1

5
2

文字

分享

1
5
2

是誰在跳舞,電腦掐指一算就知道!

波留先生 M. Beaulieu_96
・2021/03/13 ・2945字 ・閱讀時間約 6 分鐘 ・SR值 517 ・六年級

-----廣告,請繼續往下閱讀-----

隨著機器學習(machine learning)技術的進步,我們能透過聲波的特徵將音樂分門別類,甚至找出一首歌的原唱是誰也早已不是什麼難事。

綜觀人類在音樂上的發展,應該不難發現,音樂是一門與舞蹈密切相關的藝術領域,也是舞蹈創作相當重要的元素之一。

如果我們已經可以用人工智慧分類音樂,那麼舞蹈是不是也能走上這條不歸路

音樂風格,決定你舞動的姿態!

音樂世界之大,存在各式各樣的風格與流派,人們可以透過節拍、配器、音色甚至氛圍來分辨華爾滋、巴薩諾瓦、倫巴、民謠、搖滾樂、迪斯可和電子樂等不同的音樂風格,並產生不同的身體律動。

萊莎菲爾(Micheline Lesaffre)等人於 2008 年的研究指出,多數人會以某種運動來詮釋自己所聽到的音樂,簡單如拍手或用腳打節拍,複雜一點,還可以根據音樂的不同跳著各種華麗的舞蹈。[1]

-----廣告,請繼續往下閱讀-----
我們聽到不同的音樂時,通常會演繹出不同風格的舞蹈。圖/Giphy

此外,過去幾項研究發現,音樂裡的所摻雜的各種聲音特質,也會造成自然的肢體動作大小與型態有所不同,例如,大鼓音量會影響舞者動作的程度與節奏[2],而貝斯與吉他在高低頻上的走勢與節奏型態,也和人們跳舞時頭部的旋轉速度、手伸展的距離、肩膀擺動的幅度等動作有關[3]

但是,這件事情並非全然與音樂的本質或生理因素有關,部分曲風或作品也會受到特殊文化或特定事件影響,而有不同的⋯⋯儀式化行為(X)!像是當人們聽到爵士樂時會不自覺地跳起搖擺舞(swing dancing),或在金屬搖滾樂現場熱血地在大肆衝撞。

更近一點的例子是荷蘭電音二人組 Vicetone 的爆紅單曲 Astronomia,聽到這首歌,你大概只會想著要跳黑人抬棺舞(Coffin Dance),才不會有自然舞動這種事咧!

2020年4月,抬棺舞(Coffin Dance)在全球爆紅,成為盛極一時的網路迷因。影/DigiNeko

隨音樂起舞的身心理過程

我們從聽到音樂刺激的輸入(input),到手舞足蹈的輸出(output),絕對少不了腦神經的各項指揮與指令傳輸。

-----廣告,請繼續往下閱讀-----

然而,音樂畢竟是充滿感情的產物,這種「一個指令、一個動作」的說法,似乎還是不足以回答「人們為何會自然而然地隨著音樂起舞」這個問題。

心理學中有一派的說法是,大腦並非決定認知的唯一器官,身體本身的感知與經驗,也會影響認知的判斷結果與行動,即所謂的體現認知(embodied cognition)[4]

舉例來說,當你手裡拿著一杯熱飲時,你可能會覺得眼前的人十分溫暖,換句話說,在描繪眼前景象的當下,身體其實也參了一咖。

曾有文獻指出,比起手握冰咖啡,當我們拿著熱咖啡時,比較容易覺得眼前的人讓人感到溫暖。圖/Pixabay

人們對音樂的體驗也是如此。

比利時根特大學(Ghent University)系統音樂學(systematic musicology)教授萊曼(Marc Leman)曾於 2008 年發表《體現音樂認知與冥想技術》(Embodied music cognition and mediation technology[5]一書。

-----廣告,請繼續往下閱讀-----

其中,針對音樂的體現認知,萊曼教授大致上的定義是:聽眾接收變化萬千的聲音形式後,透過內心、肢體或任何可行的方式分析與模仿,由此可知,當我們隨著音樂不自主地擺弄身軀時,也符合這樣的概念。

比起分析曲風,演算法更擅長分辨舞者本人

既然音樂與肢體動作間蘊藏著某種關聯性,如果今天某個人戴著耳機,自顧自地跳著舞,我們是否也能透過人工智慧(artifitial intelligence, AI),從舞者的動作型態分析他正在聽什麼樣的音樂?

