沒有與肝腎肥大相關的現象發生。 值得一提的是,此研究使用的阿洛酮糖劑量相當大, 換算成體重 150 磅(68 公斤)的成年人,等同於約為每天服用超過 1/3 杯的阿洛酮糖。但即使如此還是沒有發現顯著的負面副作用。

一項 2010 年發表於《Bioscience, biotechnology, and biochemistry》期刊的研究招攬 17 名受試者,一天三餐服用 5 克阿洛酮糖,共一日 15 克持續 12 週,也未發現任何的負面副作用。[20]

要注意的是,一項2018年發表於《Nutrients》期刊的研究發現有些人食用過量的阿洛酮糖可能會腹痛和腹瀉等腸胃不適的問題,根據其研究結果,較為安全的阿洛酮糖食用量為單次食用體重每公斤0.4克以下,以及單日食用量體重每公斤0.9克以下。也就是根據此研究,說如果您體重為50公斤,建議單次食用量最好不要超過20公克、每日食用量也最好控制在45公克以下。

從現有研究判斷,阿洛酮糖可能是安全的,適量食用不太可能導致健康問題。 然而,上述研究多為動物研究或小樣本人體試驗,長期食用阿洛酮糖是否會對降康造成負面影響,還有待進一步研究才能下定論。

使用極高劑量的阿洛酮糖進行長達 18 個月的動物研究後,沒有發現任何毒性或副作用的跡象。小規模人體實驗中,食用適量阿洛酮糖也未發現任何負面副作用。然而若單日大量食用,則可能造成腹痛和腹瀉等腸胃不適的問題。

針對長期服用阿洛酮糖對人體的影響的研究目前還很有限,但現有研究尚未發現任何嚴重的健康風險。然而,目前已發表相關研究多為動物研究或小樣本人體試驗,長期食用阿洛酮糖是否會對降康造成負面影響,還有待進一步研究才能下定論。

阿洛酮糖適不適合用來做烘焙點心呢?

阿洛酮糖和其他代糖最大的不同就是他其實技術上來說是「真的糖」,而且在烘焙的過程中,許多人都覺得阿洛酮糖和一般使用的蔗糖的化學反應很相似。美國一家專賣低碳烘焙產品的公司 Sweet Logic 就寫了一篇文章比較赤蘚糖醇與阿洛酮糖在烘焙過程上的差別,他們發現赤蘚糖醇的成品容易有結晶,也不會像真的糖一樣焦糖化,還有由於赤蘚糖醇是種糖醇(Sugar alcohol)所以吃的時候會有一種酒精蒸發時的奇怪冰涼感,阿洛酮糖就完全沒有上述問題,所以他們比較喜歡阿洛酮糖。但注意阿洛酮糖的甜度只有蔗糖的 70%,所以要達到相同的甜度需要增加更多的阿洛酮糖,同時也可能增加成品的體積。

阿洛酮糖的甜度只有蔗糖的 70%,所以要達到相同的甜度需要增加更多的阿洛酮糖。圖/pexels

如果搜尋了有關於利用阿洛酮糖作為烘焙用糖的食品科學論文,會找到一些滿有趣的研究。一項 2020 年發表於《Journal of Food Processing and Preservation》期刊的研究,烤了25%、50%、75% 和 100% 的阿洛酮糖磅蛋糕,還有一個 100% 蔗糖的磅蛋糕當控制組,比較了五種蛋糕烘烤的狀態和成品,發現隨著阿洛酮糖的比例增加,磅蛋糕外層焦糖化的速度就越快 (就像烘焙師說的阿洛酮糖跟蔗糖比比較容易烤焦),但五種磅蛋糕的質地沒有顯著差異。[21]

