2

2
3

文字

分享

2
2
3

我的肺部壞掉了,直接把氧氣灌到直腸也可以?向泥鰍借鏡的屁之呼吸!

羅夏_96
・2021/06/02 ・3512字 ・閱讀時間約 7 分鐘

呼吸是件稀鬆平常的事,但卻是最重要的生理反應,人可以一周不吃、不喝而不死,但只要短短幾分鐘不呼吸,你的生命就會快速的逝去。

人的呼吸是透過肺臟來達成,在新冠疫情爆發的當下,許多病患因肺部受損面臨著無法呼吸的窘境,這是多麼致命的事!而近期發表在 Med 期刊上的研究,提供了我們呼吸的新思路1——屁之呼吸。

呼吸作用,把美食變成能量代幣

呼吸對生物非常重要,那為何生物需要呼吸呢?其實這與細胞進行的「呼吸作用」有關。

透過呼吸作用,細胞就可將食物分解,並將其轉換為可供細胞使用的能量代幣(三磷酸腺苷,也就是 ATP)。

這麼說起來看似非常簡單,但實際上呼吸作用非、常、複、雜!不是三言兩語可以講完(被生物化學荼毒過的各位夥伴,一起發出怒吼吧!)有機會再專門給大家講解。

呼吸作用的簡單示意。圖/Wikipedia

這邊我們只需要知道:呼吸作用的主要功能就是「產生能量」,而其中需要氧氣,最終產生廢棄物如二氧化碳。簡單來說,這是一種「氣體交換」的過程,提供氧氣給細胞進行呼吸作用的同時,也將呼吸作用產生二氧化碳給排出。

天哪!牠們竟然可以用直腸來呼吸!

不同的生物有不同的呼吸方法,微生物和一些構造簡單的生物(如水母),可靠擴散作用讓細胞直接進行氣體交換,而大型且構造複雜的生物,就需要由「呼吸系統」承接氣體交換的重任。

延伸閱讀:一定要有肺才能呼吸?來認識動物們的花式呼吸大法

以脊椎動物為例,脊椎動物需仰賴紅血球將氧氣提供給全身各個部位,同時將二氧化碳帶走,而紅血球則在呼吸系統中進行氣體交換。

其中,人類是透過「嘴巴、鼻子」將空氣吸入氣管、支氣管、肺部再到肺泡,讓紅血球在肺泡中進行氣體交換,接著再把空氣沿著反方向被鼻子和嘴巴呼出體外,達成我們最熟悉的呼吸模式。

人類的呼吸系統。圖/Wikipedia

提到海裡的生物們,大家應該都能夠很快的說出,魚類是靠「鰓」來進行呼吸,但你能想像嗎?有的水生生物竟然會用「腸子」來呼吸!

聽起來很匪夷所思吧,但其實早在 1950、60 年代,科學家們就發現一些水生動物如海參跟泥鰍,在缺氧的環境中能靠「腸呼吸」的方式來增進氣體交換的效率。因為它們的腸上皮細胞和人的肺泡一樣,細胞較薄且佈滿微血管,非常利於紅血球進行氣體交換。

有些泥鰍在缺氧的環境可以用腸呼吸來增進氣體交換。圖/Wikipedia

當科學家們發現泥鰍的腸呼吸後,就非常好奇:

哺乳動物的直腸上皮細胞也很薄、也佈滿微血管,既然泥鰍可以,那麼哺乳動物是否也能進行腸呼吸呢?

因此,科學家們很早就興致勃勃地開始對此進行研究,可惜當時的研究並沒有給出明確的答案,此後這一直是不少科學家爭論的話題。

近期,一個日、美聯合的研究團隊,重新開始針對這個問題深入研究,並提出了更清楚的答案1

把氧氣直接灌入小鼠屁屁吧!

研究團隊首先設計一個腸道氣體通氣系統 (Enteral ventilation Via Anus , EVA),而 EVA 系統可以輸入純氧到小鼠的直腸。

首先,研究團隊比較了一般小鼠和 EVA 系統小鼠在極低氧條件下的表現:正常小鼠只能存活 11 分鐘,而使用 EVA 系統的小鼠的存活時間也不長,比起一般小鼠僅有增加一點點,延長到了 18 分鐘。

不樂觀的初步結果並沒有擊倒研究團隊,研究團隊進一步實驗發現,當切除小鼠直腸細胞的黏膜層之後,就可以增加氣體在直腸內的通透性,讓腸呼吸的效果更好。最終數據也顯示,切除直腸黏膜層、使用 EVA 系統的小鼠,在極低氧的條件下存活時間可以上升到 50 分鐘!

由此可知,小鼠確實能透過腸呼吸來克服缺氧環境。

EVA系統示意(左);EVA 系統用在直腸黏膜層切除的小鼠上,在缺氧環境下能存活更久(右)。圖/參考資料 1

進化!I-EVA 系統將含氧液體輸入直腸

雖然這個結果證實了小鼠確實能進行腸呼吸,但鑒於 EVA 必須切除直腸的黏膜層才可以有效,這顯然不適合人類使用。因此研究團隊決定改變策略,將高含氧的「液體」直接灌入直腸內。

研究團隊選中全氟萘烷這個氟碳化合物,全氟萘烷是一種惰性液體,常溫下幾乎不會和人體反應且非常穩定,而且全氟萘烷有著極高的溶氧量,正常情況下每 100 mL 的全氟萘烷能溶解 49 mL 的氧氣,在醫療上不僅可做為液體氧氣使用,臨床上也證實將全氟萘烷灌入呼吸衰竭的病患肺部內,能有效緩解病患氧氣不足的問題2

全氟萘烷的化學式。圖/Wikipedia

研究團隊把這種使用充氧全氟萘烷的腸道通氣系統稱為 I-EVA (liquid-based Enteral ventilation Via Anus)。和沒有使用 I-EVA 的小鼠相比,使用 I-EVA 的小鼠在低氧氣室中(含氧量 9.5%)走得更遠,並且有更多的氧氣到達它們的心臟。

(A)I-EVA 系統示意。(B)使用I-EVA系統的小鼠上在缺氧環境下能移動更長距離(D、E、F) 使用 I-EVA 系統的會有更多氧氣到小鼠的心臟中。圖/參考資料 1

大鼠與豬:血液含氧量上升、少副作用

I-EVA 在大鼠與豬的實驗中也得到不錯的結果:

  • 大鼠和小鼠一樣,使用 I-EVA 後,大鼠能在缺氧環境中行走更遠的距離。
  • 豬在缺氧環境下,皮膚會呈現蒼白無血色的冰冷狀態,但使用 I-EVA 後,豬的皮膚就變得溫暖且充滿血色,和豬在正常氧的情況下很接近。

另外,不論大鼠還是豬,在缺氧環境下使用 I-EVA,其血液內的含氧量皆有明顯上升;測試 I-EVA 的在大鼠和豬身上的生理影響後,數據也顯示 I-EVA 幾乎不會產生甚麼副作用!

 I-EVA 系統在豬身上使用的流程圖。圖/參考資料 1

綜合以上的結果,顯示 I-EVA 確實能緩解哺乳動物的缺氧問題,也證實了哺乳動物確實也能進行「腸呼吸」!

人類也能用屁屁進行腸呼吸嗎?

既然小鼠、大鼠到豬都能進行腸呼吸,那人類可以嗎?答案是:不確定。

雖然從上述的結果來看,理論上人類應該也能使用 I-EVA 系統進行腸呼吸,但這需要更多的實驗與測試。對此,研究團隊非常樂觀,也表示已經開始著手臨床試驗的相關準備了。

研究團隊認為腸呼吸法應該也能應用在人類身上。圖/參考資料 1

雖然知道人類也可能進行「腸呼吸」、從屁股灌入含氧液體讓人印象深刻,但這項研究真正的重要性在於提供氣體交換的新方法。

近期新冠疫情的爆發,讓許多病患的肺部受到嚴重的損害,而肺部的損傷會降低紅血球在肺部氣體交換的效率,這時即便使用呼吸治療器也未必能讓病患的紅血球獲得充分的氣體交換。因此,面對肺功能受損的病患,腸呼吸也許有可能成為不錯的替代方案。