芬蘭于韋斯屈萊大學(Jyväskylän yliopisto)跨域音樂研究中心團隊找來 73 名受試者,讓他們隨著藍調、鄉村、電子舞曲、爵士、金屬、流行、雷鬼以及饒舌等八個曲風自然擺動身體,並以好萊塢等級的動作捕捉技術(motion capture technology)搭配機器學習(machine learning)分析,試圖從人們的動作區分出舞蹈背後的音樂風格。[6]

研究結果顯示,雖然難以透過機器學習區分舞者搭配的音樂風格,但卻能分析出是誰在跳舞!

他們發現,當受試者在熱舞的時候,對於「肢體動作所對應的曲風」,演算法可準確分辨的時間不到三成,反而有將近 94% 的時間卻能判斷「是誰在跳舞」。

-----廣告,請繼續往下閱讀-----
比起舞蹈背後的音樂,演算法分析結果指出,不同人之間的舞蹈動作可能更加獨特而明顯。圖/Giphy

對此,研究協同作者兼資料分析師薩里(Pasi Saari)表示,舞蹈就像是人的另一副「指紋」,即便他們聽到的音樂不同,卻仍能保持著獨特的動作特徵。[7]

去(2020)年年初,研究團隊將這份研究結果發表於《新音樂研究期刊》(Journal of New Music Research),隨後獲選為計量學(Altmetrics)的 2020 年百大研究,排名 92。

舞步辨識大未來,有可能發生嗎?

等等,這是否意味著,如同手機上的指紋或臉部辨識,「舞蹈動作辨識系統」也將應運而生?

想像一下,人們站在手機面前大跳熱舞,只為了解鎖裝置,這個功能好像有點荒謬 XD

即便這個發現可能開啟生物辨識的另一種可能性,但可惜的是,卡爾森與團隊可能對於非音樂性的知識探討興趣缺缺,反倒比較想深入探討一些很根本的問題,包括:舞蹈模式是否會在生命週期裡發生改變、舞蹈動作的分析是否能找出文化之間的微妙差異,以及人們評鑑舞蹈動作的方式與電腦有何不同。

-----廣告,請繼續往下閱讀-----

雖然卡爾森並不打算藉此探索「舞蹈辨識」的未來,但不妨我們自己腦洞大開——假如有一天,這類「舞蹈辨識技術」發達到足以開發更實際的應用,也許我們會創造出到處都在 battle 的世界吧?XDDD

參考文獻

  1. Lesaffre, M., Voogdt, L. D., Leman, M., Baets, B. D., Meyer, H. D., & Martens, J. P. (2008). How potential users of music search and retrieval systems describe the semantic quality of musicJournal of the American Society for Information Science and Technology59(5), 695-707.
  2. Van Dyck, E., Moelants, D., Demey, M., Deweppe, A., Coussement, P., & Leman, M. (2012). The impact of the bass drum on human dance movement. Music Perception: An Interdisciplinary Journal30(4), 349-359.
  3. Burger, B., Thompson, M. R., Luck, G., Saarikallio, S., & Toiviainen, P. (2013). Influences of rhythm-and timbre-related musical features on characteristics of music-induced movement. Frontiers in psychology4, 183.
  4. Embodied cognition – Wikipedia
  5. Embodied Music Cognition and Mediation Technology – Marc Leman, Research Professor and Head of the Department of Musicology Marc Leman – Google Books
  6. Carlson, E., Saari, P., Burger, B., & Toiviainen, P. (2020). Dance to your own drum: Identification of musical genre and individual dancer from motion capture using machine learning. Journal of New Music Research49(2), 162-177.
文章難易度
所有討論 1
波留先生 M. Beaulieu_96
8 篇文章 ・ 9 位粉絲
曾當過兩三年的職能治療師,在體力正式走下波前轉戰出版業,現為出版社圖文編輯,並斜槓各式聲音工作。

0

2
2

文字

分享

0
2
2
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 54 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

3
0

文字

分享

0
3
0
迴盪在耳際的聲音——迴響與聆聽知多少!
雅文兒童聽語文教基金會_96
・2023/06/28 ・2048字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/樊家欣|雅文基金會聽語科學研究中心 助理研究員 

P. LEAGUE 最大咖球星林書豪加盟鋼鐵人隊,帶領鋼鐵人打出新氣象,並獲選為籃球單月最有價值球員「三連霸」,堪稱史上第一人!你,也愛打籃球嗎?當你在體育館時,是否有察覺到周圍的聲音跟平常不太一樣呢? 

迴響,能讓聲音隔空變魔術!

體育館一般有挑高的設計以及較大的室內容積,當其中有聲音產生,傳遞到周圍較硬的介質表面「反射」回來,而產生延遲和失真的現象,稱為「迴響(Reverberation)」。由於空間容積與迴響時間成正比,空間越大,迴響時間隨之延長。沒有進行吸音處理的體育館,運球聲、腳步聲、群眾吆喝聲等人造聲音將迴盪在空間中,聲音必須經過更長的時間才會完全消失,使人在體育館倍感喧騰。

 聲音傳遞出去遇到牆面,反射回來形成迴響。圖/shutterstock

善用設計,打造餘音繞樑的迴響聲學空間 

迴響在不同的空間,會因周圍反射的材質,展現不同的聲景樣貌,例如:音樂廳就是利用各種不同的「形狀」「材質」來平衡聲音,再將之導向聽眾。

早期音樂廳的「形狀」只有鞋盒式,台北國家音樂廳就是歐洲數百年經典傳統鞋盒式音樂廳,平面觀眾席的聲響很好,但是後面的眺望台座位,由於天花板空間被擋住,與前面造成相異聲場,聲音就顯得不夠飽滿;而高雄衛武營音樂廳,其內部設計柏林愛樂廳一樣,採用的是葡萄園式音響設計,所有觀眾皆處在同一個屋簷下,觀眾席如同葡萄園般由舞台四周錯落展開,享受相同的音場,因此聲響均等優美。

-----廣告,請繼續往下閱讀-----

從細部來看,「材質」平坦而堅硬的表面能反彈聲音、柔軟的表面可吸收聲音,粗糙的表面則會將入射的聲波散射。在牆壁和天花板上裝設經特別設計的嵌板,就能使聲音在抵達你的耳朵之前,先被調整並優化[3]。藉由空間整體的設計,能讓迴響成為小精靈,締造優美的聲學空間。

打造餘音繞樑的音樂廳。圖/shutterstock

迴響時間過長,對聆聽語音是個壞消息⋯⋯

美國國家標準協會(American National Standards Institutes, ANSI)於 2002 年建議迴響時間(Reverberation Time)少於 600 毫秒(= 0.6 秒)有最佳的語音理解和學習。在安靜的情境中,如果反射回來的語音較早抵達聽者的耳朵,則原聲和迴響會在聽覺系統裡整合,可能提升語音辨識度(Speech Recognition);而較晚抵達的迴響,則不會與原聲有加成的作用,反而會遮蔽或模糊原本的聲音,而使語音辨識表現下降。除了語音辨識度之外,也可能因聲音的失真,而使聆聽變得費力。

聆聽費力度(Listening Effort)為一更敏感的指標,在一些迴響時間過長的情境中,即使語音辨識度沒有下降,但聆聽者可能因著迴響,而使聆聽造成負擔,或進一步使記憶或理解力下降[5],相關文章可以參考連結。因此,迴響時間過長,會提高語音辨識的難度和增加聆聽費力度。