另一項 2021 年發表於《LWT》期刊的研究則比較阿洛酮糖和蔗糖做的杯子蛋糕,也得到相似的結果,有趣的是,這項研究另外發現由於阿洛酮糖蛋糕在烘烤過程中水分流失的速度比蔗糖蛋糕慢,而且通常需要比較久的時間烘烤才能達到跟蔗糖蛋糕一樣的質地,但是同時阿洛酮糖蛋糕的表皮也更容易烤焦,所以對烘焙師來說,拿捏阿洛酮糖蛋糕的烘烤溫度和時間是相當大的考驗,但若拿捏得好,成品的口感、質地和味道可以和一般蛋糕十分相似。[22]

阿洛酮糖在烘焙的過程中與蔗糖相當相似,但甜度只有蔗糖的 70%,所以要達到相同的甜度需要增加更多的阿洛酮糖,同時也可能增加成品的體積。阿洛酮糖焦糖化的速度可能比蔗糖快也更容易烤焦,但實驗發現阿洛酮糖蛋糕通常需要比較久的時間烘烤才能達到跟蔗糖蛋糕一樣的質地,所以對烘焙師來說,拿捏阿洛酮糖蛋糕的烘烤溫度和時間是相當大的考驗,但若拿捏得好,成品的口感、質地和味道可以和一般蛋糕十分相似。

所以真的可以放心吃阿洛酮糖嗎?

簡單的答案就是:還是要跟你的醫師討論啦!

雖然我們目前為止,並沒有發現阿洛酮糖有嚴重的副作用,但就如其他代糖一樣,由於現有研究證據還是相當有限,所以到目前為止,並不清楚長期食用是否會對人體健康有任何負面的影響。

所以如果你想嘗試以阿洛酮糖取代一般的糖,還是跟醫生和營養師討論之後,再決定要直接使用,或是觀望後續研究吧!

編按:

