Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

地球日50週年:當暖化成為事實,減碳就成為義務!台灣氣候的現況與那些我們共享的未來

PanSci_96
・2020/04/22 ・2753字 ・閱讀時間約 5 分鐘 ・SR值 525 ・七年級

還記得是從什麼時候開始,北極熊開始成為「節能減碳」的代言人嗎?冷氣調高一度、隨手關燈、改用省電燈泡、下班關電腦、選購節能標章家電,總是有北極熊的事。

北極熊經常是節能海報的代言明星。圖/經濟部能源局

從一隻餓到見骨的北極熊開始⋯⋯

多年前,捱餓瘦弱、攀在海冰邊緣的北極熊被媒體報導出來,引起全世界的關注。近幾年來,北極熊甚至因為覓食困難,而發生被海水淹死或增加獵食同類的情況。

因為北極熊,人們開始注意到季節天氣異常、南北極長年冰凍的地方減少,以及島嶼國家將會因為海水上升而被淹沒等等消息。

瘦得只剩皮包骨的北極熊引起全世界的關注。圖/Andreas Weith

節能減碳救地球

當暖化成為事實,減碳就成為必要!

經濟部自 2005 年起推動自願減量措施,和 11 個產業公/協會簽署「溫室氣體自願減量」協議,從鋼鐵、石化、 水泥、造紙、棉布印染、半導體、面板等產業開始努力減碳。

-----廣告,請繼續往下閱讀-----

透過能源管理、汰換耗能的機器等方式,2008 年於是看到溫室氣體排放量出現了減緩的狀況。

台灣溫室氣體排放量趨勢。資料來源/行政院環保署

其實,減碳上的成績不只來自於工業部門的努力。1996 年,台灣第一條捷運、也就是木柵線開放體驗搭乘時,台北捷運的營運長度是 10.5 公里。後來高雄捷運陸續開通,台北捷運的路線和總長度也持續增加。

20 年來,台灣的大眾運輸越來越發達,大家也早已習慣出門搭捷運或公車的生活。

2007 年台灣高鐵開通板橋-左營路線之後,打造台灣「一日生活圈」,整體交通運輸的溫室氣體排放量也呈現略微下降的趨勢。

-----廣告,請繼續往下閱讀-----

時間來到 2020 年,微笑的公共自行車和引擎好安靜的電動車,也在大街小巷中頻繁地穿梭。

1996 年捷運木柵線通車,台灣公共運輸漸漸邁向普及。圖/華視

怪東怪西當然要怪天氣

儘管大家已經養成出門搭捷運、隨手關燈、使用節能家電的習慣,但氣候變遷這件事情,似乎讓大家越來越有感⋯⋯2019 的冬天,保暖大衣一直宅在衣櫥裡,11 月之後甚至熱到要穿短袖;持續八個月的澳洲大火也燒得令人揪心,紛紛有民眾發起連署,要求政府承認氣候變遷的事實,並提出對應的措施。

根據中央氣象局資料,台灣 2015-2019 年的年均溫,三次創下歷史新高。

台灣的氣溫和降雨都變得怪異起來,對於產業、生活造成了嚴重威脅——農夫抓不準時間播種、該收成的時候卻無法收成,甚至交通事故、人的脾氣變差,都被研究證實與氣候變遷有關。

-----廣告,請繼續往下閱讀-----
1850 年至 2016 年 3 月的氣溫變化。圖/Ed Hawkins

減碳一公斤,比減重一公斤還重要

天氣已經怪到全球有感,「沒有未來,何必上課」瑞典小女孩葛莉塔 (Greta Thunberg)  發起「氣候罷課」(Fridays For Future) 行動。

2018 年 8 月開始,當時只有 16 歲的葛莉塔,每個星期五都罷課到瑞典國會外靜坐,要求政府承諾降低碳排量。

這項行動很快就擴散到全世界,成為全球年齡最低的社會運動。

現在就是未來!減碳一公斤,比減重一公斤還重要。生活中,我們其實還有很多可以為地球降溫的方法。

-----廣告,請繼續往下閱讀-----
  1. 參與公民電廠
    再生能源最大的特性就是「分散式發電」,人人都能投資再生能源,或是出租家裡的屋頂放置太陽能板。你也可以選擇參與公民電廠的運作,例如:綠主張綠電合作社明華社區電廠模式。

    陽光伏特家是太陽能全民電廠平台。圖/陽光伏特家
  2. 交通工具隨租隨還
    以租代買,免繳牌照稅和燃料税,目前 Wemo、go share、iRent 都提供電動機車租借服務。嗯?沒駕照?想要運動健身?那就選公共自行車吧!

