0

1
1

文字

分享

0
1
1

皮膚老化的原因

陳俊堯
・2009/09/05 ・1545字 ・閱讀時間約 3 分鐘 ・SR值 482 ・五年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

圖片來源: alphadesigner@flickr

夏天不能曬太多太陽,不然皮膚會老化。這是可以避免的。可是年紀大了,皮膚也會老化,這就還没有辦法解決了。最近研究人員發現,這樣的老化跟免疫系統有關。

脊椎動物得到了個演化上首次出現的東西-淋巴球。因為有了淋巴球,脊椎動物才可以擁有製造抗體的能力,也才能在第二次碰到相同抗原的時候,從記憶型T細胞及記憶型B細胞快速啟動免疫機制,讓幫手T細胞可以帶著眾兄弟們清除病原或有問題的細胞。老人家的皮膚經常出現腫瘤或黑斑等等的問題,可能都是不正常的細胞在皮膚增加造成的。可是這個現象有辦法用藥物來改善嗎?在人口組成逐漸老化的社會,銀髮族碰到的問題應該是我們要努力找出方法來因應的。

過去的研究都只能由抽血拿血液中淋巴球來實驗。可是在血液中淋巴球和進到組織裡的淋巴球不太一樣。我們知道當身體某處發生問題後,平常在血管裡流動的血球細胞才會離開血管進入組織去處理狀況。以T細胞來說,當它接到派遣令時會先有變身的動作在細胞膜上出現特定的蛋白質。接著最靠近事故現場的血管會在形成管壁的內皮細胞上現一些分子記號,當血液中的T細胞經過發現這些記號時會停下來,找到內皮細胞間的縫隙擠出去進到組織裡,再擠過一大堆的細胞後到事故現場執行任務。免疫細胞變身後對環境刺激的反應大不相同。而一旦細胞鑽進細胞堆裡,我們就看不到它啦!到底進到皮膚組織裡發生了什麼,到現在還是不容易找出答案。

這支英倫團隊比較了不到40歲的人和70歲以上的老人家的皮膚後發現,老人家皮膚裡的巨噬細胞似乎没能適時放出TNF-alpha,所以不能活化微血管內皮細胞來留住經過的幫手T細胞,所以導致在皮膚的功能變差。你一定想說,這一堆專有名詞是什麼鬼?

這樣說好了。假設今天我一個人走在深山裡摔傷動彈不得,手機又没電,大概就等著死神召喚了,因為就算山下有最好的救難人員,他們也不會知道我倒在山上該出動了。如果這時有另一個山友經過看到我,可以幫我打手機求救,所以救難人員就緊張了,可是他們依然不知道我在那裡。如果這位山友有個紅色帳棚,這時把它架起來,救難直升機就有機會老遠看到我們在那裡,我這個問題人物就有機會被處理掉。

換到人身上,老年人的T細胞是正常的。發生問題的皮膚細胞平常可以適時出現紅色警訊讓定期經過的幫手T細胞進來處理問題,把不正常的細胞清除掉。可是如果這個人老了,附近的巨噬細胞没有做好放紅色警訊的工作,我們的免疫細胞就不能及時找到並清除問題細胞,癌細胞等等不正常的細胞就開始變成問題了。

作者發現一群特定的調節T細胞似乎在老人家的皮膚裡數量特別多。這群細胞曾被發現可以抑制巨噬細胞放出TNF-alpha,所以有可能是問題的關鍵人物。這個故事當然還要有續集,未來研究人員仍希望能找到問題的源頭,看能不能有機會減緩皮膚免疫機制的老化。

重要概念

  • [普生]脊椎動物演化出淋巴球(lymphocyte),才有了後天性免疫系統(acquired immunity), 也才有了免疫記憶(immunological memory)。
  • [普生]免疫細胞利用分泌各種細胞激素(cytokine)來互相溝通,像這一篇提的巨噬細胞就放出 TNF-alpha控制內皮細胞來吸引 T 細胞。
  • [普生]內皮細胞(endothelial cell)在組織學上屬於表皮細胞(epithelial cell),位在各種血管的最內層,形成連續保護膜圍住血液。當你流血時,那裡的內皮細胞一定被扯破了。
  • [普生]細胞没有辦法看到或聞到對方,辨認是靠兩種細胞在表面的蛋白質來達成。如果兩種細表面的蛋白質可以互相吸引結合,那兩個細胞的距離會拉近,更多的互動才可能接著發生。

試試你的英文能力

研究原文

文章來源:30.6kj
文章難易度
陳俊堯
109 篇文章 ・ 16 位粉絲
慈濟大學生命科學系的教書匠。對肉眼看不見的微米世界特別有興趣,每天都在探聽細菌間的愛恨情仇。希望藉由長時間的發酵,培養出又香又醇的細菌人。

0

2
0

文字

分享

0
2
0
小傷口大學問!居家傷口照護要點,幫助癒合、預防疤痕
careonline_96
・2022/12/06 ・1897字 ・閱讀時間約 3 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

「醫師,我的傷口越來越嚴重!」老伯指著膝蓋抱怨,「本來只是跌倒擦傷,我就自己換藥,結果越搞越糟糕…」老伯的膝蓋上貼了一大塊紗布,沾滿了滲液與血漬。

醫師小心移除紗布後,發現患者原本的傷口大約只有 2*2 公分,但是傷口周遭的皮膚發紅、起疹,還有幾處明顯是在撕膠帶時造成的破皮,皮膚損傷的範圍已是原本傷口的好幾倍。

臨床上常會遇到一些患者,在居家傷口照護的過程中,遇到皮膚過敏、搔癢破皮,而產生很多問題。三軍總醫院整形外科喬浩禹醫師說,當時請患者使用低過敏性敷料、矽膠型膠帶,在小心照顧後,才漸漸痊癒。

日常生活中我們常會遇到一些小傷口,例如做菜時的切割傷、燒燙傷,或是跌倒、碰撞造成的擦傷、鈍挫傷等。喬浩禹醫師指出,雖然是小傷口,但依然要好好照顧,才能降低感染的機會。

建議要每天以生理食鹽水清潔傷口,並以敷料覆蓋,請盡量保持乾淨、避免沾濕。喬浩禹醫師說,針對感染風險較高的傷口,可以使用優碘妥善消毒。

過去大家常用紗布覆蓋傷口,現在有很多人會使用人工皮覆蓋傷口。喬浩禹醫師說,人工皮能夠吸收傷口滲液,在剛受傷的前幾天,傷口滲液較多,可能需要增加更換頻率,避免過度潮濕。

換藥時,要仔細觀察傷口,如果出現發紅、腫脹、發熱、疼痛等感染跡象,便要盡快就醫。

善用進階人工敷料

傳統紗布的可及性高,也被廣泛使用,不過較容易乾掉黏在傷口上,而在換藥時造成不適。

目前有很多種進階人工敷料被用來照顧傷口,喬浩禹醫師解釋,進階人工敷料能夠吸收傷口滲液,形成濕潤的凝膠體保護層,提供良好癒合環境。

為了避免傷口遭到汙染,通常會請患者避免沾濕敷料,以減少感染的風險,但是在日常生活或工作中,很難完全不碰到水。喬浩禹醫師說,若有需要時,可以使用具有防水外膜或防水黏邊的敷料,提升日常的便利性。

在傷口癒合期間給予妥善照護,對傷口預後非常重要。提供良好癒合環境、避免感染都有助於減少疤痕的形成。

在照顧傷口的同時,也要留意傷口周邊的皮膚,喬浩禹醫師提醒,因為人工皮在吸收滲液後形成水凝膠,若滲液較多,會讓傷口附近的皮膚也浸潤得很嚴重。除了增加更換頻率之外,也可以考慮使用皮膚保護的噴劑、塗層,避免傷口附近的皮膚持續浸潤。

小心預防黏膠相關皮膚損傷

因為需要使用膠帶、黏膠固定敷料,所以得小心預防黏膠相關皮膚損傷,常見的問題包括過敏、破皮、水泡、撕裂傷等。

在固定敷料時,要盡量減少膠帶與皮膚的接觸面積。如果皮膚已經有發紅、過敏的現象,便要盡量避開,以免狀況惡化。

若希望降低過敏的機率,可以使用低過敏膠帶、矽膠型膠帶。喬浩禹醫師說,患者對矽膠發生過敏的機率較低,有助減少黏貼膠帶造成的搔癢不適。移除敷料的時候,請一手輕輕固定皮膚,一手慢慢撕除膠帶,不可快速撕除膠帶,以避免造成破皮或撕裂傷。

癒合不良、慢性傷口是健康警訊

多數的表淺小傷口可以在家裡照顧,但是如果發現傷口經過 2、3 禮拜仍然沒有癒合,或沒有明顯縮小,便得盡快就醫,讓醫師評估是否有感染、是否需要進一步介入治療。

部分患者的慢性傷口是因為糖尿病、周邊動脈阻塞、靜脈阻塞、或壓瘡,必須矯正背後的原因,才有辦法讓傷口癒合。慢性傷口是健康警訊,若沒有妥善處理,恐怕會出現更多棘手的併發症。

喬浩禹醫師叮嚀,各種傷口都不能大意,請依照醫護人員的指示妥善照護,才不會讓小傷口變成大麻煩!

0

2
0

文字

分享

0
2
0
鑑識故事系列:定罪兼診斷?!性器黑色素沉著症
胡中行_96
・2022/10/06 ・1475字 ・閱讀時間約 3 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

日本警察逮捕了一名年紀約三十出頭的男性嫌犯,認為他強姦年輕女子。[1]

在嫌犯否認指控的同時,警察找到其手機裡的一支影片,內容正是記錄犯罪的行為。就一般的辦案程序而言,警方會期望從中瞭解加害人的生理特徵,例如:髮色、傷疤或刺青等,作為接下來指認身份的根據。然而,儘管其畫面包含性侵者性器的外貌,偏偏就是看不到人臉。嫌犯逮到這個天賜良機,辯稱別人闖入他家,在那裏發生性關係,並用該手機拍攝過程。總之,就是把責任撇得一乾二淨。[1]

幸好鍥而不捨的警方在無奈之餘,注意到錄像中的陰莖,有個不明顯的特徵。這讓他們想到一個好主意。[1]

沒有臉龐的性交畫面,成為指認當事人的挑戰。圖/喜多川歌麿〈歌枕〉(1788;Public Domain)

警方把手機影片中陰莖畫面的截圖和嫌犯下體的照片,帶去日本自治醫科大學附屬埼玉醫療中心(自治医科大学附属さいたま医療センター)的法醫部門。他們請教皮膚科醫師,該陰莖上的色素沉著(pigmentation),是否能夠證明性侵者的身份。醫師觀察到嫌犯的陰莖,有輪廓不規則的零星斑點,呈現濃淡不一的灰黑色,並在接近龜頭處顏色較深。根據嫌犯本人的說法,那些不痛不癢的色斑從青春期就存在。於是,皮膚科醫師以此做出診斷,並針對案件證據以及嫌犯的健康,提供專業意見。[1]

左邊是手機影像截圖;右邊則為嫌犯的陰莖照片。圖/參考資料1,Figure 1(CC BY 4.0)

首先,嫌犯應該患有性器黑色素沉著症(genital melanosis)。這種變異在皮膚科的病人中,僅佔 0.01% 左右。[1, 2]不過,因為除了皮膚顏色改變,沒有其他症狀,以致容易被患者忽略,所以真實的盛行率或許更高。有如此罕見的病徵與錄像吻合,皮膚科醫師當然非常肯定這是足以定罪的重要證據。[1]

其次,雖然性器黑色素沉著症是良性的,但在此皮膚科醫師並沒有取得切片,做更深入的檢查,所以無法排除黑色素瘤(melanoma)的可能性。此外,在生殖器惡性腫瘤裡,有 8 – 10% 為性器黑色素瘤,是第二常見的性器癌症。就算嫌犯陰莖上的僅是黑色素沉著症,這類患者中 15% 的人,在身體的其他部位,也會出現黑色素瘤。換句話說,他罹癌的機率比一般人高。[1]

黑色素瘤有口訣為 ABCDE 的五大徵兆:形狀不對稱(asymmetrical)、邊緣不規則(border)、顏色不均勻(colour)、尺寸比豆子大(diameter),還有持續變化(evolving)。[3]從皮膚科醫師的描述,以及嫌犯陰莖的照片,可知他的情形明顯符合上述徵兆中的幾項。即使沒有任何不適,為了以防萬一,也早該去醫院諮詢。

最後,在皮膚科醫師斬釘截鐵的證詞,以及令人魂飛膽喪的罹癌風險下,焦慮至極的嫌犯終於俯首認罪,而且同意去皮膚科做更進一步的檢查。大功告成之後,自治醫科大學附屬埼玉醫療中心的團隊,把此案寫成論文拿去投稿,登載於 2021 年的《鑑識科學、醫學與病理學》(Forensic Science, Medicine, and Pathology)期刊上,並在結論中強調整合皮膚科理論與刑事鑑定的重要性。[1]

 

延伸閱讀

英國「學童」取代「病理學家」?!辨識癌細胞的人工智慧

陰莖,是社交安全的重要指標?!