臺灣 FDA 將其列為「未確認安全性尚不得使用之原料」

參考資料

  1. Iida, T., Hayashi, N., Yamada, T., Yoshikawa, Y., Miyazato, S., Kishimoto, Y., … & Izumori, K. (2010). Failure of d-psicose absorbed in the small intestine to metabolize into energy and its low large intestinal fermentability in humans. Metabolism, 59(2), 206-214.
  2. Hossain, A., Yamaguchi, F., Matsuo, T., Tsukamoto, I., Toyoda, Y., Ogawa, M., … & Tokuda, M. (2015). Rare sugar D-allulose: Potential role and therapeutic monitoring in maintaining obesity and type 2 diabetes mellitus. Pharmacology & therapeutics, 155, 49-59.
  3.  A new way to make allulose may not sweeten the sugar’s appeal. Food Dive. Retrieved 2021-07-08.
  4. Shintani, T., Yamada, T., Hayashi, N., Iida, T., Nagata, Y., Ozaki, N., & Toyoda, Y. (2017). Rare Sugar Syrup Containing d-Allulose but Not High-Fructose Corn Syrup Maintains Glucose Tolerance and Insulin Sensitivity Partly via Hepatic Glucokinase Translocation in Wistar Rats. Journal of agricultural and food chemistry, 65(13), 2888–2894. https://doi.org/10.1021/acs.jafc.6b05627
  5. Hossain, M. A., Kitagaki, S., Nakano, D., Nishiyama, A., Funamoto, Y., Matsunaga, T., Tsukamoto, I., Yamaguchi, F., Kamitori, K., Dong, Y., Hirata, Y., Murao, K., Toyoda, Y., & Tokuda, M. (2011). Rare sugar D-psicose improves insulin sensitivity and glucose tolerance in type 2 diabetes Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Biochemical and biophysical research communications, 405(1), 7–12. https://doi.org/10.1016/j.bbrc.2010.12.091
  6. Hossain, A., Yamaguchi, F., Hirose, K., Matsunaga, T., Sui, L., Hirata, Y., Noguchi, C., Katagi, A., Kamitori, K., Dong, Y., Tsukamoto, I., & Tokuda, M. (2015). Rare sugar D-psicose prevents progression and development of diabetes in T2DM model Otsuka Long-Evans Tokushima Fatty rats. Drug design, development and therapy, 9, 525–535. https://doi.org/10.2147/DDDT.S71289
  7. Hossain, A., Yamaguchi, F., Matsunaga, T., Hirata, Y., Kamitori, K., Dong, Y., Sui, L., Tsukamoto, I., Ueno, M., & Tokuda, M. (2012). Rare sugar D-psicose protects pancreas β-islets and thus improves insulin resistance in OLETF rats. Biochemical and biophysical research communications, 425(4), 717–723. https://doi.org/10.1016/j.bbrc.2012.07.135
  8. Iida, T., Kishimoto, Y., Yoshikawa, Y., Hayashi, N., Okuma, K., Tohi, M., Yagi, K., Matsuo, T., & Izumori, K. (2008). Acute D-psicose administration decreases the glycemic responses to an oral maltodextrin tolerance test in normal adults. Journal of nutritional science and vitaminology, 54(6), 511–514. https://doi.org/10.3177/jnsv.54.511
  9. Hayashi, N., Iida, T., Yamada, T., Okuma, K., Takehara, I., Yamamoto, T., Yamada, K., & Tokuda, M. (2010). Study on the postprandial blood glucose suppression effect of D-psicose in borderline diabetes and the safety of long-term ingestion by normal human subjects. Bioscience, biotechnology, and biochemistry, 74(3), 510–519. https://doi.org/10.1271/bbb.90707
  10. Ochiai, M., Nakanishi, Y., Yamada, T., Iida, T., & Matsuo, T. (2013). Inhibition by dietary D-psicose of body fat accumulation in adult rats fed a high-sucrose diet. Bioscience, biotechnology, and biochemistry, 77(5), 1123–1126. https://doi.org/10.1271/bbb.130019
  11. Chung, Y. M., Hyun Lee, J., Youl Kim, D., Hwang, S. H., Hong, Y. H., Kim, S. B., Jin Lee, S., & Hye Park, C. (2012). Dietary D-psicose reduced visceral fat mass in high-fat diet-induced obese rats. Journal of food science, 77(2), H53–H58. https://doi.org/10.1111/j.1750-3841.2011.02571.x
  12. Ochiai, M., Onishi, K., Yamada, T., Iida, T., & Matsuo, T. (2014). D-psicose increases energy expenditure and decreases body fat accumulation in rats fed a high-sucrose diet. International journal of food sciences and nutrition, 65(2), 245–250. https://doi.org/10.3109/09637486.2013.845653
  13. Nagata, Y., Kanasaki, A., Tamaru, S., & Tanaka, K. (2015). D-psicose, an epimer of D-fructose, favorably alters lipid metabolism in Sprague-Dawley rats. Journal of agricultural and food chemistry, 63(12), 3168–3176. https://doi.org/10.1021/jf502535p
  14. Han, Y., Kwon, E. Y., Yu, M. K., Lee, S. J., Kim, H. J., Kim, S. B., Kim, Y. H., & Choi, M. S. (2018). A Preliminary Study for Evaluating the Dose-Dependent Effect of d-Allulose for Fat Mass Reduction in Adult Humans: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients, 10(2), 160. https://doi.org/10.3390/nu10020160
  15. Nagata, Y., Kanasaki, A., Tamaru, S., & Tanaka, K. (2015). D-psicose, an epimer of D-fructose, favorably alters lipid metabolism in Sprague-Dawley rats. Journal of agricultural and food chemistry, 63(12), 3168–3176. https://doi.org/10.1021/jf502535p
  16. Baek, S. H., Park, S. J., & Lee, H. G. (2010). D-psicose, a sweet monosaccharide, ameliorate hyperglycemia, and dyslipidemia in C57BL/6J db/db mice. Journal of food science, 75(2), H49–H53. https://doi.org/10.1111/j.1750-3841.2009.01434.x
  17. Itoh, K., Mizuno, S., Hama, S., Oshima, W., Kawamata, M., Hossain, A., Ishihara, Y., & Tokuda, M. (2015). Beneficial Effects of Supplementation of the Rare Sugar “D-allulose” Against Hepatic Steatosis and Severe Obesity in Lep(ob)/Lep(ob) Mice. Journal of food science, 80(7), H1619–H1626. https://doi.org/10.1111/1750-3841.12908
  18. Matsuo, T., Ishii, R., & Shirai, Y. (2012). The 90-day oral toxicity of d-psicose in male Wistar rats. Journal of clinical biochemistry and nutrition, 50(2), 158–161. https://doi.org/10.3164/jcbn.11-66
  19. Yagi, K., & Matsuo, T. (2009). The study on long-term toxicity of d-psicose in rats. Journal of clinical biochemistry and nutrition, 45(3), 271–277. https://doi.org/10.3164/jcbn.08-191
  20. Han, Y., Choi, B. R., Kim, S. Y., Kim, S. B., Kim, Y. H., Kwon, E. Y., & Choi, M. S. (2018). Gastrointestinal tolerance of D-allulose in healthy and young adults. A non-randomized controlled trial. Nutrients, 10(12), 2010.
  21. Lee, P., Oh, H., Kim, S. Y., & Kim, Y. S. (2020). Effects of d‐allulose as a sucrose substitute on the physicochemical, textural, and sensorial properties of pound cakes. Journal of Food Processing and Preservation, 44(6), e14472.
  22. Bolger, A. M., Rastall, R. A., Oruna-Concha, M. J., & Garcia, J. R. (2021). Effect of d-allulose, in comparison to sucrose and d-fructose, on the physical properties of cupcakes. LWT, 111989.
所有討論 2
羅紹桀
19 篇文章 ・ 3 位粉絲
目前在美國一家數位行銷公司當SEO分析師,特別愛Google的What People Also Ask功能所以還特地開了一個Youtube頻道專門分享各種關鍵字會觸發什麼PAA。 影片皆有中文字幕歡迎訂閱:https://www.youtube.com/channel/UClgRDretD9XNp3ydod8TIlA/videos