那些人類進行「腸呼吸」前的二三事

真要施行起來,恐怕還是有不少問題要克服。

你也想來個屁之呼吸嗎?圖/Pixabay

首先,既然是將全氟萘烷灌入直腸內,那是否需要先將病患的腸子洗乾淨呢?再來要用腸替代肺呼吸,那勢必要持續灌入全氟萘烷,腸子能承受住液體這樣持續的灌入嗎?最後是腸道功能的問題,腸畢竟不是拿來呼吸的器官,而是吸收營養與排便的,讓腸替代肺作為呼吸器官,勢必會影響腸的正常功能。

上述這些問題,在正式施行腸呼吸前,都要審慎思考。

雖然仍有不少問題有待解決,但腸呼吸作為肺功能衰竭病患的替代方案仍有著不錯的吸引力,就讓我們期待未來「腸呼吸」這種詭異的方式是否也能應用在人類身上吧!

參考資料

  1. Mammalian enteral ventilation ameliorates respiratory failure
  2. 全氟萘烷

數感宇宙探索課程,現正募資中!

文章難易度
所有討論 2
羅夏_96
52 篇文章 ・ 363 位粉絲
同樣的墨跡,每個人都看到不同的意象,也都呈現不同心理狀態。人生也是如此,沒有一人會體驗和看到一樣的事物。因此分享我認為有趣、有價值的科學文章也許能給他人新的靈感和體悟


2

2
4

文字

分享

2
2
4

為何新冠病毒突變之後傳染力更強?——關鍵在於變異株的棘蛋白結構

研之有物│中央研究院_96
・2022/01/25 ・5088字 ・閱讀時間約 10 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/寒波
  • 美術設計/林洵安

為何新冠病毒突變之後傳染力更強?

COVID-19 至今仍深深影響全人類,新冠病毒持續演化,例如曾經造成臺灣大規模社區感染的 Alpha 變異株、傳染力更強的 Delta 變異株,近期出現的 Omicron 變異株等,它們逃避免疫系統的能力都不一樣,關鍵就在不同的棘蛋白(spike protein)結構。「研之有物」專訪中央研究院生物化學研究所徐尚德副研究員,他的團隊陸續解析各種新冠病毒變異株的棘蛋白結構,不但能釐清新的突變帶來的威脅,後續也可作為研發人造抗體的指引。

徐尚德手上拿著新冠病毒的棘蛋白模型,顯示棘蛋白與兩種不同抗體結合的情況。圖/研之有物

解析新型冠狀病毒棘蛋白

COVID-19 的病原體是一種冠狀病毒,和 SARS 病毒是近親,正式命名為 SARS-CoV-2,中文常稱作新型冠狀病毒。為了知道病毒如何感染人體細胞,以及如何逃避免疫系統的辨識,我們需要進一步瞭解冠狀病毒表面的棘蛋白結構。

結構為什麼重要?因為結構會影響蛋白質功能。蛋白質是由不同的氨基酸所組成的長鏈,實際作用時會摺疊形成特別立體結構,而冠狀病毒的蛋白質中,又以棘蛋白最為關鍵。

徐尚德強調,棘蛋白是冠狀病毒暴露在表面的蛋白質之一,絕大多數被感染者的免疫系統所產生的抗體都是辨識棘蛋白。因此現今臨床使用的蛋白質次單元疫苗、腺病毒疫苗以及 mRNA 疫苗,都是以棘蛋白為基礎來研發。

Cryo-EM 讓蛋白質結構無所遁形

工欲善其事,必先利其器。解析蛋白質結構的方法很多,早期的 X 光晶體繞射(X-ray diffraction),就像將影片定格截圖,但不一定為蛋白質實際作用的狀態。

再來是核磁共振(Nuclear Magnetic Resonanc,簡稱 NMR),這是徐尚德留學深造時的專業,可以重現蛋白質在水溶液中的結構及動態,更接近實際作用的形態,可惜不適合分子量較大的分子。

目前結構生物學最具潛力的新技術是:冷凍電子顯微鏡(Cryogenic Electron Microscopy,簡稱 Cryo-EM),Cryo-EM 可以拍出原子尺度下高解析度的三維結構,此技術於 2017 年獲得諾貝爾化學獎。中研院則於 2018 年開始添購 Cryo-EM 設備,而 Cryo-EM 正是徐尚德用來解析棘蛋白結構的主要利器!

