Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

以光控制光:放大訊號的光機械裝置

only-perception
・2012/10/05 ・998字 ・閱讀時間約 2 分鐘 ・SR值 544 ・八年級

-----廣告,請繼續往下閱讀-----

一個在 Minnesota 大學的科學家與工程師團隊發明一種獨特的微米級光學裝置,能大幅增加線上資訊的下載速度並減少網際網路傳輸的成本。

該裝置利用光所產生的力量,使一個機械性光開關以非常高的速度在 on 與 off 之間來回拍動(flop)。使用效能更高且耗能更低的光而非電流,這項發展能導致運算與訊號處理的進步。

研究結果發表在 Nature Communications 期刊上。

「此裝置類似電磁繼電器,但完全以光運作,」Mo Li 說,他是Minnesota 大學科學與工程學院電機與電腦工程系助理教授。

-----廣告,請繼續往下閱讀-----

這項新研究是基於 Li 與同僚在 2008 年的先前發現,那時他們發現奈米級光導管(conduits)可用來產生夠強的光力(optical force),以機械性的方式移動光導波(optical waveguide,承載光的資訊通道)。在這項新裝置中,研究者發現,光的力量如此強烈,以至於該裝置的機械特性能完全由光效應而非其本身的機械結構所主宰。此效應經過放大,以非常高的力量層次(power level)來控制額外的色光訊號。

「這是首度利用這種新奇的光機械效應(optomechanical effect)來放大光訊號,而無須將之轉換成電訊號,」Li 表示。

利用分配給不同通道的不同色光,玻璃光纖能承載許多通訊通道。在光纜中,這些顏色不同的光通道並不會彼此干涉。這種非干涉特性確保單根光纖在非常長的距離下,傳輸更多資訊的效率。不過這項進展亦窩藏缺點。當考慮運算與訊號處理時,光裝置不允許不同的資訊通道輕易地控制彼此… 直到現在。

研究者的新裝置有二個光導波,每個都攜有一光訊號。形狀如微米級甜甜圈般的光學共振器(像一個迷你版強子對撞機)置於導波之間。在光學共振器中,光能夠循環數百次變得更強。

-----廣告,請繼續往下閱讀-----

利用這種共振效應,在第一導波內的光訊號於共振器內被顯著強化,並在第二導波上產生非常強的光力。第二導波從支持材料鬆開,故當光力施加其上時,其如音叉般,以振盪方式移動。這種波導的機械性運動改變光訊號的傳輸。因為第二光訊號的功率可比控制訊號高出許多倍,故此裝置作用如同一個機械式繼電器,用來放大輸入訊號。

目前,這個新的光繼電(optical relay)裝置每秒運作一百萬次。研究者希望能將其改善至每秒數十億次。目前裝置的機械性運動速度夠快,可直接以光纖連接 RF 裝置進行寬頻通訊。

Li 在 Minnesota 大學的團隊包括畢業生 Huan Li、Yu Chen 以及 Semere Tadesse,還有前博士後研究員 Jong Noh。本計畫資金來自 Minnesota 大學科學與工程學院以及空軍科研辦公室。

資料來源:Using light to control light: Engineers invent new device that could increase Internet download speeds. Phys.org [October 2, 2012]

-----廣告,請繼續往下閱讀-----

轉載自 only perception

-----廣告,請繼續往下閱讀-----
文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D

0

0
0

文字

分享

0
0
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

2

25
5

文字

分享

2
25
5
真正的隨機:史上最速亂數產生器
linjunJR_96
・2021/04/12 ・2451字 ・閱讀時間約 5 分鐘 ・SR值 521 ・七年級

-----廣告,請繼續往下閱讀-----

圖/wikipedia

隨機性,在許多領域都扮演了不可或缺的角色。例如電腦信息的加密,還有模擬複雜物理系統等技術,都需要用到巨量的亂數資料。不過,這些隨機是怎麼來的呢?

當電腦計算 1+1 是多少時,它可以遵從既定的程序算出正確答案;但如果叫電腦隨便給你一個數字,它肯定不知道該怎麼辦。畢竟電腦不像人,可以隨便「想到」一個數字。電腦只能根據你的命令,算出你要的結果。

要得到「真正的隨機」並不如想像中簡單。當我們到廟裡擲筊,或是玩桌遊時丟骰子,得到的結果看似沒有規律,但其實不然。它們可以用簡單的電腦計算來預測,像是丟硬幣的結果,便早已被研究透徹。只要對初始條件有足夠良好的掌握(像是丟出的速度與角度等等),這類物品的行為都能用兩百年前確立的力學定律來精準預測,因此稱不上是「真正」的隨機;另外一個缺點在於,這類方法產生隨機結果的速度實在太慢,跟不上現代社會對於隨機資料的龐大需求。

對於丟硬幣的結果,只要對初始條件有足夠良好的掌握,這類物品的行為都能用力學定律來精準預測,因此稱不上是「真正」的隨機。圖/Giphy

至於使用電腦計算的結果呢?常見像是串流平台的隨機播放功能,以及粉專抽獎會用的亂數產生器,它們所呈現的隨機是演算法算出來的。隨機播放功能利用特殊的演算法,排列出一個讓你聽起來很隨興的歌單;一般的電腦亂數,只是將特定的「種子」數字丟進一個超複雜的算式,算出成串毫無規律的數字。這些方法雖然快速又實用,但終究是可以預期的。當亂數數量夠多時,往往可以發現某些規律;而可被預期的亂數若是用於加密或認證,便會成為駭客眼中的肥羊

-----廣告,請繼續往下閱讀-----

由量子世界尋求真正的隨機!

既然手邊的物品和電腦都不管用,科學家於是轉向微觀的量子世界。量子物理對世界的描述本身就是機率性的,因此物理學家可以從實際測量結果中汲取「正港的」隨機亂數。像是物質的放射性衰變或電路中的雜訊,都是常見的選項。這類過程雖然可以確保隨機性,但效率還是稍嫌太差,相關的實驗架設也相當費工。

不過就在今年二月,研究人員利用半導體雷射技術,打造出有史以來最快的亂數產生器:每秒 250 TB 的隨機位元,比先前的紀錄高出一百多倍。

雷射的產生牽涉到原子內的「電子躍遷」。在一般狀態下,大部分原子中的電子會按照高中化學課本中提到的「電子軌域」排列,這種排列方式稱為「基態」,代表原子中的所有電子,都處在最低能量狀態。

在原子接收一定的能量後,會有部分電子跳入高能量的軌域中,變成「激發態」,這時原子內的電子組態不穩定,電子會跳回低能量軌域中回到「基態」,並以光(輻射)的形式放出能量。圖/wikipedia

在原子接收一定的能量後,會有部分電子跳入高能量的軌域中,變成「激發態」,這時原子內的電子組態不穩定,電子會跳回低能量軌域中回到「基態」,並以光(輻射)的形式放出能量。

-----廣告,請繼續往下閱讀-----

而這些跳回的電子,如果都從同一個激發態回到基態,就會釋放出特定「頻率」與「能量大小」的光,以愛因斯坦的說法,從相同的激發態回到基態,會得到固定的「光子」,這是舊量子論的重要發現之一。提供原子特定的能量,讓原子放出光子,就可以激發出雷射。

利用電子躍遷的隨機性

但這件事情跟隨機性有什麼關係呢?電子躍遷本身就是具有隨機性的。

要激發雷射,其實事情並沒有那麼簡單,需要克服這個機率性。讓我們回頭看上面的敘述,「『大部分』原子中的電子會按照……」、「在原子接收一定的能量後,『有部分』電子跳入高能量的軌域中」,這些「大部分」、「有部分」,使得我們就算給原子固定能量,也未必能平穩釋放出特定光子,讓雷射光的強弱不穩定,也不會朝同方向射出。

因此雷射技術的重點之一,就是「光學共振腔」,將激發光子的物質放在共振腔中,放出的光子會在共振腔中來回游走,再次激發原子放出更多的光子,來增強雷射強度,並讓雷射光往特定方向射出。

-----廣告,請繼續往下閱讀-----

但是,「光學共振腔」強化雷射強度以及方向,但實際上雷射光的強度,仍然是由量子力學的隨機性所決定!如果我們能用感光元件捕捉雷射光線起伏不定的強度,再轉換為數位訊號,就能獲取珍貴且無法破解的隨機亂數。