0

3
2

文字

分享

0
3
2
沒病毒、不喝酒也得肝炎?認識非酒精性脂肪肝病
社團法人台灣國際生命科學會_96
・2021/01/11 ・2617字 ・閱讀時間約 5 分鐘 ・SR值 593 ・九年級

-----廣告,請繼續往下閱讀-----

  • 文/呂紹俊 副教授|臺大醫學院生化暨分生所副教授,研究領域:膽固醇及脂蛋白代謝、急性心肌梗塞及非酒精性脂肪肝的發炎機轉。

肝病為國人的常見疾病,更常居我國國人十大死因榜上。除了廣為人知的病毒性肝炎( A、B、C 型肝炎等),也有與飲食習慣等因素相關的酒精性肝炎、非酒精性肝炎等。近年來非酒精性肝炎因為與日常飲食相關、貼近國人生活而受到矚目。究竟什麼是非酒精性肝炎?什麼樣的飲食習慣可能提高風險?又該如何預防?本期 ILSI Taiwan 專欄邀請國立臺灣大學生物化學暨分子生物學研究所呂紹俊副教授,分享非酒精性脂肪肝病相關知識與預防方法,希望藉此使國人對此疾病有更多認識,並有更健康的日常飲食。

脂肪肝是肝細胞中有過多的脂肪(主要是三酸甘油酯)存積,主要是因為大量飲酒、肝炎病毒、藥物或是肥胖及代謝異常引起。過去比較瞭解的是過量飲酒所引起的酒精性脂肪肝,而現在比較引起注意的則是非酒精性脂肪肝 (Non-Alcoholic Fatty Liver Disease, NAFLD)。

非酒精性脂肪肝主要是由肥胖引起,並非因為飲酒、病毒或藥物所引起。非酒精性脂肪肝沒有症狀,不會有知覺,通常是超音波檢查才發現。在超音波檢查普及、檢查的人口數多了之後,發現在成年人有非酒精性脂肪肝的比例大約在二到三成左右。雖然在不同地區會有些差異,但都是相當大的人口數。

非酒精性脂肪肝主要是由肥胖引起。圖/Freepik

肥胖、高膽固醇飲食 拉近你與脂肪肝的距離

非酒精性脂肪肝通常與代謝異常或飲食不當有關,肥胖者有非酒精性脂肪肝的機率遠高於正常體重者。簡單的說,肥胖者的脂肪組織存積太多脂肪,一部份脂肪便會存積到肝臟或其他的組織。

另一可能是肥胖引起胰島素阻抗 (Insulin Resistance) ,胰島素升高會促使肝臟脂肪合成作用 (Anabolism) ,這在生化學上是一個熟知的作用。胰島素控制血糖平衡,血糖高時胰島素跟著提高,促使葡萄糖進入脂肪組織和骨骼肌細胞轉化為脂肪儲存或是氧化成能量;在肝臟則是合成肝醣儲存、氧化成能量或是乙醯輔酶 A (Acetyl-CoA) 再合成為脂肪酸及三酸甘油酯。

-----廣告,請繼續往下閱讀-----

因為體內肝醣的儲存量少,而脂肪的熱量密度高且儲存量大,因此攝取過多醣類的熱量往往轉變成脂肪儲存。依據這個道理,經常攝食甜食或含糖飲料者,因為攝取到過多熱量,加上胰島素促使合成反應的效應,進而促進肝臟合成脂肪而有脂肪肝的現象。

另一個造成非酒精性脂肪肝的原因是膽固醇,在日本有研究發現一些正常體重的人,卻有明顯的脂肪肝。學者分析這些人的飲食,發現他們的膽固醇攝取量偏高1

日本研究發現一些正常體重的人卻有脂肪肝。分析這些人的飲食後,發現他們膽固醇攝取量偏高。
圖/Freepik

美國第一次國家健康與營養調查研究 (The First National Health and Nutrition Examination Survey, NHANES I) 發現,肝硬化及肝癌的風險 (Risk Of Cirrhosis Or Liver Cancer) 與膽固醇攝取量有顯著正相關 (P = 0.007),但與血清膽固醇濃度卻沒有關聯性2

動物實驗也顯示,攝取高膽固醇飼料的動物(包括小鼠、大鼠、倉鼠與兔子)都有明顯的脂肪肝3 – 5。從生化學的角度來看,當肝臟中有過多的膽固醇時通常會以膽固醇酯的形式儲存於細胞的油滴中,同時也會促進三酸甘油酯等的合成以利超低密度脂蛋白 (Very Low Density Lipoprotein, VLDL) 形成,將多餘的三酸甘油酯與膽固醇分泌至血液中。

-----廣告,請繼續往下閱讀-----

若 VLDL 無法有效組成,將膽固醇及三酸甘油酯分泌到血液,則造成脂質存積於肝細胞中。因此,攝取過多的膽固醇會增加脂肪肝發生的機會是合理的,這也可以解釋為何有些體重正常的人也會有非酒精性脂肪肝的問題。另外,如果非酒精性脂肪肝患者又經常飲酒過量,可能會加速肝炎的發生,提高肝病惡化的機會。

動物實驗也顯示,攝取高膽固醇飼料的動物都有明顯的脂肪肝。圖/Freepik

輕視脂肪肝, 當心肝炎、心血管疾病找上門! 