參考資料

  1. Yamada A, Demitsu T, Umemoto N, et al. (2021) ‘Video image of genital melanosis provides strong evidence to support identification of a sexual offender’. Forensic Science, Medicine, and Pathology, 17, 510–512.
  2. Haugh AM, Merkel EA, Zhang B, et al. (2016) ‘A clinical, histologic, and follow-up study of genital melanosis in men and women’. Journal of American Academy of Dermatology, 76 (5): 836-840.
  3. What Are the Symptoms of Skin Cancer?’ (18 APR 2022) U.S. Centers for Disease Control and Prevention.
胡中行_96
66 篇文章 ・ 24 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

1

100
3

文字

分享

1
100
3
【闢謠科普兩不誤】「mRNA 疫苗爭議浮現,MIT:自然免疫系統失靈」這篇文到底有多少錯?下篇:文章內容有哪些資訊有誤或需要補充?文獻海洋在這裡!
Jamie Lin_96
・2022/09/18 ・13083字 ・閱讀時間約 27 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

在這篇文章中我會針對該科技新報文章所提及的內容進行闢謠科普,關於關於其引用的研究的闢謠科普詳見本文上篇:【闢謠科普兩不誤】「mRNA 疫苗爭議浮現,MIT:自然免疫系統失靈」這篇文到底有多少錯?上篇:破解有疑慮的引用文獻及判斷文獻可信度小技巧分享

筆者目前研究領域跟工作狀態:免疫學博士候選人,預計於 2023 年 2 月正式取得博士學位,研究主題為愛滋疫苗與功能性抗體,具備在生物安全等級三級實驗室工作的資格與能力,最近在發表地獄中載浮載沉。

針對原始文章內錯誤的句子我會寫出是哪部分錯誤,並逐一科普,各段文字來自原始文章截圖;而跟那兩篇引用文獻有關的句子我用紅色底線標注,考量到文獻品質不佳在本篇中不多加討論(詳情請見本系列文上篇),在這篇中我也會分享一些跟疫苗副作用相關的發表,[]內的數字代表下方引用文獻reference列表對應到哪些學術發表,這篇文章很長,推薦抱持著輕鬆的心情慢慢看。

原文第一段。圖/科技新報
錯誤點:
  • 疫苗研發量產需要時間,跟不上病毒突變速度是正常的;已有完成臨床試驗的疫苗的病毒如HBV其實也還持續在開發效果更好的疫苗,總有天選之人打了疫苗沒效,有些疫苗則是要根據施打者過往病史來做選擇。
  • 疫苗的功效不只有防止感染,能降低感染後重症率、住院率、死亡率等也算是疫苗的功效。
  • 現在流行的病毒株跟當初開發疫苗時的病毒株差異極大,整體效果下降非常正常,並不是因為疫苗讓免疫系統變爛,而是病毒變厲害。
  • 號稱麻省理工的研究偏向文獻綜述,把一堆文獻抓在一起加上一些分析錯誤的數據,通篇沒有文獻或正確數據可以佐證其論點
  • 該荷蘭研究數據量與分析方式有疑慮,不應用其下定論

疫苗為什麼會跟不上病毒變種速度?為什麼疫苗防止感染能力變差?

要回答這些問題答案必須分為兩個面向:

1.哪些因素會影響病毒出現新變種的速度

  • 病毒本身特性[1–3]
  • 感染人數人口密度[4]
  • 受感染者的免疫狀態[5–7]
  • 病毒突變後增強的能力[8][9]

新冠病毒的突變速度不是全部病毒中最快的,但也不慢,再加上其能夠在物品表面上存活時間長又有無症狀之帶原者[1][10],使其能快速傳播讓總感染人數上升,在人口密度較高的國家/區域確診病例數上升更為顯著,感染人數越多病毒傳遞越遠,在這過程中出現新變種的可能性就會跟著上升[4]

而病毒不會只感染特定族群,有些免疫力低下或是一些因為疾病免疫系統受到影響的人也會被感染,跟免疫力健全者相比這些人的免疫系統難以清除病毒[5–7],之前在南非就有一個案例是一位 HIV 感染的 22 歲女性持續被 beta 病毒株感染 9 個月,接受 HIV 治療約兩個月並從 covid 感染恢復後,其研究團隊發現該女子身上的病毒株已有超過 20 個新突變[6]

隨著病毒不斷傳播、突變、傳播、突變,目前主流病毒株 Omicron 家族其實具有比過往病毒株更好的免疫逃避性,能夠躲過免疫系統與感染/疫苗誘導出的抗體的追殺[8][9],同時也因為其免疫原性低,儘管確診後也無法產生足量有效的抗體對抗反覆感染,而病毒的免疫逃避性變好也代表可以逃過疫苗誘導出的抗體,疫苗保護力隨之下降[8][9]][11][12]

上述因素層層疊加,使我們三不五時就會聽到有新變種的消息,同樣這些因素也影響了疫苗開發與效果。

2.疫苗開發與臨床試驗流程

疫苗開發到進入臨床試驗跑完整個流程其實非常曠日費時,近幾年順利通過三期臨床實驗的伊波拉疫苗(有獲歐盟批准)從研發到走完臨床實驗到正式上市也已經過了 20 多年[13][14]

臨床試驗相關細節與名詞解釋在科學月刊 2018 年 7 月的文章 — 臨床試驗「盲不盲」與台灣藥物臨床試驗資訊網中有詳細解釋[15][16],而臨床試驗相關資訊可以在 ClinicalTrials.gov 上查詢,那是一個國際級臨床實驗資訊的資料庫[17],但這邊需要特別解釋一個臨床實驗的特性:臨床實驗一定會有報告如期中報告等,絕對會提交給監督審核的機構,但其報告是否向大眾公開、最後是否整理發表至期刊上等則不一定!所以如果一般大眾查不到某臨床實驗的公開的報告跟發表是在合理範圍內,其臨床試驗過程中的數據並沒有強制一定要公開,而最後失敗與否則會公開。

我自己的研究範圍就包含愛滋病疫苗,從過往已經宣告失敗的臨床試驗中找出失敗原因去改進或是檢測正在進行中的臨床試驗效果如何都在我的工作範圍之內,我們在做研究分析的同時病毒仍在外造成疫情,研究人員這端能做的主要是設計並篩選出可能成為疫苗候選的成分,通過細胞、動物實驗等去分析毒性、效力及可能可以用在人類身上的劑量,這些主要是在臨床前階段就會完成。

進入到第一階段臨床試驗時除了檢測疫苗在人類身上的安全性之外,我們也會測試不同疫苗濃度及施打方式等會不會效果更好,這時候會分非常多組,每組大概 10 幾人且有安慰劑組,將檢體寄送給不同專業的研究機構進行分析後最終會知道哪個配方跟施打方式是這些中最好的,如果安全性過關且在實驗室的實驗中有看到初步效果,在監督機關審核通過許可後會進到第二期臨床試驗,招募更多志願者並進一步分析疫苗有效性跟是否有潛在的不良反應(每個人身體狀況不同所以施打者越多就有機會觀察到更多不良反應),如果在此時發現效果不好、有過多嚴重不良反應等負面結果臨床試驗就會終止於此難以繼續進入第三期。

新藥研發的整個過程大致分為 4 大項。圖/科學月刊

許多臨床實驗都有非常長的追蹤期,一年三年五年七年不等,但誰都沒預料到 Covid-19 疫情的爆發,倘若針對突然爆發的全球性疫情的疫苗仍要有原先那樣長得追蹤期,對全球民眾健康所帶來的傷害會超出預期,但儘管因為特殊狀況縮短 Covid-19 臨床試驗時間,開發出來也需要極佳的運氣與一定的時間,要生產足夠的疫苗同樣需要時間,這些都不是馬上完成的。

在疫情爆發之初有不少人提倡透過感染獲得群體免疫這個論點,這也使不少質疑為何要施打疫苗甚至選擇讓自己被感染。但其實已有免疫學領域大佬明確指出:傳統群體免疫的觀念可能不適用於 COVID-19 [18] 。下方的簡報是我針對該發表做簡單的科普,有興趣可以看一看。

最初群體免疫這個術語是從獸醫界開始使用[18],非常多學者想要知道那在人類流行病上同樣的理論是否適用,但在 20 世紀初期許多學者便已得知因爲疾病差異、免疫力持續時間、人口流動、所接受醫療資源差異等,人類想要單純通過感染獲得針對 Covid-19 的群體免疫基本上是不可能,需要透過適當公衛手段與有效的預防措施來控制感染數,爭取研發更有效的疫苗的時間等多管齊下才可能達成[19]

看完上述資訊後讓我們回到:疫苗為什麼會跟不上病毒變種速度?為什麼疫苗防止感染能力變差?這兩個問題上,答案便會好懂些:

  • 疫苗開發與產量都需要時間,但感染數量居高不下給病毒有出現新變種的機會,等疫苗上市時病毒已經突變無數次有新變種,自然追不上。
  • 病毒的免疫逃避性逃過疫苗誘導出的抗體,疫苗保護力隨之下降。

控制疫情還是需要以適當公衛手段與有效的預防措施來控制感染數,爭取研發更有效的疫苗的時間並讓能夠施打的族群施打,多管齊下才可能達成。

原文第二段。圖/科技新報
錯誤點:
  • 是先天性免疫“系統”,而非先天免疫細胞,他們成員很多
  • 先天性免疫系統不會活化後就變成適應性免疫系統,先天性免疫系統中的細胞不會活化後就變成適應性免疫系統的細胞(樹突細胞另提),吞噬細胞再怎麼被刺激也不會瞬間變身變成B細胞
  • T細胞與B細胞會不會產生記憶性、產生的記憶性多久跟病原體/抗原有關,不一定會在接受病原體/抗原刺激後出現。

人體的免疫系統分為先天性免疫系統與適應性免疫系統[20][21],而這兩者的區別為

先天性免疫系統:

  • 非特異性反應,會對所有病源有反應
  • 一接觸到病原馬上開始動工
  • 不是所有先天性免疫系統的成員都有記憶性
  • 包含發炎反應、補體系統與部分白血球(如吞噬細胞),部分成員會協助活化適應性免疫系統

適應性免疫系統:

  • 對特定病原與抗原起反應
  • 需要一點時間才會有強烈反應
  • 有記憶性(會記得敵人一段時間)
  • 淋巴球,T 細胞與 B 細胞屬於這裡!

先天免疫系統不會因為接觸到病原體就變成適應性免疫系統他們同時存在有時互相幫忙,並以不同的機制保護人體

而常常聽到人提到的 B 細胞與 T 細胞他們的保護身體的機制簡單來說是

B 細胞:

  • 認識抗原(可能來自病原體或是疫苗)後大量製造能夠識別目標物的抗體
  • 有些抗體如中和性抗體需要特殊的B細胞製造且成熟時間長

T 細胞:

  • 識別受感染的細胞
  • 協助 B 細胞更好的認識病原體的抗原
  • 引導能夠清除的T細胞過來
  • 清除受感染的細胞
  • 殺死癌細胞[22]
抗體與 Fc 受體以及其可能誘導出的免疫反應。圖/參考資料 23

抗體、補體、抗體加上 T 細胞等組合產生多種機制,都是免疫中的一環缺一不可[23],但這些機轉中也有可能對身體造成危害的如抗體依賴增強作用Antibody-dependent enhancement (ADE),ADE能讓感染變嚴重[23][58]。倘若疫苗誘導出來的抗體做臨床前試驗或是第一期臨床試驗時發現有ADE,那該疫苗不會進到後續臨床試驗;而要觀察上市後的疫苗有沒有ADE可以從重症率死亡率是否激增來判斷,目前真實世界數據尚未看到Covid-19疫苗有ADE的問題,但有分析其可能機轉 [58][59],而在細胞實驗中感染Covid後部分誘導出的抗體有觀察到ADE [60]

在癌症治療方面T細胞十分重要,其機轉非常複雜且需要不同細胞因子與受體協同合作[22]。B細胞與T細胞被活化後有些後代成員可能會成為具有免疫記憶的記憶B細胞與記憶T細胞等,未來如果碰到類似的抗原時可以有所反應,而能夠有多長的記憶時間則要看病源體/抗原特性來定,但這些被活化的免疫細胞不一定都能在未來提供有效的免疫反應。

在今年八月底發布於 medRxiv 上一篇尚未經通行審查但內容十分嚴謹(高機率已經投稿期刊正在進行審核)的論文指出:Covid 確診者(兩個月內)體內針對病毒抗原的特異性 B 細胞會使疫苗施打效果變差 [24],一分析確診者與未確診者施打 CoronaVac 疫苗後的免疫反應之研究指出過去有確診過的人施打疫苗後產生的中和抗體廣度較未確診者窄[25],這些研究其實揭示了因感染活化的免疫細胞甚至是記憶性免疫細胞並非在未來能成為我們對抗病源的好幫手,可能會成為讓疫苗效果變差的壞人[26]

今年六月刊登於頂級期刊 Nature 的一篇發表更是指出 Covid 病毒進化非常多並且能夠抑制針對自己的免疫反應,這有利於反覆感染外,過往感染所產生的免疫銘印(immune imprinting)對未來再次面對不同 covid 病毒時的免疫反應產生負面影響,讓你的免疫系統(尤其是 T 細胞)對於新變種的抵抗力大幅下降[12],但在沒確診只有施打疫苗的族群上,尚未看到上述這些負面影響。

原文第三段與第四段。圖/科技新報
錯誤點:
  • 訊號傳遞的關鍵不是只有干擾素,細胞激素非常重要
  • 細胞被感染後不一會分泌干擾素,要先識別出來是敵人
  • 三種類型的干擾素都很重要不分軒輊,在癌症治療的運用上不是只有第一型,第三型也有。
  • 那篇號稱MIT但不是MIT的發表中沒有研究數據可以證實他所說的mRNA疫苗會破壞第一型干擾素的訊號傳遞。

能夠刺激觸發免疫系統活動的關鍵除了抗原外,宿主所產生的各種細胞激素(cytokine),其中包含文中所提到的干擾素(Interferon),能給予免疫系統進行各種不同的免疫反應[27][28],而 Covid-19 確診導致的細胞激素風暴(cytokine storm)同樣有細胞激素跟干擾素的參與[29]

下方圖片中的內容是一篇探討 Covid 確診後的細胞激素風暴相關路徑與參與的細胞激素、干擾素成員圖,非常精美可以當作參考,或是看一看漂亮的圖表心情好。

細胞激素風暴的機轉與參與成員其實非常繁雜。圖/參考資料 29

細胞激素參與身體中非常多的功能如:細胞訊息傳遞與調節免疫功能等,細胞激素家族非常龐大,而文中所提及的干擾素也是成員之一[27]。干擾素能夠影響病毒複製進而保護細胞不被感染與調節刺激一些免疫細胞,但病毒也不是毫無招架的餘地,有些病毒其實有拮抗干擾素的能力[28][30]。此外感染後的發燒、疼痛、發炎等症狀並非單純由干擾素引起,細胞激素也扮演了非常重要的角色[28]

而干擾素分成三型,功能不完全相同但都很重要:

  • 第一型:具影響病毒複製等功能,其成員有些被運用在治療肝炎,有些被用在治療多發性硬化症。[27][31]
  • 第二型:誘導刺激免疫反應。[32]
  • 第三型:較晚發現的成員,可能能夠影響病毒與真菌的感染。[33][34]

干擾素的確有跟其他療法如化療等一起運用在癌症治療上[35],其機轉與在治療上的運用也一直有在深入研究[36][37]

原文第五段。圖/科技新報
錯誤點:
  • 是細胞激素加上干擾素與其他被啟動的免疫機轉引起Covid-19確診後的最初症狀,不能說是由干擾素引起的
  • 免疫觀念是流動的,疫苗也不是只有預防感染的功能,降低住院率、死亡率、重症率、緩解症狀等都是疫苗會具有的功能,更別提還有治療性疫苗這個類別
  • 畫紅線的科學家表示的內容是錯的,疫苗接種對身體健康狀態有所要求,能接種疫苗者本身身體健康有一定水準,體內的免疫系統能夠清除病毒,打疫苗是讓免疫系統受到訓練後能更好的清除病毒,而施打疫苗後症狀輕微不代表身體沒抵抗
  • 就現有研究來說(免疫系統正常的成人)不論接種疫苗與否,病毒在人體停留的時間沒有統計上的顯著差異
  • 免疫系統功能低下者(如化療患者、愛滋病患者、特殊疾病患者等)被病毒感染後病毒可能揮之不去,但如果換作是普通人不論有沒有打疫苗免疫系統都有能力清除病毒,但能不能活到病毒被清除完又是另一回事。

Covid-19 確診後的症狀並非單純由干擾素引起,細胞激素也扮演了非常重要的角色[28],而疫苗功能其實不單純只有預防感染,減輕症狀與預防重症等也算是疫苗的功能[18]

據目前現有研究來看,確診 Omicron 的人施打疫苗者與未施打疫苗者其實病毒量沒有太大的差距[38][39],但施打疫苗者可能因為體內的抗體與有記憶性的免疫細胞辨識出敵人並開始清除病毒所以症狀出現的較早(可見下方引用推文中的圖片)。

倘若是身體健康的成年人,施打疫苗者確診後體內病毒不會停留更長的時間[39],免疫系統會有能力將病毒清除;但倘若為免疫功能低下的人,如:特殊疾病患者、化療病人、愛滋病患等,比起健康的成年人他們體內的免疫系統較虛弱難以將病毒清除且確診後演化為重症的可能性較高,所以我們必須要小心不要讓他們被感染[5–7]

而在這篇文章刊出不久候我收到一封信,信中說“ 如果長時間不清除疾病,可能會導致嚴重的疾病 ” 這段話可以用澳大利亞2022/06/11到2022/08/27的12週的感染新冠而住院(非加護病房)的確診案例數據去作佐證,之後我又收到一封信說我選用的數據錯誤,他給的數據只有New South Wales,不是澳洲全國。其實這兩封信中都犯了非常常見的數據分析錯誤,這樣的資訊也是假消息的愛用品,該如何破解呢?

筆者收到的信件。圖/作者
錯誤點:
  • 數據分析錯誤,分母取錯
  • 要討論像是疫苗會不會影響確診率這樣的現象或假說不能只用一個地區的數據,這不是在討論不同地區因為醫療資源、人口密度等帶來的影響或案例報告。先撇開最後統計結果不提,這樣要 “只用一個地區的數據來應證一個可能會發生在全世界各地的假設” 的行為恰恰就是學術領域中會被人詬病甚至退稿的 “挑數據說故事”
  1. 時間:數據是2022年6~8月的數據,已能獲得充沛疫苗資源的國家來說該國國民絕大多數都有接種疫苗,澳洲公布的數據來看16歲以上的澳洲人98%有接種一劑疫苗,兩劑為96.3%,三劑為71.7%,而New South Wales的人口數根據Population Australia這個網站上顯示在2022年6月底可能會達到 826萬人,而該地區16歲以上居民97%有接種一劑疫苗,兩劑為95.4%,三劑為69.6%(數據來源
澳洲全國疫苗接種狀態。圖/Australian Government Department of Health and Aged Care
New South Wales疫苗接種狀態。圖/NSW Health

2. 分母要選對:在做如該信提到的感染機率比較時,我們必須要有施打疫苗者跟有施打疫苗者比,沒施打疫苗者跟沒施打疫苗者比,為什麼?因為你要比的是施打疫苗者跟沒施打疫苗者各自的感染機率,而以澳洲數據來看16歲以上施打至少一劑疫苗者有98%(20,209,451人,換而言之沒施打疫苗者大約是2%(412,428人);而在New South Wales16歲以上施打至少一劑疫苗者有97%(約8,017,050人),未施打疫苗者大約3%(大約247,950人)如果沒選對分母,算出來的數據會大錯特錯。

3. 小心分子裡有詐:做數據分析前我們必須要看數據有沒有妥善處理,儘管現在資訊較為發達,還是有可能有些數據會被標記或應該表記為unknown,因為其實際狀況如何以現有資訊來說未知,舉例來說

  • 疫苗施打紀錄存疑需要額外查證
  • 有在其他地方打過疫苗但沒有證明文件
  • 在該系統中沒有出現有施打疫苗紀錄(可能其他地方有)等等

這些都會影響數據處理方式跟最終數據計算方式,這些unknown數據必須標示好並另外處理,不能跟其他數據混為一談更不能直接裁切掉忽視不理,更不能說為了讓數據量夠多我剔除unknown後多用幾週數據讓樣本數夠大,這已經能算惡意扭曲數據。

對於專業人士來說unknown這樣的數據的確是棘手,但相較於一般大眾我們有更多的權限去調取資料與做進一步數據清理分析,倘若真的處理不來我們也會如實告知,許多資訊因為涉及病人隱私絕對不會對外公開,所以問我們怎麼處理分類清理這些數據也沒用,更別提根據分析數據不同我們會用不同的統計方式,不是一般的加減乘除就可以理得清。

此外,在信中我有收到對方用來參考做計算的數據來源,而這張表一看問題就很大連拿來算的價值都沒有,爲什麼呢?

筆者收到的信件中所附的數據圖表。圖/作者

一位相關領域的博士去看原始數據後作出以下點評:

“ Unknown這群不管有沒有打疫苗也不能不理,而且光是8/20號的數據中unknown居然佔了27%(173/638住院數)的統計數,然後說當然不能分析? 他在開什麼玩笑? unknown只有幾種情形:

  • 沒打
  • 有打,沒有證明
  • 打了不是澳洲認為OK的疫苗(台灣人最愛講高端不能出國)
  • 有打的證明但不被認證

不把這些數據好好分類就直接當missing data處理,甚至在他提供的聯結中直接裁切不說明,就是惡意的扭曲數據的意義!”