蝴蝶結狀「光學共振腔」

這種想法雖有十幾年的歷史,不過由於技術上的限制,產率一直相當有限。而且一般方形共振腔產生的雷射,容易讓光強度陷入特定的規律,產生的隨機性也較低。為了解決這個問題,研究人員將共振腔的形狀改良為蝴蝶結狀。如此一來,在其中反彈的雷射光便能保有其當初紊亂的特性,且往特定方向射出。

隨機的雷射光源被 254 像素的高速攝影機拍下,每個像素受到的光強度也被證實為相互獨立,因此成就了 254 條同步生產線,一同產出隨機亂數,使效率遠遠勝過以往一次只能記錄一個像素的做法,創下每秒 250 TB 的紀錄。

現今電腦運作的時間尺度最快不超過幾 GHz,因此這次的 250 THz 創舉難以發揮全部的實力。如果犧牲一些效率,用較簡單的偵測裝置來取代高速攝影機,可以讓整個裝置變得更加輕巧,提升實用性。在不久的將來,史上最速的亂數產生機制,或許可以直接容納於單一晶片之上。

-----廣告,請繼續往下閱讀-----

參考資料:

-----廣告,請繼續往下閱讀-----
所有討論 2
linjunJR_96
33 篇文章 ・ 914 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。

0

0
0

文字

分享

0
0
0
康寧光纖大變身!魚缸水質糾察隊與光劍般的夜釣釣竿 ─《康寧創星家》競賽報導2
鳥苷三磷酸 (PanSci Promo)_96
・2016/01/29 ・2502字 ・閱讀時間約 5 分鐘 ・SR值 493 ・六年級

-----廣告,請繼續往下閱讀-----

本文由台灣康寧贊助,泛科學策畫執行

在上篇文章「可撓式玻璃能怎麼玩?來看看教你穿衣服的智能行李箱和透明停車場樑柱」中,泛科學介紹了兩組指定示範組團隊將 Willow 可撓式玻璃分別應用於行李箱和交通情境,來改善使用者體驗的概念作品,分享他們如何從生活問題中發想、設計與實踐。這些創作皆來自康寧創星家 ─  創新應用競賽,它規定「使用材料」而未限制主題的獨特遊戲規則,催生了許多意想不到的創意。

這次我們訪問到臺灣科技大學設計團隊,他們所選用的特殊材料為「康寧 Fibrance 玻璃光纖」,透過其纖細、可彎曲、高彩度、高明度的特性,把場景延伸進「水」裡,提出兩種創新應用。

幫忙把關魚缸的水質狀態,給魚兒健康的家

大家應該看過河川或海口出現不同顏色的水流吧?一般人通常會很直覺地想,這水有特殊物質,可能不乾淨。但是無色無味的水就是乾淨的嗎?如果之中有我們看不見的汙染呢?「如同空氣品質對於人類健康的影響,對住在水族箱裡的魚來說,水的品質一旦超出範圍便會對魚的健康造成衝擊、甚至死亡。因此,水的溫度和 pH 值必須嚴加控管。」臺科大團隊的施同學與我們分享此想法的動機。

-----廣告,請繼續往下閱讀-----

著眼於 Fibrance 玻璃纖維的特性:防水、明度彩度皆高,而且對雷射的顯色效果比一般塑膠光纖好,因此臺科大團隊決定利用這樣的特殊材料來做水質指示功能,進而達到水質控管,於是第一項作品「水底空調」誕生了。

水底空調的測量儀器旁邊裝有一塊光纖板,並於側邊接出雷射頭,在充飽電、水質正常的狀況下會持續發光,而當魚缸中水的 pH 值、溫度超過或低於正常範圍時,則會開始閃爍。談到產品設計過程的挑戰,他們表示,「當然也沒有整個設計過程都很順利,我們碰到最大的問題是『太熱』。平常大家用雷射筆用得很習慣,大概不會發現雷射發亮時其實會產生極高的熱能,讓整個測量監控系統變得很燙。起先想用盒子把它包起來,但發現行不通;後來經過設計,我們將雷射頭部分掛在外面,並用長尾夾夾住方便散熱。」。

利用康寧 Fibrance 玻璃光纖當作顯示功能的水質偵測器,此為水底空調產品草圖(圖片來源:水底空調團隊)

除了應用於水質檢測,Fibrance光纖的纖細和可彎曲的特性讓使用者能隨個人喜好設計出不同的形狀,裝飾自己的水族箱,展現出更趣味、客製化的產品樣貌。

-----廣告,請繼續往下閱讀-----

3
玻璃光纖防水、明度與彩度皆高,更可以依個人喜歡彎曲成不同形狀

你的光劍哪裡來的?不,這是我的釣竿!

第二種概念發想則出現在釣竿上,光纖釣竿感應器 ─ Night Flash 夜漁玩家。

「釣魚是一件很花時間的事,夜釣尤其有趣。一般專業釣客通常會有兩三支釣竿,以竿架固定同時使用,那麼夜釣時,要怎麼知道魚有沒有上鉤?是哪一支釣竿中獎?除了仰賴釣客的感官經驗外,就是用釣竿警報器。在這種既有產品的基礎上,我們想設計出更炫、更便利的應用。」臺科大團隊的林同學如是說。

他們將警報器別在釣竿竿頭上,並串聯至 Fibrance 玻璃光纖、再掛上釣線,魚一旦吃餌,拉動了感應器,光纖就會發亮。Night Flash 夜漁玩家在配色設計採用現有的雷射模組 RGB 三種基礎色(紅、綠、藍),搭配基本的黑色,讓釣竿在黑夜中像光劍一般搶眼,或許也能讓夜釣過程更有趣。套句臺科大設計團隊的話,就是「很炫、很好玩啊!」

-----廣告,請繼續往下閱讀-----

Night Flash 夜漁玩家利用警報器的主板串聯 Fibrance 玻璃光纖,將動作轉變為看得見的訊號。圖為夜漁玩家產品草圖(圖片來源:Nigh Flash 團隊)
Night Flash 夜漁玩家利用警報器的主板串聯 Fibrance 玻璃光纖,將動作轉變為看得見的訊號。圖為夜漁玩家產品草圖(圖片來源:Nigh Flash 團隊)

有魚上鉤時,釣竿會顯現出發亮的光纖。(圖片來源:Night Flash 夜漁玩家團隊)
有魚上鉤時,釣竿會顯現出發亮的光纖。(圖片來源:Night Flash 夜漁玩家團隊)

設計講求實踐,可行性是成功關鍵

特別的是,兩款產品的負責同學都不是電子背景。林同學表示,「過去我只要碰到電子領域就會選擇放棄,這次算是突破了以前的障礙。雖然我們的作品是買現成晶片板來修改程式,一開始還是什麼都不懂,甚至只能土法煉鋼地一個個戳電路板,觀察反應。但後來慢慢摸索、學習,實際去做之後,才發覺好像也沒有想像的那麼難。」而這次經驗也讓他們想了解更多不同的領域,接觸更多設計的可能性。

臺科大團隊指出,「創星家競賽一定要做出實品這點也是有所成長的原因,我們必須考慮設計可否『實現』,以及產品有沒有市場。這很符合現況,現在設計領域很講求實踐,產品可行性是成功的關鍵。」接著他們補充,做使用者研究也很有趣,負責到釣具行買測試用釣竿的林同學回憶,他隨口向店裡一個五、六十歲的伯伯介紹團隊的新設計,伯伯竟然表示有意願購買,直接問一個要賣多少錢,讓他相當驚訝,「原來從舊有產品中做改良,因為消費者已經很熟悉了,所以會更有共鳴,更容易接受。」

-----廣告,請繼續往下閱讀-----

「我們想透過 Fibrance 光纖,把看不到的東西視覺化。」

聊到產品理念,兩位同學說他們的發想起點同樣是材質本身。在魚缸和釣具之前,兩人考慮過很多主題,例如測量空氣品質和配電盤,最後決定從身邊的議題下手。「不過這些想法都圍繞著同一個概念,」他們說,「Fibrance 玻璃光纖明度、彩度高,在視覺上非常漂亮,希望能做出能充分凸顯這項特點的應用。Making the value / action visible 是我們的設計初衷,就好像蒲公英的種子讓人『看見』風的存在,我們想把看不到的東西視覺化,送到大家眼前。」

水底空調團隊現場展示水族箱光纖感測器
水底空調團隊現場展示水族箱光纖感測器

Night Flash 夜漁玩家團隊解釋釣竿上的 Fibrance 玻璃光纖運用
Night Flash 夜漁玩家團隊解釋釣竿上的 Fibrance 玻璃光纖運用

-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
224 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia