0

0
0

文字

分享

0
0
0

利用鐵電性及光控制電流的新穎電晶體問世

NanoScience
・2012/09/30 ・864字 ・閱讀時間約 1 分鐘 ・SR值 549 ・八年級

台灣與美國的科學家利用氧化鋅奈米線(ZnO nanowire)與鋯鈦酸鉛(PbZr0.3 Ti0.7)O3, PZT)製作出新型的光致熱(optothermal)效應電晶體。裝置中氧化鋅奈米線內部的汲極電流可藉由紅外光雷射的照射而予以調變,此光熱特性尤其適合遠端或無線應用領域。

近年來,具有方向性電偶極的鐵電(ferroelectric)材料如PZT,結合外加柵極電壓的控制,已經被應用在非揮發性(non-volatile)場效電晶體的記憶功能上。由於PZT也是一種焦電物質(pyroelectric),意味著其內部電極化方向除了外加電場之外,也能藉由溫度變化而改變。

受到此特性的啟發,台灣大學物理系陳永芳教授的研究團隊與卓克索(Drexel)大學的合作者製作出由單一ZnO奈米線與PZT構成的光致熱效應電晶體。他們發現藉助紅外光雷射的照射,光致熱效應可以調變奈米線內部的汲極電流。在汲極電場為83 kV/m時,電偶極朝下的光致熱電晶體上獲得最大電流靈敏度為25 nA/mW,此數值超越由二氧化矽和矽基板構成的光控奈米碳管電晶體達三個數量級(後者在汲極電場為50 kV/m時,電流靈敏度為20 nA/W)。

光致熱效應電晶體運作原理如下:當研究人員以波長1064 nm的紅外雷射照射PZT上的ZnO奈米線時,汲極電流的大小會受到底部PZT基板內電偶極方向及紅外光的影響。例如,當n型ZnO奈米線建置在電偶極朝上的PZT表面時,PZT內層表面的束縛正電荷會吸引更多的電子在ZnO奈米線內。一旦紅外雷射光照射到PZT,溫度上升會擾亂電偶極的排列,使表面的束縛正電荷減少,導致奈米線內的傳輸電子變少,電流因而下降。相反地,當雷射光照射到電偶極朝下的PZT時,電偶極排列的混亂會使表面束縛電子減少,導致奈米線內傳導電子增多,電流因而增加。

-----廣告,請繼續往下閱讀-----

ZnO奈米線在紫外波段的雷射光照射下會產生電子電洞對,這些額外激發的電荷載子成為光電流的來源。因此,結合紫外光照射ZnO奈米線產生光電流的特性,以及利用紅外線加熱PZT調控電流的原理,可望大幅擴展此奈米光電元件的應用潛力與領域。詳見Nanotechnology 23, p.355201 (2012)。

資料來源:Ferroelectricity and light control current in new transistors. NanoTech.org [Aug 31, 2012]

譯者:謝俊儀(台灣大學物理系)
責任編輯:蔡雅芝

轉載自奈米科學網

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
NanoScience
68 篇文章 ・ 4 位粉絲
主要任務是將歐美日等國的尖端奈米科學研究成果以中文轉譯即時傳遞給國人,以協助國內研發界掌握最新的奈米科技脈動,同時也有系統地收錄奈米科技相關活動、參考文獻及研究單位、相關網站的連結,提供產學界一個方便的知識交流窗口。網站主持人為蔡雅芝教授。

0

0
0

文字

分享

0
0
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3286字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
242 篇文章 ・ 318 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
1

文字

分享

0
1
1
揭密突破製程極限的關鍵技術——原子層沉積
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/30 ・3409字 ・閱讀時間約 7 分鐘

本文由 ASM 委託,泛科學企劃執行。 

以人類現在的科技,我們能精準打造出每一面牆只有原子厚度的房子嗎?在半導體的世界,我們做到了!