善用科技,讓聽損者輕鬆聽清楚

一般人在有迴響的地方聽講可能會覺得比較不清楚或費力,而對於有聽力損失的人來說,會更容易受到迴響的不利影響[4] [6]。因此,許多配戴助聽器或人工電子耳的聽損者,在聽講或聲音環境較為複雜的地方會搭配使用輔助聆聽裝置(Assistive Listening Device),如T線圈(Telecoil,又稱 T-coil)、藍芽及數位遠端麥克風等。此類裝置可將聲音訊號轉換,以無線的方式傳輸至助聽器/人工電子耳,來克服環境中迴響的干擾或距離因素,幫助聽損者聽得更清楚也更輕鬆[1] [2],相關文章也可參考連結

-----廣告,請繼續往下閱讀-----

綜言之,迴響在不同的聲學空間會產生不同的效應:在設計不良的空間會產生聽覺上的干擾,而在好的聲學空間則能使聆聽成為一種享受;另外,藉著輔助聆聽裝置也能幫助我們克服迴響等外部因素而有好的聆聽

參考文獻

  1. 吳彥玢(2019)。助聽器使用者使用數位遠端無線麥克風系統與動態調頻系統之比較〔未出版之碩士論文〕。國立台北護理健康大學語言治療與聽力研究所。
  2. 林郡儀、張秀雯(2016)。校園聽覺環境及聽覺輔具之應用發展。輔具之友,39,29-34。
  3. 凌美雪(2018年08月14日)。鞋盒式或葡萄園式、柏林愛樂黃金之音怎麼聽?自由時報。ltn.com.tw
  4. Brennan, M. A., McCreery, R. W., Massey, J. (2021). Influence of Audibility and Distortion on Recognition of Reverberant Speech for Children and Adults with Hearing Aid Amplification. Journal of the American Academy of Audiology, 33, 170-180. Doi: 10.1055/a-1678-3381.
  5. Picou, E. M., Gordon, J., Ricketts, T. A. (2016). The Effects of Noise and Reverberation on Listening Effort in Adults With Normal Hearing. Ear and Hearing,37(1), 1-13. Doi: 10.1097/AUD.0000000000000222.
  6. Xu, L., Luo, J., Xie, D., Chao, X., Wang, R., Zahorik, P., Luo, X. (2022). Reverberation Degrades Pitch Perception but Not Mandarin Tone and Vowel Recognition of Cochlear Implant Users. Ear and Hearing, 43(4), 1139-1150. Doi: 10.1097/AUD.0000000000001173.
雅文兒童聽語文教基金會_96
56 篇文章 ・ 222 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

2

10
3

文字

分享

2
10
3
尿急可以讓人做更好的決定,但這個決定不一定是好決定—— 2011 年搞笑諾貝爾醫學獎
雷雅淇 / y編_96
・2023/04/01 ・1828字 ・閱讀時間約 3 分鐘

車輪餅要選奶油還是紅豆?遊戲機該買 Switch 還是 PS5?要吃麥當勞還是肯德基?父母和伴侶落水應該先救誰?人生中會有很多時候需要做終極二選一,有選擇困難的時候怎麼辦?2011 年搞笑諾貝爾獎醫學獎的得獎研究提供了一個方法:憋尿。

生活大爆炸(The Big Bang Theory)裡,主角謝爾頓(Sheldon)在 PS4 與 Xbox 之間難以抉擇。

搞笑諾貝爾獎頒發給「讓人捧腹大笑,然後發人深省 (achievements that make people LAUGH, then THINK.)」的研究或事件,2011 年的醫學獎頒給兩個研究團隊,表彰他們證明:當人尿急的時候會做出更好的決定,但對其他事情來說這是糟糕的決定。這到底是怎麼一回事?

為什麼當人尿急的時候會做出更好的決定,但對其他事情來說,卻是糟糕的決定呢?圖/Pixabay

憋尿幫助你終極二選一?

荷蘭特文特大學行銷傳播與消費者心理學系的米賈姆 (Mirjam A Tuk) 從一次聽演講時不小心喝太多咖啡得到靈感,讓他想知道「當人們需要控制膀胱的時候會發生什麼事?」

於是他和研究團隊一起設計了實驗,一群喝一點水和另一群喝很多水的受試者,在 40 分鐘後水到達膀胱的時候,開始要受試者回答一系列的問題,例如「會選擇明天收到 480 元還是 30 天後拿到 900 元?」等問題。實驗發現,當人們很想上廁所、不得不控制膀胱的時候,反而更比較願意延遲滿足、變得更有耐心,且有助於控制衝動。

-----廣告,請繼續往下閱讀-----

這結果令人驚奇的地方,因為許多心理學研究都支持過於克制反而會使人「自我耗盡 (ego-depletion)」,讓他們對其他事情更難以控制自己。米賈姆認為這可能是因為膀胱控制在某些程度上來說,是自動的、無意識的過程。

不過這不代表尿急就是好事,另一個一起得獎的研究則發現,當人很想尿尿的時候,注意力和工作記憶會顯著下降,而且糟糕的程度和酒醉(血液中酒精濃度 0.05%)、疲勞(持續清醒 24 小時)相似,而在尿尿警報解除後認知就會回到原來的水平。

當人很想尿尿的時候,注意力和工作記憶會顯著下降,就和喝醉時類似。圖/PIxabay

研究團隊讓八位健康成年人每 15 分鐘喝 250c.c. 的水,直到他們很想上廁所、再也忍不住為止,並在這個時候讓他們進行自評和認知測驗。

不過,為什麼要做這個實驗呢?研究成員之一、耶魯醫學院的皮特札克 (Robert Pietrzak)  教授解釋,有很多工作是無法隨時想去上廁所就能去上廁所的。例如:長途卡車司機、醫護人員等,這個研究提醒大家,當你在憋尿的時候,很可能會干擾正在執行的工作。

-----廣告,請繼續往下閱讀-----

挑戰人類的憋尿極限?勸你還是不要比較好

人到底可以憋尿憋多久?會不會憋死掉?一天又會尿尿幾次呢?

膀胱是可以伸縮的器官,成年人的膀胱可以儲存約 400~500cc 的尿液,膀胱和大腦有直接溝通的專線,約四分之一滿的時候就會有尿意。尿尿的次數也和膀胱的大小有關,成年人平均一天尿尿 6~7 次,不過在 4~10 次之間都屬正常範圍;小小朋友和嬰兒的膀胱比較小,一天會尿尿 10 次或以上。

憋尿對身體的影響大多是長期累積而來的:如果沒有定期排空膀胱,最常見的是細菌滋生造成尿道感染,和因為都憋著導致膀胱肌肉在該放鬆的時候無法放鬆,極少極少出現憋尿憋到漲破膀胱的狀況。

偶而一兩次憋尿、試試看是不是會做比較理性的決定還無妨,但還是要養成想上廁所時不要憋太久,尿尿時不要急、要盡量排空的好習慣喔!

-----廣告,請繼續往下閱讀-----

參考資料

  1. About the Igs
  2. The Impulsive client: theory, research, and treatment
  3. Inhibitory spillover: increased urination urgency facilitates impulse control in unrelated domains
  4. Bladder control – DW – 10/05/2011
  5. How needing a wee affects your decision making – Big Think
  6. Full Bladder, Better Decisions? Controlling Your Bladder Decreases Impulsive Choices
  7. IG Nobel prize goes to University of Twente researcher
  8. Lifespan researcher wins Ig Nobel Prize
  9. Ig Nobel Award Winners: Do Humans Think Less Clearly When They Have To Urinate? | HuffPost Weird News
  10. Why Having To Pee While Driving Is As Bad As Drinking
  11. Ig Nobel Prize: Humor and Science – Yale Scientific Magazine
  12. The effect of acute increase in urge to void on cognitive function in healthy adults
  13. How Long Can You Go Without Peeing? Risks, Complications, Concerns
所有討論 2
雷雅淇 / y編_96
38 篇文章 ・ 1274 位粉絲
之前是總編輯,代號是(y.),是會在每年4、7、10、1月密切追新番的那種宅。中興生技學程畢業,台師大科教所沒畢業,對科學花心的這個也喜歡那個也愛,彷徨地不知道該追誰,索性決定要不見笑的通吃,因此正在科學傳播裡打怪練功衝裝備。