在 COVID-19 疫情爆發初期(2020 年 1 月),徐尚德就率先啟動新冠病毒的結構分析,當時他的研究團隊剛好已分析過感染貓科動物的冠狀病毒,對於解析棘蛋白結構有一定經驗,可說是贏得先機。

具體來說,如何用 Cryo-EM 解析新冠病毒的棘蛋白結構?

首先要大量培養新冠病毒、再分離、純化得到棘蛋白。接下來,將大量蛋白質樣本鋪成薄薄一層液體,之後以 -190℃ 急速冷凍,讓蛋白質分子保持凍結前的形態,最後用程式重建棘蛋白的三維影像。徐尚德譬喻,就像一匹馬在高速移動時,連續拍攝許多照片,再將照片疊加起來,重建馬的形狀。

棘蛋白的體積已經算大,假如又與其他蛋白質結合,體積將會更大。能解析如此龐大結構為 Cryo-EM 一大優點,但是也會創造很大的資料量。徐尚德強調,用 Cryo-EM 分析蛋白質結構不只做實驗,也要協調資料處理等疑難雜症。

冷凍電子顯微鏡可以紀錄同一時間下、不同狀態的蛋白質三維立體結構。圖/研之有物

關鍵 D614G 突變,讓新冠病毒棘蛋白穩定性大增

儘管已有貓冠狀病毒的經驗,徐尚德研究團隊初期仍經歷一陣摸索,一大困難在於,做實驗時發現不少棘蛋白壞掉,不再保持原本的結構。

這是因為一般取得蛋白質樣本後會置於 4°C 冷藏,但 4°C 其實不適合保存棘蛋白。接著徐尚德細心觀察到,具備 D614G 突變的棘蛋白,保存期限竟然比沒突變的棘蛋白要長,可以從 1 天增加到至少 1 週。

什麼是 D614G 突變呢?武漢爆發 COVID-19 疫情的初版新冠病毒,其棘蛋白全長超過 1200 個胺基酸,D614G 突變的意思就是:第 614 號氨基酸由天門冬胺酸(aspartic acid,縮寫為 D)變成甘胺酸(glycine,縮寫為 G)。

D614G 突變誕生後,存在感持續上升,2020 年 6 月時已經成為全世界的主流,隨後新冠病毒 Alpha、Delta 等變異株,皆建立於 D614G 的基礎上。

儘管序列僅有微小差異,許多證據指出 D614G 突變會增加新冠病毒的傳染力。有趣的是,它也能大幅增加棘蛋白在體外的穩定性。因此在研究用途上,變種病毒的棘蛋白反而容易保存,徐尚德更指出,對抗變種病毒的蛋白質次單元疫苗(subunit vaccine)穩定性也會增加。

圖片為徐尚德實驗室提供的新冠病毒模型與三種不同的棘蛋白模型,棘蛋白的主體為白色,棘蛋白的受器結合區域(receptor binding domain,RBD)為藍綠色。圖/研之有物

新冠病毒棘蛋白的「三隻爪子」:受器結合區域

徐尚德參與的一系列新冠病毒結構研究,除了棘蛋白本身,還包含棘蛋白與細胞受器 ACE2 的結合、棘蛋白和人造抗體的結合。

既然要解析結構,儀器「解析度」能看清楚多小的尺度就很重要!蛋白質結構學的常見單位是 Å(10-10 公尺),原子與原子間的距離約為 2 Å,Cryo-EM 的極限將近 1 Å,不過棘蛋白大約到 3 Å 便足以重建立體結構。

冠狀病毒如何感染宿主細胞,和結構又有什麼關係?棘蛋白位於冠狀病毒的表面,直接接觸宿主細胞受器 ACE2 的部分,稱為受器結合區域(receptor binding domain,簡稱 RBD),結構可能展現「向上」(RBD-up)或是「向下」(RBD-down)的狀態。向下,RBD 便不會接觸宿主細胞的受器,缺乏感染能力,;向上,RBD 方能結合受器,引發後續入侵。

徐尚德團隊透過冷凍電子顯微鏡,拍攝新冠病毒 Alpha 株的棘蛋白結構,其中有三類棘蛋白的 RBD 為 1 個向上(佔 73%),有一類(類別3)的棘蛋白 RBD 則是 2 個向上(佔 27%)。圖/Nature Structural & Molecular Biology

新冠病毒表面的棘蛋白有「三隻爪子」(3 RBD),RBD 有可能同時向上(3 RBD-up),也可能只有 1~2 個向上,結構會影響病毒的感染能力。更詳細地說,棘蛋白某些胺基酸位置的差異,會影響結構的開放與封閉程度。

棘蛋白向上或向下是動態的,假如能保持穩定性,延長向上的時間,也有助於新冠病毒的感染。這正是徐尚德一系列研究下來,實際觀察到不同品系的變化。

截至 2022 年 01 月 18 日的新冠病毒品系發展歷史,其中 Delta 變異株擁有最多品系,而 Omicron 變異株則開始興起。雖然 Omicron 的品系並不多,但已逐漸成為主流。圖/Nextstrain; GISAID

一網打盡所有高關注變異株的結構變化

和武漢最初的新冠病毒相比,D614G 突變帶來什麼改變呢?簡單說:棘蛋白向上的比例增加了,導致整個結構變得更加開放,增加新冠病毒對宿主受器的親合力(affinity)。

以 D614G 為基礎,接下來又獨立衍生出數款品系,皆具備多個突變,傳染力、抵抗力更強 。影響最大的是首先於英國現身的 Alpha(B.1.1.7)、南非的 Beta(B.1.351)、巴西的 Gamma(P.1),以及更晚幾個月後,於印度誕生的 Kappa(B.167.1)與 Delta(B.167.2)。Alpha 一度於世界廣傳,導致包括臺灣在內的嚴重疫情,不過隨後不敵優勢更大的 Delta。

對於上述品系,徐尚德率隊一網打盡。 Alpha 的棘蛋白結構解析已經發表於 《自然-結構與分子生物學》(Nature Structural & Molecular Biology)期刊,其餘新冠病毒變異株的論文仍在等待審查,目前能在預印網站 bioRxiv 看到,該研究一次報告 38 個 Cryo-EM 結構,刷新紀錄。

圖 a 顯示新冠病毒 Alpha 變異株棘蛋白的突變氨基酸序列,一共有 9 處突變, D614G 突變以紫色表示。
圖 b 顯示突變的氨基酸在立體結構中的位置。
圖/Nature Structural & Molecular Biology

Alpha 變異株的 RBD 向上結構穩定

一度入侵台灣造成社區大規模感染的 Alpha 株有何優勢?其棘蛋白除了 D614G,還多出 8 處胺基酸突變,徐尚德發現 N501Y(天門冬酰胺變成酪胺酸)、A570D(丙胺酸變成天門冬胺酸)的影響相當關鍵。

直覺地想,棘蛋白的外層結構才會與受器接觸影響傳染力,立體結構中第 570 號胺基酸的位置比較裡面,乍看並不要緊。但是徐尚德敏銳地捕捉到,A570D 突變會改變局部的空間關係,令「RBD 向上」的結構更加穩定。徐尚德形容為「腳踏板」(pedal-bin)── A570D 突變的效果就像踩著垃圾桶的腳踏板,讓桶蓋(也就是 RBD)穩定保持開啟。

事實上,棘蛋白總體向上的比例,Alpha 還比單純的 D614G 突變株更少,不過 A570D 增進的穩定性似乎優勢更大。研究團隊製作缺乏 A570D 突變的人造模擬病毒,嘗試體外感染人類細胞,發現感染力明顯減少,證實 A570D 突變頗有貢獻。

新冠病毒 Alpha 株棘蛋白的「A570D 突變」,會改變棘蛋白內部的空間,讓「RBD 向上」的結構更加穩定,就像踩著垃圾桶的腳踏板,讓桶蓋保持開啟。圖/研之有物(資料來源/徐尚德、Nature Structural & Molecular Biology

Alpha 變異株的棘蛋白親近宿主細胞,干擾抗體作用

另一個重要突變是 N501Y,不只 Alpha 有,Beta 等許多品系也有,Delta 則無。N501Y 在眾多品系獨立誕生,似乎為趨同演化所致。N501Y 能為病毒帶來哪些優勢?

第 501 號胺基酸位於棘蛋白表面,會直接與宿主受器 ACE2 結合。此一位置變成酪胺酸(tyrosine,縮寫為 Y)後,和受器的 Y41 兩個酪胺酸之間,容易形成苯環和苯環的「π–π stacking」鍵結,從而大幅提升棘蛋白對細胞的親合力。

新冠病毒 Alpha 株棘蛋白的「N501Y 突變」,讓 RBD 的胺基酸與宿主細胞受器 ACE2 形成「π–π stacking」鍵結,大幅提升棘蛋白對宿主細胞的親合力。圖/Nature Structural & Molecular Biology

另一方面,N501Y 突變也會干擾抗體的作用。中研院細胞與個體生物學研究所的吳漢忠特聘研究員,率隊研發一批針對棘蛋白的人造抗體,測試發現有一款抗體 chAb25 對 D614G 突變株相當有效,但是對 Alpha 株無能為力。徐尚德由結構分析發現:N501Y 改變了棘蛋白表面的形狀,讓抗體 chAb25 無法附著。

好消息是,另外有兩款抗體 chAb15、chAb45,依然能有效對抗 Alpha 病毒,不受 N501Y 影響。這兩款抗體會附著在棘蛋白 RBD 的邊緣,避免棘蛋白和宿主細胞接觸。而且抗體 chAb15、chAb45 會各占一方,可以同時使用,多面協同打擊病毒。

雖然新冠病毒 Alpha 株的棘蛋白表面讓某些抗體難以附著,還好仍有兩款抗體 chAb15(綠色)、chAb45(黃色)能有效「卡住」棘蛋白,干擾棘蛋白與宿主細胞結合。抗體 chAb15、chAb45 附著的位置,正好就是棘蛋白與宿主細胞結合的地方。圖/Nature Structural & Molecular Biology

棘蛋白結構不只胺基酸,還要注意表面的醣

有了 Alpha 的經驗,接下來分析 Beta、Gamma、Kappa、Delta 便順手很多。這批新冠病毒的棘蛋白變化多端,但是「RBD 向上」的整體比例皆超過 Alpha 和 D614G 突變株,可見適應上各有巧妙。徐尚德也發現,要釐清棘蛋白的結構,不能只關心蛋白質,還要考慮棘蛋白表面的醣基化(glycosylation)修飾。

蛋白質在完工後,某些胺基酸還能加上各種醣基。病毒蛋白質表面的醣基可以作為防護罩,干擾抗體和免疫系統的辨識。醣基化修飾就像替病毒訂作一套迷彩外衣,不同變異株的情況都不一樣,假如醣基化的位置和數量,由於突變而改變,便有可能影響立體結構,有助於它們閃躲抗體。例如和武漢原版新冠病毒相比,Delta 株棘蛋白少了一個醣化修飾,Gamma 株棘蛋白則多了兩處醣化。

還好從結構看來,並沒有任何突變組合能完美逃避抗體。例如由美國的雷傑納榮製藥公司(Regeneron)製作並通過緊急使用授權的抗體;以及中研院吳漢忠率隊研發,有望投入實用的多款人造抗體,對變異品系依然有效。這場人類與病毒的長期抗戰中,同時使用多款抗體的「雞尾酒」療法,仍然是可行的醫療方案。

回顧將近兩年來的研究之路,徐尚德表示:時間壓力真的非常大!COVID-19 疫情爆發後,全世界投入相關研究的專家眾多,只要稍有遲疑,便會落在競爭者後頭。但是即使跑在最前端的研究者,也只能苦苦追趕病毒演化的速度,一篇論文還在審查時,現實世界的疫情已經邁向全新局面。

人類要贏得勝利,必需全方面認識病毒,而結構無疑是相當重要的一環。


數感宇宙探索課程,現正募資中!

文章難易度
所有討論 2
研之有物│中央研究院_96
20 篇文章 ・ 8 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook