Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

奈米星形化身疾病診斷急先鋒

NanoScience
・2012/07/18 ・958字 ・閱讀時間約 1 分鐘 ・SR值 630 ・十年級

-----廣告,請繼續往下閱讀-----

英國及西班牙科學家們研發出一種新型生物奈米感測器,在標靶分子濃度較低時,反而能產生較強的偵測訊號。此感測器能偵測到遠低於醫院現行檢驗法所能測得的分子濃度,因此可以在疾病初期幫助醫生判斷,而在許多情況下早期發現往往有助於病情的治療與痊癒。

一般生物感測器產生的訊號大小與標靶分子的濃度成正比,因此在低濃度時靈敏度會下降。對於癌症抗原之類的疾病生物標記分子而言,生物感測器能否區分零檢出或微量檢出,是件非常重要的事。倫敦帝國學院(Imperial College London)的 Molly Steven 與西班牙維戈(Vigo)大學的合作伙伴利用星形奈米金粒製作出此新式感測器,能探測的濃度比目前最先進的測試技術靈敏十倍以上。

圖片來源:physicsworld.com

此星形奈米金粒又稱奈米星(nanostar),大小約 50 nm,其結構可產生表面電漿子(surface plasmon),亦即傳導電子在表面的同調振盪行為。研究人員以可見光/近紅外光照射奈米星,找出最大吸收的頻率位置,便可量測出表面電漿子的共振頻率。

上述團隊在金粒表面接上葡萄糖氧化酶(glucose oxidase, GOx),作為生物催化劑來還原溶液中的銀離子。在低 GOx 濃度時,銀原子會沈澱在金粒表面上,使表面電漿共振頻率產生藍位移(blue shift);而濃度較高時,銀離子會在溶液中快速成核結晶,導致共振頻率的偏移較不明顯。所以,量測加入 GOx 前後的吸收頻率,便能非常靈敏地獲得葡萄糖氧化酶的濃度。

-----廣告,請繼續往下閱讀-----

該團隊接著利用奈米星量測前列腺特異抗體(prostate specific antibody, PSA)的濃度,此生物分子為前列腺癌的生物標記。研究人員先在奈米星表面鍍上一種可從溶液中抓取 PSA 的抗體,然後再將與 GOx 相連的第二個抗體閂在 PSA 上。GOx 會進行上述的銀還原步驟,測量表面電漿共振的偏移量即可得到待測物濃度。

此技術可偵測濃度低至 10-18g/ml 的前 PSA,和目前醫院常使用的酵素免疫分析法(enzyme-linked immunosorbent assay, ELISA)相比,濃度低上十億倍。Steven 表示,此感測器在最低的濃度時能產生最強烈的訊號,因此能偵測出極低的標靶分子濃度。

目前,研究人員僅完成前 PSA 的檢測,但 Steven 認為此法亦應用於其它疾病的初期診斷,其中尤其吸引人注意的是與人類免疫缺乏病毒(HIV)有關的 p24 蛋白質。詳見 Nature Materials|DOI:10.1038/nmat3337。

譯者:林主恩(中央大學光電科學研究所)
責任編輯:蔡雅芝
原文網址:New nanosensors could detect disease earlier—physicsworld [2012-05-28]

-----廣告,請繼續往下閱讀-----

本文來自 NanoScience 奈米科學網 [2012-07-07] 

-----廣告,請繼續往下閱讀-----
文章難易度
NanoScience
68 篇文章 ・ 4 位粉絲
主要任務是將歐美日等國的尖端奈米科學研究成果以中文轉譯即時傳遞給國人,以協助國內研發界掌握最新的奈米科技脈動,同時也有系統地收錄奈米科技相關活動、參考文獻及研究單位、相關網站的連結,提供產學界一個方便的知識交流窗口。網站主持人為蔡雅芝教授。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
復發淋巴瘤的希望之光:ADC 治療的革新突破
careonline_96
・2024/10/21 ・2212字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

圖/照護線上

肺癌後又罹淋巴瘤!復發靠突破性治療–抗體藥物複合體 ADC 續命

「瀰漫性大 B 細胞淋巴瘤(Diffuse large B-cell lymphoma),簡稱 DLBCL,是一種有機會治癒的疾病,但並非每個人都能如此幸運。曾碰過一位讓我印象深刻的患者,他的淋巴瘤在第一線治療緩解多年後又再復發。」林口長庚醫院血液科施宣任醫師表示,「患者過去曾因罹患肺癌切除過肺臟,身體狀況難以承受自體幹細胞移植,面臨治療選擇相當有限的困境,狀況一度很不樂觀。」

幸運的是,當時針對 DLBCL 淋巴瘤的突破性新治療–抗體藥物複合體 ADC(Antibody-drug conjugate)剛好核准通過。根據臨床試驗數據,針對復發的病患,若於治療時再加上 ADC 藥物,完全反應率是傳統化療的兩倍,整體存活期更較傳統化療增加將近三倍!因此當時在討論後,立刻幫患者將 ADC 藥物加入治療組合中,後續也順利地達到完全緩解快一年,目前沒有復發跡象,持續門診追蹤。

瀰漫性大B細胞淋巴瘤(DLBCL)治療不能等
圖/照護線上

台灣常見淋巴瘤 DLBCL 惡性度高!復發具抗藥性急需新治療突破

DLBCL 是台灣最常見的淋巴瘤。根據國健署癌症登記報告,台灣一年新增超過四千例淋巴癌個案中有九成屬於非何杰金氏淋巴瘤,超過一半是惡性度很高的 DLBCL,不僅進展快速,且可能侵犯全身器官,因此治療要越快越好,盡量避免等待空窗期。

施宣任醫師強調,「不像一些小細胞的低惡性度淋巴瘤可以等症狀明顯再治療,大細胞病變通常來勢洶洶,像 DLBCL 雖然會因為分期等因素,治療選擇上略有差異,但基本就是完全不能等!」過去 DLBCL 標準的第一線治療為化療藥物再加上 CD20 單株抗體的『免疫化學治療』,除化療毒殺腫瘤細胞外,同時藉由單株抗體直接促使帶有 CD20 的 B 細胞死亡達到緩解的效果。「大約 5~6 成的病患接受免疫化學治療後可以達成長期完全緩解也就是痊癒;剩下無法完全緩解的這群病患,又被稱作頑固型 DLBCL 淋巴瘤,因為已經對第一線藥物產生抗藥性,治療上較為棘手,需要更有效的新藥物選擇。」

-----廣告,請繼續往下閱讀-----
抗體藥物複合體ADC雙管齊下,結合單株抗體+化療
圖/照護線上

ADC 治療雙管齊下 提升療效降低副作用 健保已開放第三線給付

ADC 是經臨床試驗證實有效 DLBCL 淋巴瘤治療的新突破選擇。ADC 藥物的『複合』二字,指的就是單株抗體與化療的結合,藉由單株抗體對腫瘤的精準指向性,將化療藥物直接送到腫瘤身邊,進行毒殺。施宣任醫師進一步解釋,「ADC 藥物的專一性優勢,除了讓治療效果更顯著外,相較傳統化療沒有目標性地作用,ADC 藥物透過單株抗體可達成如同讓淋巴瘤細胞直接把化療吞進去的效果,自然副作用也降低很多,病患比較少感覺噁心、想吐、掉髮等。」

臨床研究顯示,ADC 藥物合併免疫化學治療一起使用後,能夠增加頑固型或復發淋巴瘤病人的整體存活期和完全反應率,並具有更長的療效持續時間。「整體存活期約增加近3倍、達成完全反應的機率則增加2倍以上,對已產生抗藥性的病人來說,這樣的數字實屬難能可貴。」施宣任醫師指出,因此美國 NCCN 治療指引也建議,符合特定條件的 DLBCL 淋巴瘤病人,可優先考慮接受 ADC 藥物的治療組合。

「台灣的醫療基本都是與國際同步,特別會參考美國的作法,因此健保署也於今年(113年)2 月將 ADC 納入 DLBCL 淋巴瘤第三線給付,讓患者能夠在減輕經濟負擔的狀態下,快速接受與國際同步的最新治療。」