如果將半導體製程比喻為蓋房子,「薄膜製程」就像是在晶片上堆砌層層疊疊的磚塊,透過「微影製程」映照出房間布局 — 也就是電路,再經過蝕刻步驟雕出一格格的房間 — 電晶體,最終形成我們熟悉的晶片。為了打造出效能更強大的晶片,我們必須在晶片這棟「房子」大小不變的情況下,塞進更多如同「房間」的電晶體。

因此,半導體產業內的各家大廠不斷拿出壓箱寶,一下發展環繞式閘極、3D封裝等新設計。一下引入極紫外曝光機,來刻出更微小的電路。但別忘記,要做出這些複雜的設計,你都要先有好的基底,也就是要先能在晶圓上沉積出一層層只有數層原子厚度的材料。

-----廣告,請繼續往下閱讀-----

現在,這道薄膜製程成了電晶體微縮的一大關鍵。原子是物質組成的基本單位,直徑約0.1奈米,等於一根頭髮一百萬分之一的寬度。我們該怎麼精準地做出最薄只有原子厚度,而且還要長得非常均勻的薄膜,例如說3奈米就必須是3奈米,不能多也不能少?

這唯一的方法就是原子層沉積技術(ALD,Atomic Layer Deposition)。

蓋房子的第一步是什麼?沒錯,就是畫設計圖。只不過,在半導體的世界裡,我們不需要大興土木,就能將複雜的電路設計圖直接印到晶圓沉積的材料上,形成錯綜複雜的電路 — 這就是晶片製造的最重要的一環「微影製程」。

首先,工程師會在晶圓上製造二氧化矽或氮化矽絕緣層,進行第一次沉積,放上我們想要的材料。接著,為了在這層材料上雕出我們想要的電路圖案,會再塗上光阻劑,並且透過「曝光」,讓光阻劑只留下我們要的圖案。一次的循環完成後,就會換個材料,重複沉積、曝光、蝕刻的流程,這就像蓋房子一樣,由下而上,蓋出每個樓層,最後建成摩天大樓。

-----廣告,請繼續往下閱讀-----

薄膜沉積是關鍵第一步,基底的品質決定晶片的穩定性。但你知道嗎?不只是堆砌磚塊有很多種方式,薄膜沉積也有多樣化的選擇!在「薄膜製程」中,材料學家開發了許多種選擇來處理這項任務。薄膜製程大致可分為物理和化學兩類,物理的薄膜製程包括蒸鍍、濺鍍、離子鍍、物理氣相沉積、脈衝雷射沉積、分子束磊晶等方式。化學的薄膜製程包括化學氣相沉積、化學液相沉積等方式。不同材料和溫度條件會選擇不同的方法。

二氧化矽、碳化矽、氮化矽這些半導體材料,特別適合使用化學氣相沉積法(CVD, Chemical Vapor Deposition)。CVD 的過程也不難,氫氣、氬氣這些用來攜帶原料的「載氣」,會帶著要參與反應的氣體或原料蒸氣進入反應室。當兩種以上的原料在此混和,便會在已被加熱的目標基材上產生化學反應,逐漸在晶圓表面上長出我們的目標材料。

如果我們想增強半導體晶片的工作效能呢?那麼你會需要 CVD 衍生的磊晶(Epitaxy)技術!磊晶的過程就像是在為房子打「地基」,只不過這個地基的每一個「磚塊」只有原子或分子大小。透過磊晶,我們能在矽晶圓上長出一層完美的矽晶體基底層,並確保這兩層矽的晶格大小一致且工整對齊,這樣我們建造出來的摩天大樓就有最穩固、扎實的基礎。磊晶技術的精度也是各公司技術的重點。

雖然 CVD 是我們最常見的薄膜沉積技術,但隨著摩爾定律的推進,發展 3D、複雜結構的電晶體構造,薄膜也開始需要順著結構彎曲,並且追求精度更高、更一致的品質。這時 CVD 就顯得力有未逮。

-----廣告,請繼續往下閱讀-----

並不是說 CVD 不能用,實際上,不管是 CVD 還是其他薄膜製程技術,在半導體製程中仍占有重要地位。但重點是,隨著更小的半導體節點競爭愈發激烈,電晶體的設計也開始如下圖演變。

圖/Shutterstock

看出來差別了嗎?沒錯,就是構造越變越複雜!這根本是對薄膜沉積技術的一大考驗。

舉例來說,如果要用 CVD 技術在如此複雜的結構上沉積材料,就會出現像是清洗杯子底部時,有些地方沾不太到洗碗精的狀況。如果一口氣加大洗碗精的用量,雖然對杯子來說沒事,但對半導體來說,那些最靠近表層的地方,就會長出明顯比其他地方厚的材料。

該怎麼解決這個問題呢?

-----廣告,請繼續往下閱讀-----
CVD 容易在複雜結構出現薄膜厚度不均的問題。圖/ASM

材料學家的思路是,要找到一種方法,讓這層薄膜長到特定厚度時就停止繼續生長,這樣就能確保各處的薄膜厚度均勻。這種方法稱為 ALD,原子層沉積,顧名思義,以原子層為單位進行沉積。其實,ALD 就是 CVD 的改良版,最大的差異在所選用的化學氣體前驅物有著顯著的「自我侷限現象」,讓我們可以精準控制每次都只鋪上一層原子的厚度,並且將一步驟的反應拆為兩步驟。

在 ALD 的第一階段,我們先注入含有 A 成分的前驅物與基板表面反應。在這一步,要確保前驅物只會與基板產生反應,而不會不斷疊加,這樣,形成的薄膜,就絕對只有一層原子的厚度。反應會隨著表面空間的飽和而逐漸停止,這就稱為自我侷限現象。此時,我們可以通入惰性氣體將多餘的前驅物和副產物去除。在第二階段,我們再注入含有 B 成分的化學氣體,與早已附著在基材上的 A 成分反應,合成為我們的目標材料。

透過交替特殊氣體分子注入與多餘氣體分子去除的化學循環反應,將材料一層一層均勻包覆在關鍵零組件表面,每次沉積一個原子層的薄膜,我們就能實現極為精準的表面控制。

你知道 ALD 領域的龍頭廠商是誰嗎?這個隱形冠軍就是 ASM!ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商,自 1968 年,Arthur del Prado 於荷蘭創立 ASM 以來,ASM 一直都致力於推進半導體製程先進技術。2007 年,ASM 的產品 Pulsar ALD 更是成為首個運用在量產高介電常數金屬閘極邏輯裝置的沉積設備。至今 ASM 不僅在 ALD 市場佔有超過 55% 的市佔率,也在 PECVD、磊晶等領域有著舉足輕重的重要性。

-----廣告,請繼續往下閱讀-----

ASM 一直持續在快速成長,現在在北美、歐洲、及亞洲等地都設有技術研發與製造中心,營運據點廣布於全球 15 個地區。ASM 也很看重有「矽島」之稱的台灣市場,目前已在台灣深耕 18 年,於新竹、台中、林口、台南皆設有辦公室,並且在 2023 年於南科設立培訓中心,高雄辦公室也將於今年年底開幕!

當然,ALD 也不是薄膜製程的終點。

ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商。圖/ASM

最後,ASM 即將出席由國際半導體產業協會主辦的 SEMICON Taiwan 策略材料高峰論壇和人才培育論壇,就在 9 月 5 號的南港展覽館。如果你想掌握半導體產業的最新趨勢,絕對不能錯過!

圖片來源/ASM

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
242 篇文章 ・ 318 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

4
1

文字

分享

0
4
1
洗澡時突然浮現:八叛徒的諾貝爾獎級專利,半導體的「平面製程」——《掀起晶片革命的天才怪咖:蕭克利與八叛徒》
親子天下_96
・2022/07/17 ・5127字 ・閱讀時間約 10 分鐘

一場淋浴的時間,革命性想法突然浮現

1959 年 1 月初,赫爾尼早上起床淋浴時,一個在他腦中深藏許久的念頭突然浮現出來,他似乎看到了一線曙光,可以解決令大家束手無策的困境!

赫爾尼早上起床淋浴時,一個在他腦中深藏許久的念頭突然浮現出來。 圖/envato

根據貝爾實驗室的技術手冊,當矽晶圓完成摻雜後,必須用溶劑把表面剩餘的氧化層全部清除乾淨。因為擴散法應該也會把雜質摻入氧化層裡,若沒有全部移除,被汙染的氧化層恐怕會影響電晶體的導電性。不過如此就會讓 p-n 接面裸露在外,所以才必須用金屬外殼加以密封。

赫爾尼當時就懷疑氧化層是否真的會被汙染,就算會,真的會影響電晶體嗎?

他覺得氧化層有隔絕保護作用,保留下來或許利大於弊,但貝爾實驗室與同事都說照著技術手冊做就對了。後來要忙著趕 IBM 的訂單,他就把這想法擱在一旁,未再深入研究,現在他才突然想到如果有氧化層擋著,掉落的金屬碎屑就接觸不到 p-n 接面,也就不會影響電晶體了。

-----廣告,請繼續往下閱讀-----

赫爾尼進辦公室後,連忙翻出當初所寫的筆記,重新整理謄寫。而在塗塗寫寫的過程中,腦中又冒出一個革命性的想法。

高臺式電晶體是先用擴散法在集極表面摻雜成基極,再用光刻技術在基極中央蝕刻出窗口,摻雜成射極。但何不一開始就用光刻技術做出基極?這樣底層的集極就不會全部被基極蓋住,集極、基極與射極三者都在同一平面,它們之間的 p-n 接面用同一層二氧化矽保護,只露出接腳的接觸點。由於電極彼此更靠近,效能會更好,而在製造上也更加簡單。

諾貝爾獎級的專利:平面製程

赫爾尼興奮的向諾宜斯與摩爾等人提出這個「平面製程(Planar process)」的構想,大家都半信半疑,違背技術手冊的指示,保留氧化層真的不會有問題嗎?不過目前也沒別的辦法,況且真的成功的話,不僅能解決眼下的問題,還能大幅提升電晶體效能與生產效率,讓快捷半導體的競爭力更上一層樓。他們決定放手一搏,同時趕緊找專利律師申請專利。

赫爾尼的平面製程概念(左圖)與高臺式電晶體(右圖)比較。平面製程的電晶體讓基極、射極和集極都在同一個平面上,並且都受到二氧化矽保護。圖/親子天下

「你們希望這項專利涵蓋哪些範圍?」專利律師開頭就先問這個問題。

-----廣告,請繼續往下閱讀-----

諾宜斯等人頓時都愣住了,不就電晶體嗎?律師才進一步解釋:「這平面製程不是一種製造方法嗎?除了電晶體,也可以用來製造其他半導體元件吧?」

摩爾見諾宜斯還在出神中,只好出聲回答:「當然可以。要的話,二極體、電阻、電容這些也都可以用平面製程,但意義不大,這些也不是我們的目標市場。」

「為什麼?」

「因為這些元件構造簡單,沒必要用平面製程,純粹看生產規模,規模越大,成本越低。這是德州儀器、雷神這些大公司的優勢,我們只能攻電晶體,以技術取勝。」

-----廣告,請繼續往下閱讀-----

律師點點頭:「那就只針對電晶體申請專利保護囉?」

「等一下!」神遊中的諾宜斯突然插進來,卻又思索了一下才說:「還是把其他半導體元件都納進來好了。別誤會,我沒有要做這些東西,只是剛剛想到——如果用平面製程把它們都放在同一片晶圓上呢?

大家不解的望著諾宜斯,只見他站起來走向黑板,一邊問大家:「你們想想,IBM 拿到我們的電晶體之後,再來呢?」

接著諾宜斯在黑板畫起一個一個小方塊,說:「他們得把電晶體、二極體、電阻、電容這些元件一個個銲接到電路板上。我估計全部至少有幾百顆,甚至上千顆吧,每顆都要接上金屬電路,還得有銲接的空間,結果元件本身所占的空間其實不到一半。」黑板上的圖就像幅地圖,上面坐落著一棟棟平房,空地與道路占了大片土地。

-----廣告,請繼續往下閱讀-----
電路板上的各種電子元件就像地圖上的房子,有大半的面積被空地與道路佔據,房子(電子元件)只占一小部分。 圖/Pixabay

「不只如此。」諾宜斯再用紅色粉筆在小方塊中間畫個小圈圈,說:「每個元件真正有用的只有這裡,其餘只是外殼包裝。你們看,如果只有這些小圈圈,讓它們彼此緊鄰在一起,空間就只有原來電路板的 5% 不到吧。」

大家似乎開始明白諾宜斯要說什麼,但貝仍疑惑的問道:「我可能沒你們懂,但怎麼可能沒有外殼,還緊鄰在一起?它們得有保護,彼此也得分開才不會漏電,不是嗎?」

赫爾尼微笑著替諾宜斯回答:「二氧化矽可以提供保護,也能用來區隔元件。我只想到多做一次光刻技術,但既然能做兩次,當然三次、四次、……要幾次都可以,就能把各種元件都做在一起。」

摩爾接著說:「而且蝕刻出的缺口不僅用於摻雜,也可以蝕刻出複雜的溝槽作為電路。既然每個元件的接觸點都在同一平面,便可以像印刷電路板那樣,直接把銅線印在溝槽上,原來在電路板上的電路就都整合在一個晶片裡了。諾宜斯,這真是絕妙的點子!」

-----廣告,請繼續往下閱讀-----

「這得感謝赫爾尼先想出平面製程。不過這只是個概念,具體上要怎麼做,摩爾,我們倆再一起研究。」

貝興奮的說:「這只要做出來,再貴我都賣得出去!我告訴你們,空軍的人一直在問我能不能做得更小呢。因為除了轟炸機,還有導彈、火箭也都要裝上電腦,它們的空間更小,電腦越小越好,到時候這些訂單非我們莫屬。」

被捷足先登的專利申請

的確如貝所說,美國政府正在傾全力推動太空計劃,並加強國防科技。因為蘇聯在 1957 年 10 月 4 日,毫無預警的發射第一顆人造衛星史普尼克一號(Sputnik 1),嚇了美國一大跳,發現原來蘇聯的太空科技竟然遙遙領先。萬一蘇聯將太空科技用於戰爭,勢必會取得空中優勢,甚至危及美國本土。

蘇聯第一顆人造衛星史普尼克一號(Sputnik 1)1 : 1等比模型。 圖/wikimedia

因此,美國政府除了要軍方強化飛機、飛彈與各項國防武器的性能,同時在 1958 年 10 月成立「國家航空暨太空總署(NASA)」,整合資源與各界人才,以求在這場太空競賽超越蘇聯。軍方與 NASA 都有龐大預算,為了盡速達成任務,都願意採用最新技術,花起錢來也毫不手軟,對快捷半導體而言正是大好時機。

-----廣告,請繼續往下閱讀-----

專利律師先針對平面製程申請專利,積體電路則還要等諾宜斯寫出具體方法,才能提出專利申請。不料,諾宜斯和摩爾尚在研究,3 月時竟然被捷足先登,德州儀器召開記者會,發表史上第一顆積體電路!

原來德州儀器的工程師基爾比(Jack Kilby)去年 6 月就提出積體電路的構想,然後在 9 月以手工做出一個晶片雛形,只有電晶體、電阻和電容三個元件,電路另外用金線銲接而成,雖然粗糙簡單,但確實能正常運作。如果德州儀器祭出專利保護,快捷半導體就無法開發積體電路這極具潛力的產品,嚴重影響公司的未來。

辭職風暴

屋漏偏逢連夜雨,在公司前途未卜之際,總經理鮑德溫竟然要辭職。諾宜斯等人錯愕又憤怒,要他當面說清楚。

貝先開口責問他:「鮑德溫,現在公司遇到問題,你身為主帥不面對處理,反而要先落跑,未免太現實了吧?」

-----廣告,請繼續往下閱讀-----

「我如果真的現實,去年 IBM 訂單問題搞不定時老早就走了。人總是有更高的目標要追求,就這麼簡單。」

羅伯特忍不住嗆他:「更高?你已經是總經理,權力、薪水與分紅都比我們幾個創辦人高,還有什麼不滿意?」

鮑德溫平靜的回答:「我很感謝你們的禮遇,但總經理也只是受聘的經理人,再怎樣也和你們幾位大股東沒辦法比。」

諾宜斯真摯的說:「你如果嫌認股權太少,可以提出來啊。」

鮑德溫嘆了一口氣說:「那就說開了吧。有家國防承包商願意出資,讓我成立公司製造電晶體,一些工程師也會跟我走。」

公司前途未卜之際,總經理鮑德溫選擇辭職離開。(示意圖) 圖/envato

「什麼,你也太沒道義了!」「了不起,主帥帶兵投靠敵營。」「你這叛徒!」「你膽敢偷走技術,就等著被告!」憤怒的斥責馬上此起彼落。

「你們有什麼資格說我?你們幾個不也是背叛蕭克利自立門戶?」鮑德溫馬上惱羞成怒,展開反擊:「我不過帶走十幾個人,你們對原公司造成的傷害才大吧。論道義,你們更沒道義!我本想大家好聚好散的,現在也沒什麼好說了。祝你們好運,再見。」說完即頭也不回的走出門外。

會議室裡一片沉寂,大家不約而同想到當年從蕭克利半導體實驗室集體請辭的情景:平時易怒暴躁的蕭克利竟然一句話都沒說,鐵青著臉直接走出辦公室。反倒是貝克曼跑來找他們曉以大義,發現無法挽回後,隨即變臉威脅要控告他們侵權洩密。沒想到如今換他們嚐到這滋味了。

諾宜斯先打破沉默:「我們來討論總經理人選吧。你們有沒有想到誰還不錯的?」

克雷納舉起手說:「我覺得不要再從外面找了,找來難保又跟鮑德溫一樣。就諾宜斯你來當吧,這一年多來,你應該也學到不少經營面的大小事了。」

大家紛紛附議贊同,這次諾宜斯也不再謙讓,決定扛下這重責大任,研發副總一職便交給摩爾。

摩爾趁此時報告積體電路的應對策略:「我們和專利律師討論過了,德州儀器雖然先申請積體電路的專利,但他們的電路仍得用銲接的,而諾宜斯結合了平面製程與印刷電路,這兩項技術都不在他們的設計裡,應該可以認定為新發明。所以我們決定還是申請專利,無論如何,總比棄械投降來得好。」

基爾比與諾宜斯兩人的積體電路設計對比。左圖是基爾比的設計,可以明顯看出電子元件上都有額外拉出的電線。而右圖是諾宜斯的設計就簡潔許多,電線和電子元件都是平整的放置在一個平面上。圖/親子天下

「沒錯,不用管別人,我們就照原先計劃往前走。等送出專利申請、做出樣品後,我們也要舉辦盛大的積體電路發表會,讓所有人知道誰的技術管用。」諾宜斯馬上展現了總經理的氣勢。

積體電路的專利申請於 1959 年 7 月送出,未待審核結果出爐,本身是發明家的費爾柴爾德就以實際行動展現對他們的信心與支持,提前於 10 月執行選擇權,依當初合約所載,用三百萬買下全部股權。

八叛徒當初每人拿出 500 元,如今兩年不到就換回 25 萬元,當然是美夢成真,也讓外界人人稱羨。不過,卻有兩個人看在眼裡頗不是滋味,那就是蕭克利與貝克曼。

將希望壓在四層二極體的蕭克利

諾宜斯等人出走時,蕭克利仍不認為自己有錯,他得到的教訓反而是認為國內這些心高氣傲的年輕人不聽話又沒忠誠度,不如從歐洲招募三、四十歲的博士,他們更加成熟穩定,好用多了。何況八叛徒本來不懂電晶體,都是他一手教出來的,現在換另一批人,他當然也可以在短時間內就讓他們上手。

因此,無論面對貝克曼或是外界的質疑,他都信心滿滿的堅稱集體離職事件不會有任何影響,實驗室仍將正常運作。

然而,就算貝克曼也這麼認為,他對蕭克利半導體實驗室已有不同想法了。1958 年,貝克曼將它從集團的附屬機構獨立出來為「蕭克利電晶體公司」,顯然已不想再燒錢打造另一個貝爾實驗室,而是要它像一般公司那樣盈虧自負。

蕭克利終於在 1959 年成功開發出 p-n-p-n 四層二極體,卻因為品質不穩定,未能如他原先預想的用於AT&T 的電話交換機;而軍方那邊也沒能賣出多少,以致公司繼續虧損。

貝克曼決定不玩了,剛好克里夫蘭一家傳統企業也想跨足半導體,而蕭克利的名聲仍有相當吸引力,便在 1960 年將公司賣給他們。

蕭克利倒不在意換新東家,反正他仍然在原地繼續做原來的事,只要解決四層二極體的品質問題,還是有機會從 AT&T 拿到源源不絕的訂單,到時所有人——尤其是八叛徒,就會知道他才是最後的贏家。

——本文摘自《掀起晶片革命的天才怪咖:蕭克利與八叛徒》,2022 年 7 月,親子天下,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
親子天下_96
26 篇文章 ・ 25 位粉絲
【親子天下】起源於雜誌媒體和書籍出版,進而擴大成為華文圈影響力最大的教育教養品牌,也是最值得信賴的親子社群平台:www.parenting.com.tw。我們希望,從線上(online)到實體(offline),分齡分眾供應華人地區親子家庭和學校最合身體貼的優質內容、活動、產品與服務。