一般而言,單純是因三酸甘油酯存積的脂肪肝,並沒有太大的問題,只要減輕體重,將多餘的熱量消耗掉,就會減少肝臟脂肪存積。不過要注意的是,有相當比例( 20-25 %左右)的非酒精性脂肪肝會發展成為非酒精性脂肪肝炎 (Non-Alcoholic Steatohepatitis, NASH) ,嚴重的會演變成肝纖維化甚至肝硬化,持續惡化也可能發展成肝癌。

問題是,從單純脂肪存積演變成非酒精性脂肪肝炎的原因並不清楚。有些動物實驗顯示,腸道菌滲漏及氧化低密度脂蛋白 (oxLDL) 可能是引起肝臟發炎的危險因子。非酒精性脂肪肝需要去防範,除了因為可能發展成為肝炎外,它與心血管疾病有強烈的關連性;但機制並不清楚,推測可能與引起發炎的危險因子有關。

上述的腸道菌滲漏及氧化低密度脂蛋白 (oxLDL) ,是熟知的動脈粥狀硬化的危險因子。這些因子可以引起巨噬細胞產生促發炎細胞激素 (Pro-inflammatory Cytokines) ,故推測也會引起肝臟庫佛氏細胞 (Kupffer Cells) 的發炎反應,而導致脂肪性肝炎。

-----廣告,請繼續往下閱讀-----

遠離脂肪肝該從何做起?

台灣過去是肝病大國,主要是 B 型及 C 型病毒肝炎,不過現在 B 型肝炎有疫苗防治,C 型肝炎也有藥物可以治療,兩種病毒性肝炎可以控制到相當的程度。近年因飲食習慣的改變,肥胖人口增加,反而是非酒精性脂肪肝病較為常見。

由於非酒精性脂肪肝轉變成肝炎、肝纖維化甚至肝硬化的機制並不清楚,而且到目前沒有 FDA 認證的藥物可以治療非酒精性脂肪肝炎。因此,預防脂肪肝的發生重於治療。

要預防非酒精性脂肪肝病首先要維持適當體重,減少過多體脂肪存積;避免經常攝食甜食或含糖飲料;也要控制膽固醇的攝取量。已經有脂肪肝者,且體重及體脂肪過高,更是要注意上述的飲食建議、避免飲酒過量,以及多運動以降低體脂肪。

參考資料

  1. Yasutake K, Nakamuta M, Shima Y, Ohyama A, Masuda K, Haruta N, et al. Nutritional investigation of non-obese patients with non-alcoholic fatty liver disease: the significance of dietary cholesterol. Scand J Gastroenterol. 2009;44:471–7.
  2. Ioannou GN, Morrow OB, Connole ML, Lee SP. Association between dietary nutrient composition and the incidence of cirrhosis or liver cancer in the United States population. Hepatology. 2009;50(1):175-84.
  3. Wouters K, van Gorp PJ, Bieghs V, Gijbels MJ, Duimel H, Lütjohann D, Kerksiek A, van Kruchten R, Maeda N, Staels B, van Bilsen M, Shiri-Sverdlov R, Hofker MH. Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis. Hepatology. 2008;48(2):474-86.
  4. Lai YS, Yang TC, Chang PY, Chang SF, Ho SL, Chen HL, Lu SC. Electronegative LDL is linked to high-fat, high-cholesterol diet-induced nonalcoholic steatohepatitis in hamsters. J Nutr Biochem. 2016;30:44-52.
  5. Liaw YW, Lin CY, Lai YS, Yang TC, Wang CJ, Whang-Peng J, Liu LF, Lin CP, Nieh S, Lu SC, Hwang J. A vaccine targeted at CETP alleviates high fat and high cholesterol diet-induced atherosclerosis and non-alcoholic steatohepatitis in rabbit. PLoS One. 2014;9(12):e111529.

此文轉載自【ILSI Taiwan 專欄】2020年第5期-非酒精性脂肪肝病 悄悄接近的健康危機

-----廣告,請繼續往下閱讀-----
社團法人台灣國際生命科學會_96
28 篇文章 ・ 8 位粉絲
創會於2013年,這是一個同時能讓產業界、學術界和公領域積極交流合作及凝聚共識的平台。期望基於科學實證,探討營養、食品安全、毒理學、風險評估以及環境的議題,尋求最佳的科學解決方法,以共創全民安心的飲食環境。欲進一步了解,請至:ww.ilsitaiwan.org