ADC藥物或健保給付:提升頑固型或復發DLBCL反應率
圖/照護線上

彌漫性大B細胞淋巴瘤(DLBCL)治療與日常照護小提醒

現今 DLBCL 淋巴瘤的治療已朝多元選擇邁進,但免疫化學治療仍是重要的骨幹治療。施醫師提醒,包括 ADC 藥物等不同治療組合,都會搭配不同的化學藥物,毒性雖有高有低,但都可能造成免疫力低下,因此治療期間,應盡可能降低感染的機會,避免出入人潮較多的公共場所;近期流感、新冠等呼吸道傳染症疾病也較盛行,DLBCL 的病人更應提高警覺,小心預防。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

0
0

文字

分享

0
0
0
DNA-PAINT:轉瞬標記 奈米解析
顯微觀點_96
・2024/10/03 ・3586字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

圖/顯微觀點

DNA-PAINT:易脫落的奈米「漆」

DNA-PAINT 屬於單分子定位顯微術(SMLM)大家族一員,它突破繞射極限的途徑類似 PALM 與 STORM:以閃爍(blinking)的螢光讓多個目標分子的位置輪番呈現,最後將多次定位影像以電腦疊合重建成完整的超解析分子地圖。結合電腦運算輔助和光學成像的統計原理,DNA-PAINT 可以達成極端細緻的 RESI 定位術,清楚區別兩個距離不到 1 奈米的螢光來源。

單看字面,DNA-PAINT 給人「以 DNA 作為油漆」的印象。事實稍有不同,這種技術以 DNA 作為「點累積奈米成像術」(PAINT , Point Accumulation for Imaging in Nanoscale Topography)的探針。接上螢光染劑的短小 DNA 片段,可以靈敏標記蛋白質、染色體以及許多細胞內構造。

DNA-PAINT 的特別之處,在於利用「不牢固」的螢光標記製造閃爍效果。不同於 PALM, STORM 以光調控「固著在目標上」的螢光來源,DNA-PAINT 使用與目標連結力量薄弱的螢光探針,結合目標之後會快速分離。只有在探針與目標結合的瞬間,同時被激發光照射,探針上的螢光團才能發出螢光。目標分子與螢光探針分離後,依然保有和下一個探針結合的能力,因此不必擔心螢光團的放光能力衰退。

-----廣告,請繼續往下閱讀-----
Dna Barcoded Labeling Probes For Highly Multiplexed Exchange Paint Imaging
DNA-PAINT 原理:Docking strand(嵌合序列)附著在人造 DNA 構造上,溶液中漂浮著成像序列(Imager strand),成像序列上的螢光團不容易被激發(膚色)。成像序列與嵌合序列結合時,螢光團才會被激發(橘紅色) 圖片來源:Agasti, Sarit S., et al. Chemical science 8.4 (2017): 3080-3091.

DNA-PAINT 使用的 DNA 探針片段長度不超過 10 個鹼基,又稱寡核苷酸(oligonucleotides 或oligomers)。這些短小 DNA 片段可以附加上螢光染劑的螢光團分子,成為螢光探針。

DNA 探針的結合對象是另一段互補的 DNA 片段,此互補序列會預先透過抗體與定位目標連結,等待 DNA 探針前來結合。DNA 探針因為具有螢光團,被稱為「成像片段(imager strand)」,而牢固於目標的互補序列則稱為「嵌合片段(docking strand)」。對生物細胞進行 DNA-PAINT 時,嵌合片段與目標分子之間常有抗體或配體做為銜接,需要類似免疫螢光染色的前置作業,目標表面的抗原也可以因應實驗需求進行設計。

因為兩個短小 DNA 片段之間的結合力有限,成像片段與嵌合片段結合後會快速分離。而螢光團只有在結合目標時才容易放光,因此可以形成閃爍的螢光定位標記。經由電腦疊合閃爍的定位影像,DNA-PAINT 可以達成 10 奈米左右的超解析定位,若沒有序列成像的幫助,依然無法突破奈米以下解析度的光學障礙。

Direct Visualization Of Single Nuclear Pore Complex Proteins Using Genetically‐encoded Probes For Dna‐paint
以 DNA-PAINT 對細胞核膜上的 Nup96 核孔蛋白進行 3D 定位。在圖 a. 中,不同的螢光色彩象徵不同的空間深度。圖 b. 箭頭所指處,則是成對出現的 Nup96 蛋白。比例尺:圖 a. 2000nm, 圖 b. 50 nm. 圖片來源:Schlichthaerle, Thomas, et al. Angewandte Chemie 131.37 (2019): 13138-13142.

