天文學家利用歐南天文台(ESO)超大望遠鏡(Very Large Telescope,VLT)觀測資料所做的最新研究顯示:那些最為明亮的高質量恆星(high-mass star)並不是單獨存在,幾近四分之三的這類高質量恆星擁有伴星,這個比例遠高於先前的認知。更讓這些天文學家驚訝的是,這些高質量恆星所在的雙星系統,子星之間存有強烈的交互作用,質量會由其中一顆子星轉移到另一顆子星;其中甚至有三分之一這類高質量恆星雙星系統,最終會合併成單一恆星。相關論文發表在2012年7月27日出刊的科學(Science)期刊中。
宇宙中的恆星各式各樣、不一而足。荷蘭阿姆斯特丹大學(University of Amsterdam)天文學家Hugues Sana等人利用VLT研究O型星(O-type stars),這類恆星的質量、表面溫度和所發出的亮度都比一般恆星高很多,質量約為太陽的15倍以上,亮度是太陽的百萬倍以上,表面溫度更高達攝氏30,000度以上,是恆星中的巨獸等級。然而,也由於這些特點,使得這些發出藍白色光芒的O型星,壽命極短而劇烈,對星系演化具有關鍵作用。O型星也與被戲稱為「吸血鬼恆星(vampire stars)」的極端現象有關,這種在這種雙星系統中,較小的子星會掠奪較大子星的表面物質,到一定程度後,可能引發伽瑪射線爆發(gamma-ray burst,GRB)現象。
以吸血鬼恆星為例,雙星中比較小、質量比較低的恆星,是藉由吸食它近鄰表面的新鮮氫氣而回春;由於它的質量穩定增加,有了外來支援之後,不僅可比它的近鄰活得更久,而且也比同質量的單星活得更久。然而,這個身為犧牲者的近鄰,雖然原本的質量比較大,但表面物質被惡鄰不斷掠奪,害它根本沒機會變成一顆非常明亮的紅超巨星(red super giant),而是將它原本的熾熱核心一點一點暴露出來,呈現偏藍的色調,像是一顆剛誕生沒多久的年輕恆星一樣。如此一來,雙星中的兩顆子星都彷彿重生過,將讓遙遠星系中的星族表現得比原本該有的年齡還年輕;如果能得知這類高質量雙星系統的正確比例,將有助於校正這些遙遠星系的特性。
1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。
-----廣告,請繼續往下閱讀-----
我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。
麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。
而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。
不過,這裡有個關鍵細節。
在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。
從 DNA 藍圖到生物積木:融合蛋白的設計巧思
融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。
我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。