Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

隨著年齡長智慧 – 那可不一定

Y. M. Huang
・2012/09/19 ・792字 ・閱讀時間約 1 分鐘 ・SR值 523 ・七年級

credit: CC by Nemo's great uncle@flickr

諺語說家有一老,猶如一寶,但人們的智慧真的隨著年齡增長嗎?雖然有研究顯示部分的認知功能隨著年齡老化,但並非所有的能力都會隨著年齡老化;之前也有報導過一個研究顯示年齡並不是唯一影響認知能力的因素,該研究暗示社經地位較佳的國家,老人的認知能力較不會退化。

這次要報導的研究就想檢驗人是否隨著年齡的增長而更有智慧,這個研究中所謂的有智慧,就是越能夠排解個人及團體間的衝突。他們找了日本及美國的實驗參與者,參與者來自三個不同的年齡層(25-40, 41-59, 60-75),他們有盡量控制實驗參與者的背景、教育程度、基本認知能力等等的因素。在實驗中他們會讀三篇跟衝突有關係的文章,然後要發表他們的看法。事後會有評分員來針對他們發表的看法來做評分,這些評分員是根據逐字稿來做評分,也就是說他們並不知道實驗參與者的文化背景及年齡等資訊。

結果顯示,美國實驗參與者對於團體間衝突排解的能力隨著年齡而增加,年齡和能力間有一個正相關;但日本實驗參與者則沒有這樣的現象。然而針對個人間衝突排解的能力,年齡還是會影響美國實驗參與者對於衝突排解的能力,但是效果沒有排解團體衝突顯著;日本的實驗參與者排解衝突的能力還是沒有受到年齡的影響。值得一提的是,日本實驗參與者整體而言排解衝突的能力較美國實驗參與者高!

根據這個結果,或許會認為只有美國人才會隨著年齡的增長而長智慧,但仔細解讀結果就會發現其實可能是因為日本人在年輕時就很有智慧了,很難隨著年齡的增長而更有智慧!當然我們可以爭論這個智慧的定義標準不公平,因為日本人的文化本來就比較鼓勵維繫團體間的和諧,所以他們可能從小就耳濡目染很多排解衝突的做法,若換成用別的指標來定義智慧,會許就會得到不同的結果。

-----廣告,請繼續往下閱讀-----

去看研究的原文
去看主要研究者的網站

-----廣告,請繼續往下閱讀-----
文章難易度
Y. M. Huang
95 篇文章 ・ 4 位粉絲
輔大心理系副教授,主要研究領域:探討情緒與認知之間的關係、老化對認知功能的影響、以及如何在生活中落實認知心理學的研究成果。 部落格網址:認知與情緒新聞網 (http://cogemonews.com)

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
老花眼怎麼辦?替換老花眼鏡好麻煩,該作雷射手術嗎?
careonline_96
・2024/06/26 ・516字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

老花眼就是眼睛調節能力隨著年紀而下降。

以前年輕的時候,眼睛像是一台很好的相機,可以看得很遠、看得很近。

所謂的老花就是調節力變差,使我們需戴另一副老花眼鏡,除了近視眼鏡外,還要再加上一副老花眼鏡,來幫助我們看近物。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

careonline_96
568 篇文章 ・ 279 位粉絲
台灣最大醫療入口網站

0

11
4

文字

分享

0
11
4
宇宙文明演化史(上):能量觀點下的先進文明
Castaly Fan (范欽淨)_96
・2023/06/26 ・3182字 ・閱讀時間約 6 分鐘

編按:說到星際文明的發展程度,科幻愛好者必定會提到「卡爾達肖夫指數」,以使用的能源多寡,來區分文明發達程度。然而,除了從能源來評斷文明進程,其實還有其他的評判方式。

「宇宙文明演化史」系列,將在上篇回顧「卡爾達肖夫指數」,下篇介紹較少討論的「資訊量」與「微觀尺度」的評斷觀點。

地球數以萬億計的物種中,人類算得上是最具高等智慧的生物。

但假設——遙遠的某顆行星上也有「智慧生命」的存在,那麼,對方是否有可能比我們先進?他們能透過量子力學的應用而發明電子產品嗎?他們能掌握陽光、電磁等能源嗎?他們是否有完善的醫療、教育、經濟、社會結構?又或者,他們是否已然可以達成人類難以觸及的瞬時旅行?

智慧生命的演進

誠如在這篇文章所提過的,碳基生命自發形成的機率極為渺小,從有機分子組合成蛋白質、基因序列、細胞、再到個體的行程,這個機率相當於「一陣龍捲風掃過垃圾場、從中隨機拼湊出一架波音 747」那樣渺茫,更何況是演化成像人類這樣的「智慧生命」。

我們不僅僅具有生物體的基本特徵,還具有思考能力、邏輯、記憶力、甚至是預測與規劃未來的能力,這些可以說是人類與其他生命體最與眾不同之所在。人類之所以成為「智慧生命」,便是因為擁有了自己的語言、文字,使資訊得以保留並傳承。回溯到百萬年前,從演化論的角度來看,當時人類與其他靈長類動物差異並不大;然而,我們的老祖先發現了「火」,並且懂得如何生成並且控制「火」,使得我們不再像其他動物那樣直接生食獵物;另一方面,我們開始懂得用遮羞布、乃至於之後縫製衣服。

-----廣告,請繼續往下閱讀-----

此外,我們能表達自己的情緒,能輕易地展現喜怒哀樂溝通,進行交際活動——這些都是人類得以成為智慧生命的原理。

順帶一提,根據物理學家加來道雄(Michio Kaku)所提出的「穴居人原理」(caveman principle),我們人類依然存有百萬年前老祖宗們「原始慾望」的影子——換句話說,數十萬年來人類雖然不斷演化,然而我們的人格依然保有原始穴居人的基因本質。舉例而言:即使有先進的電腦把文件處理完善,我們仍習慣把文件影印成紙本,之所以如此,係因原始人類捕獵動物時要求「獵殺證明」,習慣取信於親眼所見的事實。

同理,我們傾向於參與音樂會或去電影院體驗現場氛圍,而非一味觀賞電子螢幕前的動態;我們習慣社交與打扮,因此多數重要聚會並不容易被虛擬會議所取代;而在古代社會,小道消息的流通會幫助某些人們知悉高層的行動,因而扮演著一定程度重要性——而這也呼應了我們周遭充斥著娛樂與八卦的報刊,畢竟這些事物總會激起人性深處的好奇心。另一方面,穴居人法則似乎也意味著藝術、娛樂並不會因為科技發展而消失,因為這些事物能滿足人類的需求與愉悅,而這並非科技所能取而代之的。

根據穴居人原理,我們依然保有原始人類的慾望。圖/Mrs J’s science

回歸根本,可以發現,身為智慧生命,必然要有「視力」的存在、而非像螞蟻那樣透過觸角溝通,包含情緒的表達、語言的交流,這方面可以歸功於「大腦」的演化;再者,人類的「腳趾」的演化也是關鍵,這使得人類得以直立行走、改變對世界的視角與行動;此外,「前肢可握物」也扮演著重要角色,亦即靈活的手指——這使得人類可以精準地操作物件、製造工具。

-----廣告,請繼續往下閱讀-----

先進文明的分級

因此,我們假定這些智慧生命都擁有這些生理構造與功能,他們可以溝通、可以發明器物。那麼,有沒有一個指標能告訴我們一個「文明」究竟能多發達?

1964 年,蘇聯科學家卡爾達肖夫(Nikolai Kardashev)提出了一個度量文明先進程度的指標——「卡爾達肖夫指數」(Kardashev Scale)。經由天文學家卡爾.薩根(Carl Sagan)修正過後,可以歸結為下列公式:

其中 K 代表卡爾達肖夫指數,P 代表文明所消耗的總能量。基本上,我們可以將文明依據「駕馭能量」的量級區分成三大類型:

  1. I 型文明(K=1)
    該文明能駕馭 10¹⁶ W 的能量,相當於掌握所處行星的能量,因此又稱「行星文明」。這類型的文明可以控制天氣、調節海洋、並且到地底深處採礦,徹底運用星球資源;並且,這一類文明將能任意造訪附近行星,並在後期發展出接近光速的太空旅行。
  2. II 型文明(K=2)
    該文明能駕馭 10²⁶ W 的能量,相當於掌握所處恆星系統的能量,因此又稱「恆星文明」或「星際文明」。這類型的文明能夠透過戴森球(參見下文)或相關科技、徹底利用恆星系統的能量;他們可在各個行星、恆星之間任意穿梭,並且相繼朝往其他恆星系統殖民。
  3. III 型文明(K=3)
    該文明能駕馭 10³⁶ W 的能量,相當於掌握所處星系的能量,因此又稱「星系文明」。這類型的文明不再受限於附近的恆星系統,他們將能夠隨心所欲駕馭整個星系、甚至宇宙尺度級別的能量,並可以在星系之間來去自如;他們甚至已熟悉時空物理、得以透過蟲洞或先進技術穿越時空。
卡爾達肖夫指數示意圖,由左而右分別是:行星文明(I 型)、恆星文明(II 型)、星系文明(III 型)。圖/http://www.maximusveritas.com/wp-content/uploads/2016/06/

作為宇宙文明的分級,文明所駕馭的總能量可以視為一個標竿。宇宙中的能量是無所不在、甚至可以說是取之不盡用之不竭的。因此,能妥善利用這些能量到什麼程度,便可以視為文明「先進與否」的標準。當然,還有一些人把這列表往下延伸,諸如宇宙文明(IV 型)、多重宇宙文明(V 型)、神靈文明(VI 型)、未知文明(VII 型)等等——不過這些級別距離目前人類還算是遙不可及,我們甚至無法保證在宇宙 137 億這年齡下是否已有這麼先進的文明誕生。

-----廣告,請繼續往下閱讀-----

就目前而言,顯然,人類縱使歷經工業革命、資訊革命,也開發出原子能、得以進行太空探索——但似乎尚未能被列入其中之一——我們尚未有能力操控天氣、就連地底結構也都是透過震波才得以探知的。那麼,人類目前究竟處在哪一階段?讓我們簡單計算一下:根據世界能源消耗量的統計,截至 2021 年底,人類所消耗的能量約為 176,431 TWh(百萬兆瓦時),相當於 20.14 TW(百萬兆瓦),代入卡爾達肖夫指數公式:

可以直接得出卡爾達肖夫指數 K≈0.73 ——因此,人類目前約是落在「0.73 型文明」,依然位在「第零型文明」的階段。

目前人類的能量來源主要仍是石油、煤炭、天然氣;除此之外還有傳統生質能、水力發電、以及核能。在數十年內,風力發電、太陽能、生質能會慢慢取代化石燃料,而核融合技術很可能帶領人類走向 I 型文明。

當人類開始進行太空殖民、並且能妥善運用母恆星(太陽)所供應的能量後,才會慢慢朝向 II 型文明發展;而在 I 型或者 II 型文明階段,另一個能催動科技進展的很可能就是反物質(antimatter)的製造與普及。加來道雄認為,我們有機會在本世紀末或是兩百年內躍升成為 I 型文明;到達 II 型文明需要數千年;至於到達可以隨心所欲駕馭時空的 III 型文明,可能還需要數十萬至百萬年。

-----廣告,請繼續往下閱讀-----
1800 年代至 2021 年的世界能源消耗總量:目前人類消耗能源仍以化石燃料為多數。圖/our world in data

參考文獻 / 延伸閱讀

  1. Kardashev, N.S. (1964). Transmission of information by extraterrestrial civilizations. articles.adsabs.harvard.edu.
  2. 加來道雄,《穿梭超時空》,台北:商周出版,2013
  3. 加來道雄,《平行宇宙》,台北:商周出版,2015
  4. 卡爾.薩根,《宇宙・宇宙》,台北:遠流出版事業股份有限公司,2010
  5. 史蒂芬.霍金,《胡桃裡的宇宙》,台北:大塊文化,2001
-----廣告,請繼續往下閱讀-----
Castaly Fan (范欽淨)_96
6 篇文章 ・ 4 位粉絲
科學研究者,1999年生於台北,目前於美國佛羅里達大學(University of Florida)攻讀物理學博士,並於費米國家實驗室(Fermilab)從事高能物理相關研究。2022年於美國羅格斯大學(Rutgers University)取得物理學學士學位,當前則致力於學術研究、以及科學知識的傳播發展。 同時也是網路作家、《隨筆天下》網誌創辦人,筆名辰風,業餘發表網誌文章,從事詩詞、小說、以及音樂創作。