核孔複合體(Nuclear Pore Complex)上的 Nup96 蛋白是科學家經常探索的重要目標,即使是超解析顯微術也未能在自然狀態下呈現其構造。隆曼團隊以 RESI 對 Nup96 進行定位,不但清楚定位出符合電子顯微鏡拍攝的 8 對 Nup96 蛋白沿著核孔形成環狀結構,還能清楚呈現每對蛋白之間的 11 奈米的間距。

-----廣告,請繼續往下閱讀-----

結合序列成像(Sequential Imaging)與 DNA-PAINT 兩種技術,RESI 讓科學家得以運用一般門檻的顯微儀器、耗材,就能達到超乎以往想像的定位解析度。而 DNA-PAINT 這種巧妙的定位方法並非一蹴而就,而是數種有趣的技術累積而成。

PAINT 起源:不穩定又不專一的尼羅紅

PAINT(Point Accumulation for Imaging in Nanoscale Topography, 點累積奈米成像術)系列定位法的螢光探針由一個螢光染劑分子與一個分子探針(probe)構成。親和性抗體、寡核苷酸(短小 DNA 片段)都可作為分子探針的材料,再由此探針結合目標分子或其上的抗體。除了 DNA-PAINT, PAINT 家譜上還有 FRET-PAINT, Exchange-PAINT, u-PAINT 等不同特質的成員。

在 2006 年由沙羅諾夫(A. Sharonov)和霍克崔瑟(R. M. Hochstraser)發表的第一代 PAINT 中,僅僅使用螢光染料尼羅紅(Nile Red)為標記。這種染劑在含水溶劑中無法發光,必須進入磷脂層等非極性環境才能展現其螢光活性。

因此尼羅紅無須結合探針,只要以低濃度加入樣本溶液中,就能觀察到其進入細胞膜脂雙層、大型磷脂囊泡(large unilamella vesicles)表層等疏水性環境中,受到激發放出螢光。尼羅紅與磷脂層的親和性不強,很快就會再次脫離,也容易遭到光漂白(photobleaching)而失去螢光,因此可作為一種閃爍的螢光定位標記。

-----廣告,請繼續往下閱讀-----

尼羅紅可以結合所有疏水性(hydrophobic)的構造,無法真的標記特定分子,缺乏分子生物學重視的專一性。但它開啟了 PAINT 以「不牢固螢光染劑」增進解析度的先河。與多數螢光顯微術追求螢光團穩定性與強度的定位技巧背道而馳。

Image 2
圖 a. 以尼羅紅標記磷脂層的直接成像;圖 b. 以 PAINT 技術進行上千次成像重建後的磷脂層定位。兩者定位解析度形成強烈對比。圖 c. 為 uPAINT 概念:接受激發光(綠色)照耀的螢光探針才會發光(紅色),漂浮在激發光範圍外的螢光探針保持黯淡(粉紅),即使未結合目標的探針也能發光,且僅能標記細胞膜表面的目標。圖片來源:Nieves, Daniel J., et al. Genes 9.12 (2018): 621.

4 年後,吉安諾內(G. Giannone)和荷西(E. Hosy)以具目標專一性的配體,例如抗體蛋白,連接螢光團形成螢光探針,達成具有專一性的 PAINT 超解析定位。透過進步的生化技術製作配體,這種技術幾乎可以定位所有類型的目標,因此被命名 universal-PAINT, 簡稱 uPAINT。

uPAINT 可以提升多種目標的定位解析度,但其螢光探針即使游離在溶液中,也能接受激發、放出螢光,形成背景雜訊。且結合螢光染劑的抗體無法穿透細胞膜,因此只能定位細胞膜上的目標。

因此 uPAINT 必須限縮激發光照射的範圍,對準目標、減少雜訊,例如微調全內反射顯微鏡(TIRF)的角度,形成「高傾斜層光照明」(Highly Inclined and Laminated Optical sheet, HILO)以限定激發範圍。

-----廣告,請繼續往下閱讀-----

同在 2010 年,隆曼與史坦豪爾(C. Steinhauer)嘗試以寡核苷酸為探針,定位 DNA 摺紙構造(DNA origami structure)上的目標,達到了奈米等級的解析度。DNA-based Point Accumulation for Imaging in Nanoscale Topography 正式誕生,善用「不牢固的螢光探針」與電腦運算的輔助,以一般螢光顯微鏡就能突破繞射極限。

無限調色的虛擬油漆:Exchange-PAINT

2014 年,隆曼與同事阿凡達尼歐(M. S. Avendaño)、沃爾斯坦(J. B. Woehrstein)發表 DNA-PAINT 的巧妙變化,除了同時以不同探針標記不同構造,達成精準的多重定位(multiplexed localization),更實現以一種螢光超解析定位多種目標,讓多重標記的潛力加速實現。

這種多重標記被隆曼與同事稱為 Exchange-PAINT,同樣使用 DNA 片段作為探針。在同一個樣本的 10 種不同目標上,連結了 10 種不同的嵌合片段(docking strands),隆曼等人再以 10 種互不干涉的短小 DNA 序列(orthogonal sequences)作為成像片段(imager strands)。

他們每次只加入一種成像片段,針對一種目標進行閃爍(blinking)定位,並由電腦套上特定顏色,接著洗去既有成像片段,再加入下一種成像片段。最後將所有目標的獨立定位圖疊合起來,便能得到完整的奈米級定位。

-----廣告,請繼續往下閱讀-----
Multiplexed 3d Cellular Super Resolution Imaging With Dna Paint And Exchange Paint 2
圖 a.為 Exchange-PAINT 概念,每一輪定位針對一種目標,完成後洗去探針,再加入下一種探針進行定位,最後將每一輪的定位影像疊合起來。圖 c., 圖 d. 表現 Exchange-PAINT 的多工能力, 1 個 DNA 摺紙樣本上的 10 種不同目標可以依序定位,賦予顏色(實際上使用相同螢光染劑,不同成像片段),再以電腦重建疊合。每一種目標的定位都進行了 7500 次拍攝。圖 d., 圖 e. 中的比例尺為 25nm. 圖片來源:Jungmann, Ralf, et al.  Nature methods 11.3 (2014): 313-318.

只需要一種螢光染劑接上多種成像片段,Exchange-PAINT 便能以基本的實驗設備達到多重目標的超解析定位,不像多重標記的 DNA-PAINT 受限於染劑顏色數目,Exchange-PAINT 的門檻在於互不相干寡核甘酸片段的數目,在實驗中幾乎不可能窮盡。而可以使用一般螢光顯微鏡與螢光染劑達到埃(ångström)解析度的 RESI 技術,就是將 Exchange-PAINT 的多種目標定位應用於單種目標定位,透過不同探針標記同種目標製造發光順序落差,大幅提升解析度。

在「眼見為真」的生物學影像趨勢中,「增加偵測光子數量」是螢光顯微技術提升解析度的基礎光學原理,也是最主流的技術改良方向。而 DNA-PAINT 系列技術跳脫了對光子數量的追求,不受螢光染劑的光漂白及螢光壽命限制,以快速脫落的探針另闢蹊徑,使低成本的超解析影像得以實現,更展現生物物理學蘊藏的廣泛技術可能性。

  • DNA-PAINT 的最新應用:RESI序列成像解析度增強術
  • Jungmann, Ralf, et al.  Nature methods 11.3 (2014): 313-318.
  • Agasti, Sarit S., et al.  Chemical science 8.4 (2017): 3080-3091.
  • Nieves, Daniel J., Katharina Gaus, and Matthew AB Baker. Genes 9.12 (2018): 621.
  • Schlichthaerle, Thomas, et al.  Angewandte Chemie 131.37 (2019): 13138-13142.
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
27 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。