對我來說他所用的數據還有另一個問題:年齡層資訊去哪了?病人是否有其他疾病呢?

讓我們再繼續使用2022年8月20日New South Wales的數據,住院者數量上升的年齡段集中在60歲以上的族群,詳情請見下圖:

2022年8月20日New South Wales的數據。圖/NSW Health

人類的免疫系統隨著年齡增長會有所影響,儘管都是16歲以上成年人,25歲的年輕人跟90歲的老人狀況不一樣,這就是為何在其他疫苗效力分析的文獻中會以10歲為一個年齡層區分開來分析,甚至連性別、種族等都是我們要考慮的因素,還要再考慮到施打了什麼疫苗;倘若取樣方式、思維邏輯錯誤,再怎麼計算最終結果也是錯的。

而且…儘管沒有權限去獲取所有數據細節,澳洲其實有數據庫已把寄件者想要知道的資訊算好了,New South Wales的數據與分析結果可點擊超連結查詢,在CovidBaseAU的網站上還有其他州與澳洲整體的數據相關分析可以查閱。

總而言之言而總之:

數據資訊充足沒有惡意處理、病人資訊明確並且數據量夠並且挑選適當的統計方式才可以進行數據分析,不是隨便加減乘除就會馬上得到真理

  • (選配)複習一下國中與高中數學在機率統計方面的內容:可能對於有些人來說國高中所學的內容有點模糊了,所以在看到數據時做分析時會搞混應該用哪些數據當分子,哪些數據當分母,可以稍微複習一下。

而在原始文章中那個號稱MIT但根本不是MIT的發表在數據統計上犯的一個極大錯誤也是分母選擇錯誤,如果要算該疫苗的不良事件比例分母應該為“總施打人數”,而不是拿別的疫苗的施打人數來做加減乘除;同理在計算施打疫苗後的突破性感染比例其母數應該是施打疫苗者的人數,而沒施打疫苗者的感染比例則應適用沒有施打疫苗者的人數,別搞混嘍!

原文第六段。圖/科技新報

錯誤點:

  • Covid-19 mRNA疫苗減弱適應性免疫反應方面沒看到有扎實實驗數據的發表,原文提到的根本不是MIT發表的發表也沒有相關數據可以佐證。
  • B細胞在癌症治療中如何發揮功用還在研究中,而且B細胞能分泌的抗體種類很多,不是只有中和病原體的功能。

在本文撰寫的當下我以 google scholar 與 pubmed 查關鍵字 covid-19、mRNA vaccine、T cell、B cell 看到的主要是探討疫苗如何誘導 T 細胞與 B 細胞免疫反應,而細胞受損方面文獻主要在討論 covid 透過哪些路徑感染免疫細胞,確診對於免疫系統的影響(如 T 細胞多樣性降低,B 細胞失調等)等[40 – 44]

在癌症治療方面 T 細胞的確有其一席之地,與不同細胞激素與細胞協調清除癌細胞[22][45][46],而近幾年的研究顯示 B 細胞與癌症治療與預後評估有所關聯,相關機制仍在研究[47][48]

原文第七段。圖/科技新報

錯誤點:

  • 先天免疫與適應性免疫缺一不可
  • 被誘導出來的適應性免疫不一定有益
  • 該荷蘭研究數據量與分析方式有疑慮,不應用其下定論

參與先天性免疫與適應性免疫的成員眾多且都很重要[27][28],但不一定所有機轉誘導出來的免疫反應都是你的好朋友[12][26]。而該荷蘭研究是否真的有顯著差異能夠證明疫苗施打後真的會影響 IFN-α 以其文章中的數據來看仍有疑慮,詳細討論在上篇中在此不多贅述。

原文第八段。圖/科技新報

錯誤點:

  • 中和性抗體不會在一次疫苗接種後幾週就出來
  • 有實際數據的研究與論文綜述指出疫苗可效刺激誘導T細胞而非活性下降

中和性抗體需要不短的成熟期,不可能在疫苗接種後幾週內產生[49][50],除非你已經是接種超過一劑疫苗,接著在第二或是第三劑疫苗施打後幾週內產生中和性抗體那可能還說得過去。而 mRNA 疫苗可以有效刺激與誘導 T 細胞與 B 細胞已在過往實驗中獲得證實[51],對於其導致心肌炎、心包炎與過敏等的可能機制也有不少研究團隊分析討論[52][53],並針對其安全性與哪些族群可能施打有較高的風險有所研究[52–54]

mRNA 疫苗研究多年但實際大量運用在人體上也是第一次[55][56],比起其他傳統疫苗技術來說他有一定的優點如可以快速製備,同樣也有缺點如存放難度高、目前已知副作用不少以及缺乏傳統疫苗臨床試驗的長期追蹤,這些都是需要更多研究與更多時間才能知道答案。

整體來說「mRNA 疫苗爭議浮現,MIT:自然免疫系統失靈」文中部分內容正確,但更多的是似是而非跟描述方式不當,而構成這篇文章的兩篇引用文獻品質不佳甚至拿來當主打點的發表早已有國外文章分析其內容有多少問題[57],有興趣的人可以在 Reference 中找到連結查看。

引用文獻有誤、關於免疫學敘述有誤且偏頗,這是我對於「mRNA 疫苗爭議浮現,MIT:自然免疫系統失靈」這篇文章的評價;而針對該文的兩篇闢謠文 Reference 超過 60 個,遠超過原始文章中的引用文獻的數量,從此也可以看出要澄清假消息需要付出的心力有多驚人。

結語

會將這系列文拆成上下篇主要是因為「mRNA 疫苗爭議浮現,MIT:自然免疫系統失靈」是基於兩篇引用文獻再加上其他資料寫出來的,如果不將有標紅色底線的兩篇引用文獻相關內容先做闢謠科普這篇文章會很混亂很長。

沒有任何技術是完美的,隨著技術的發展、更多的研究與臨床觀察我們才能找到更適合的改進方向,進而讓不論是疫苗研發技術還是藥物療法開發等變得越來越好。但這世界上不會有任何事情是大家都接受的,總有攻擊的聲浪甚至有虛假資訊流竄,有些人儘管有高學歷,但那絕對不代表他們說的寫的是正確的,多的是這樣的人散播似是而非的資訊。

這系列文章的最後我想感謝在寫文章的過程中提供不同專業建議與見解的博士們(為了寫這篇文章我詢問了好幾位相關專業的博士),還有願意看到這行話的讀者,願這兩篇文章能夠讓沒有相關背景的大眾對於疫情相關的資訊判讀有些幫助,祝一切安好。

參考資料

  1. Amoutzias GD, Nikolaidis M, Tryfonopoulou E, Chlichlia K, Markoulatos P, Oliver SG. The remarkable evolutionary plasticity of coronaviruses by mutation and recombination: insights for the COVID-19 pandemic and the future evolutionary paths of SARS-CoV-2. Viruses. 2022 Jan 2;14(1):78.
  2. Schwarzendahl, F.J., Grauer, J., Liebchen, B. and Löwen, H., 2022. Mutation induced infection waves in diseases like COVID-19. Scientific Reports12(1), pp.1–11.
  3. Pathan, R.K., Biswas, M. and Khandaker, M.U., 2020. Time series prediction of COVID-19 by mutation rate analysis using recurrent neural network-based LSTM model. Chaos, Solitons & Fractals138, p.110018.
  4. Sharif, N. and Dey, S.K., 2021. Impact of population density and weather on COVID-19 pandemic and SARS-CoV-2 mutation frequency in Bangladesh. Epidemiology & Infection149.
  5. Mishra, M., Zahra, A., Chauhan, L.V., Thakkar, R., Ng, J., Joshi, S., Spitzer, E.D., Marcos, L.A., Lipkin, W.I. and Mishra, N., 2022. A Short Series of Case Reports of COVID-19 in Immunocompromised Patients. Viruses14(5), p.934.
  6. Maponga, T.G., Jeffries, M., Tegally, H., Sutherland, A.D., Wilkinson, E., Lessells, R., Msomi, N., van Zyl, G., de Oliveira, T. and Preiser, W., 2022. Persistent SARS-CoV-2 infection with accumulation of mutations in a patient with poorly controlled HIV infection. Available at SSRN 4014499.
  7. Hoffman, S.A., Costales, C., Sahoo, M.K., Palanisamy, S., Yamamoto, F., Huang, C., Verghese, M., Solis, D.A., Sibai, M., Subramanian, A. and Tompkins, L.S., 2021. SARS-CoV-2 neutralization resistance mutations in patient with HIV/AIDS, California, USA. Emerging Infectious Diseases27(10), p.2720.
  8. Focosi, D., Maggi, F., Franchini, M., McConnell, S. and Casadevall, A., 2021. Analysis of immune escape variants from antibody-based therapeutics against COVID-19: a systematic review. International journal of molecular sciences23(1), p.29.
  9. Nel, A.E. and Miller, J.F., 2021. Nano-enabled COVID-19 vaccines: meeting the challenges of durable antibody plus cellular immunity and immune escape. ACS nano15(4), pp.5793–5818.
  10. Riddell, S., Goldie, S., Hill, A., Eagles, D. and Drew, T.W., 2020. The effect of temperature on persistence of SARS-CoV-2 on common surfaces. Virology journal17(1), pp.1–7.
  11. Pulliam, J.R., van Schalkwyk, C., Govender, N., von Gottberg, A., Cohen, C., Groome, M.J., Dushoff, J., Mlisana, K. and Moultrie, H., 2022. Increased risk of SARS-CoV-2 reinfection associated with emergence of Omicron in South Africa. Science376(6593), p.eabn4947.
  12. Reynolds, C.J., Pade, C., Gibbons, J.M., Otter, A.D., Lin, K.M., Muñoz Sandoval, D., Pieper, F.P., Butler, D.K., Liu, S., Joy, G. and Forooghi, N., 2022. Immune boosting by B. 1.1. 529 (Omicron) depends on previous SARS-CoV-2 exposure. Science377(6603), p.eabq1841.
  13. https://www.jnj.com/johnson-johnson-announces-european-commission-approval-for-janssens-preventive-ebola-vaccine
  14. https://www.statnews.com/2020/01/07/inside-story-scientists-produced-world-first-ebola-vaccine/
  15. http://scimonth.blogspot.com/2018/07/blog-post_19.html
  16. https://www1.cde.org.tw/ct_taiwan/notes.html
  17. https://clinicaltrials.gov/
  18. Morens, D.M., Folkers, G.K. and Fauci, A.S., 2022. The concept of classical herd immunity may not apply to COVID-19. The Journal of Infectious Diseases.
  19. Eichhorn, Adolph. Contagious abortion of cattle. №790. US Department of Agriculture, 1917.
  20. Smith, A., 2000. Oxford dictionary of biochemistry and molecular biology: Revised Edition. Oxford University Press.
  21. Alberts, B., 2017. Molecular biology of the cell. WW Norton & Company.
  22. Waldman, A.D., Fritz, J.M. and Lenardo, M.J., 2020. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nature Reviews Immunology20(11), pp.651–668.
  23. Lin, L.Y., Carapito, R., Su, B. and Moog, C., 2022. Fc receptors and the diversity of antibody responses to HIV infection and vaccination. Genes & Immunity, pp.1–8.
  24. https://www.medrxiv.org/content/10.1101/2022.08.30.22279344v1
  25. Zhu, Y., Lu, Y., Tang, L., Zhou, C., Liang, R., Cui, M., Xu, Y., Zheng, Z., Cheng, Z. and Hong, P., 2022. Finite neutralisation breadth of omicron after repeated vaccination. The Lancet Microbe.
  26. Suryawanshi, R. and Ott, M., 2022. SARS-CoV-2 hybrid immunity: silver bullet or silver lining?. Nature Reviews Immunology, pp.1–2.
  27. Janeway, C.A., Travers, P., Walport, M. and Capra, D.J., 2001. Immunobiology (p. 600). UK: Garland Science: Taylor & Francis Group.
  28. De Andrea, M., Ravera, R., Gioia, D., Gariglio, M. and Landolfo, S., 2002. The interferon system: an overview. European Journal of Paediatric Neurology6, pp.A41-A46.
  29. Fajgenbaum, D.C. and June, C.H., 2020. Cytokine storm. New England Journal of Medicine383(23), pp.2255–2273.
  30. Elrefaey, A.M., Hollinghurst, P., Reitmayer, C.M., Alphey, L. and Maringer, K., 2021. Innate immune antagonism of mosquito-borne flaviviruses in humans and mosquitoes. Viruses13(11), p.2116.
  31. Ntita, M., Inoue, S.I., Jian, J.Y., Bayarsaikhan, G., Kimura, K., Kimura, D., Miyakoda, M., Nozaki, E., Sakurai, T., Fernandez-Ruiz, D. and Heath, W.R., 2022. Type I interferon production elicits differential CD4+ T-cell responses in mice infected with Plasmodium berghei ANKA and P. chabaudi. International Immunology34(1), pp.21–33.
  32. Kidd, P., 2003. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Alternative medicine review8(3), pp.223–246.
  33. Espinosa, V., Dutta, O., McElrath, C., Du, P., Chang, Y.J., Cicciarelli, B., Pitler, A., Whitehead, I., Obar, J.J., Durbin, J.E. and Kotenko, S.V., 2017. Type III interferon is a critical regulator of innate antifungal immunity. Science immunology2(16), p.eaan5357.
  34. Hermant, P. and Michiels, T., 2014. Interferon-λ in the context of viral infections: production, response and therapeutic implications. Journal of innate immunity6(5), pp.563–574.
  35. Goldstein, D. and Laszlo, J., 1988. The role of interferon in cancer therapy: a current perspective. CA: a cancer journal for clinicians38(5), pp.258–277.
  36. Zaidi, M.R., 2019. The interferon-gamma paradox in cancer. Journal of Interferon & Cytokine Research39(1), pp.30–38.
  37. Dunn, G.P., Ikeda, H., Bruce, A.T., Koebel, C., Uppaluri, R., Bui, J., Chan, R., Diamond, M., Michael White, J., Sheehan, K.C. and Schreiber, R.D., 2005. Interferon-γ and cancer immunoediting. Immunologic research32(1), pp.231–245.
  38. Regev-Yochay, G., Gonen, T., Gilboa, M., Mandelboim, M., Indenbaum, V., Amit, S., Meltzer, L., Asraf, K., Cohen, C., Fluss, R. and Biber, A., 2022. Efficacy of a fourth dose of COVID-19 mRNA vaccine against omicron. New England Journal of Medicine386(14), pp.1377–1380.
  39. Boucau, J., Marino, C., Regan, J., Uddin, R., Choudhary, M.C., Flynn, J.P., Chen, G., Stuckwisch, A.M., Mathews, J., Liew, M.Y. and Singh, A., 2022. Duration of Shedding of Culturable Virus in SARS-CoV-2 Omicron (BA. 1) Infection. New England Journal of Medicine387(3), pp.275–277.
  40. Junqueira, C., Crespo, Â., Ranjbar, S., de Lacerda, L.B., Lewandrowski, M., Ingber, J., Parry, B., Ravid, S., Clark, S., Schrimpf, M.R. and Ho, F., 2022. FcγR-mediated SARS-CoV-2 infection of monocytes activates inflammation. Nature, pp.1–9.
  41. Pontelli, M.C., Castro, I.A., Martins, R.B., La Serra, L., Veras, F.P., Nascimento, D.C., Silva, C.M., Cardoso, R.S., Rosales, R., Gomes, R. and Lima, T.M., 2022. SARS-CoV-2 productively infects primary human immune system cells in vitro and in COVID-19 patients. Journal of molecular cell biology14(4), p.mjac021.
  42. Joseph, M., Wu, Y., Dannebaum, R., Rubelt, F., Zlatareva, I., Lorenc, A., Du, Z.G., Davies, D., Kyle-Cezar, F., Das, A. and Gee, S., 2022. Global patterns of antigen receptor repertoire disruption across adaptive immune compartments in COVID-19. Proceedings of the National Academy of Sciences119(34), p.e2201541119.
  43. André, S., Picard, M., Cezar, R., Roux-Dalvai, F., Alleaume-Butaux, A., Soundaramourty, C., Cruz, A.S., Mendes-Frias, A., Gotti, C., Leclercq, M. and Nicolas, A., 2022. T cell apoptosis characterizes severe Covid-19 disease. Cell Death & Differentiation, pp.1–14.
  44. Woodruff, M.C., Ramonell, R.P., Haddad, N.S. et al. Dysregulated naïve B cells and de novo autoreactivity in severe COVID-19. Nature (2022). https://doi.org/10.1038/s41586-022-05273-0
  45. Feng, S. and De Carvalho, D.D., 2022. Clinical advances in targeting epigenetics for cancer therapy. The FEBS Journal289(5), pp.1214–1239.
  46. Abrantes, R., Duarte, H.O., Gomes, C., Wälchli, S. and Reis, C.A., 2022. CAR‐Ts: new perspectives in cancer therapy. FEBS letters596(4), pp.403–416.
  47. Petitprez, F., de Reyniès, A., Keung, E.Z., Chen, T.W.W., Sun, C.M., Calderaro, J., Jeng, Y.M., Hsiao, L.P., Lacroix, L., Bougoüin, A. and Moreira, M., 2020. B cells are associated with survival and immunotherapy response in sarcoma. Nature577(7791), pp.556–560.
  48. Helmink, B.A., Reddy, S.M., Gao, J., Zhang, S., Basar, R., Thakur, R., Yizhak, K., Sade-Feldman, M., Blando, J., Han, G. and Gopalakrishnan, V., 2020. B cells and tertiary lymphoid structures promote immunotherapy response. Nature577(7791), pp.549–555.
  49. Moore, P.L., Williamson, C. and Morris, L., 2015. Virological features associated with the development of broadly neutralizing antibodies to HIV-1. Trends in microbiology23(4), pp.204–211.
  50. Gray, E.S., Madiga, M.C., Hermanus, T., Moore, P.L., Wibmer, C.K., Tumba, N.L., Werner, L., Mlisana, K., Sibeko, S., Williamson, C. and Abdool Karim, S.S., 2011. The neutralization breadth of HIV-1 develops incrementally over four years and is associated with CD4+ T cell decline and high viral load during acute infection. Journal of virology85(10), pp.4828–4840.
  51. Hogan, M.J. and Pardi, N., 2022. mRNA Vaccines in the COVID-19 Pandemic and Beyond. Annual Review of Medicine73, pp.17–39.
  52. Heymans, S. and Cooper, L.T., 2021. Myocarditis after COVID-19 mRNA vaccination: clinical observations and potential mechanisms. Nature Reviews Cardiology, pp.1–3.
  53. Risma, K.A., Edwards, K.M., Hummell, D.S., Little, F.F., Norton, A.E., Stallings, A., Wood, R.A. and Milner, J.D., 2021. Potential mechanisms of anaphylaxis to COVID-19 mRNA vaccines. Journal of Allergy and Clinical Immunology147(6), pp.2075–2082.
  54. Anand, P. and Stahel, V.P., 2021. The safety of Covid-19 mRNA vaccines: A review. Patient safety in surgery15(1), pp.1–9.
  55. Park, K.S., Sun, X., Aikins, M.E. and Moon, J.J., 2021. Non-viral COVID-19 vaccine delivery systems. Advanced drug delivery reviews169, pp.137–151.
  56. Heiser, A., Coleman, D., Dannull, J., Yancey, D., Maurice, M.A., Lallas, C.D., Dahm, P., Niedzwiecki, D., Gilboa, E. and Vieweg, J., 2002. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. The Journal of clinical investigation, 109(3), pp.409–417.
  57. https://www.respectfulinsolence.com/2022/05/02/scientific-review-articles-as-disinformation/
  58. Halstead, S.B. and Katzelnick, L., 2020. COVID-19 vaccines: should we fear ADE?. The Journal of infectious diseases, 222(12), pp.1946–1950.
  59. Li, M., Wang, H., Tian, L., Pang, Z., Yang, Q., Huang, T., Fan, J., Song, L., Tong, Y. and Fan, H., 2022. COVID-19 vaccine development: milestones, lessons and prospects. Signal transduction and targeted therapy, 7(1), pp.1–32.
  60. Maemura, T., Kuroda, M., Armbrust, T., Yamayoshi, S., Halfmann, P.J. and Kawaoka, Y., 2021. Antibody-dependent enhancement of SARS-CoV-2 infection is mediated by the IgG receptors FcγRIIA and FcγRIIIA but does not contribute to aberrant cytokine production by macrophages. MBio, 12(5), pp.e01987–21.
所有討論 1
Jamie Lin_96
2 篇文章 ・ 2 位粉絲
正在論文與發表地獄中載浮載沈的免疫學博士後選人 熱愛攝影、做手工藝且永遠管不住好動的手,不是在寫論文、部落格文章就是在推特上筆戰科普