    共享電動車讓沒車的人也有車騎。圖/Wemo scooter
  3. 物理性防曬幫建築降溫
    老師都會精神喊話:「心靜自然涼」,如果想要涼,其實只要利用百葉窗、竹簾、黑色網布或是盆栽,就能達到隔絕室外熱度的效果。試試看,你會覺得很有差!

    用植物幫房子防曬,就能降低室內溫度。圖/環境資訊中心

推薦書籍

  1. 《天氣之子》,台灣角川股份有限公司。
  2. 《大崩壞:人類社會的明天?》,時報文化出版企業股份有限公司。
  3. 《藏種於民:全球保種時代來臨!一顆種子,對抗極端氣候、基改風險,打造我們的永續餐桌》,果力文化。
  4. 《葛莉塔的呼籲:了解氣候變遷的科學、知識,採取正確行動!》(繪本),三采文化股份有限公司。

資料來源

  1. 中華民國經濟部—政府、產業協力 減碳成果看得見
  2. 行政院環保署—2019 年中華民國國家溫室氣體排放清冊報告
  3. 行政院環保署—溫室氣體排放統計
  4. 經濟部能源局—107 年度我國燃料燃燒 CO2 排放統計與分析
  5. 工業部門減量工作成果分享
  6. 運輸部門溫室氣體排放管制行動方案(草案)
  7. 全球平均溫度長期趨勢監測報告
  8. 地方政府運輸部門 CO2 排放量估算及趨勢分析
  9. 臺北大眾捷運股份有限公司—大事紀
  10. 台灣高鐵 環境永續—高速鐵路運輸服務碳足跡
  11. 5 大關鍵透徹解讀運輸碳排大戶!
  12. 公路運輸、鐵路和航空 哪個最耗能? 來看國內運輸能源消費數據
  13. 涼夏必備 夏日節能 30 招
  14. 「涼爽」 不能只靠吹風或降溫

 

本文轉載自台灣環境資訊協會,想了解更多請見:地球日50週年網站

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2447 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
228 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
1

文字

分享

0
3
1
從成長的極限到永續系統發展——《成長的極限》導讀
臉譜出版_96
・2024/04/22 ・3899字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/顏敏仁
    • 國立政治大學教育學院教授暨數位賦能與永續發展研究中心主任
    • 國際系統動態學臺灣分會主席

何飛鵬社長邀請我寫這篇導讀時,《成長的極限》(The Limits to Growth)系列書籍已被翻譯成近 40 種語言,全球銷售一千多萬本,被譽為 20 世紀最具影響力書籍之一。1972 年出版的本書源自傑伊.佛烈斯特(Jay W. Forrester)教授創立的 MIT System Dynamics Group 系統科學研究,由羅馬俱樂部(Club of Rome)支持其研究及出版。17 位科學家運用佛烈斯特的世界模型原型為基礎提出 World3 電腦模型,分析描述地球環境與經濟社會從 1972 年到 2100 年的可能未來景象並提出警示建議,由唐妮菈.米道斯(Donella Meadows)、丹尼斯.米道斯(Dennis Meadows)、喬詹.蘭德斯(Jorgen Randers)及威廉.貝倫斯(William Behrens)代表撰文出版成為世界第一本以電腦科學分析環境風險的報告。同年聯合國提出《人類環境宣言》。

想像 50 年多前這本書帶給世人什麼震憾?世界頂尖科研團隊提出,在有限的地球資源條件下,若依人類追求經濟成長的慣性發展趨勢,以及環境社會解方的行動時間延遲,將可能不自覺導致超過地球限度的開發(overshooting)而讓資源失衡崩潰。本書運用科學數據分析描繪的 12 種未來發展可能景象,不只是成長趨緩或停滯而已,還有全面毀滅式的環境經濟社會崩潰。這樣的論述在追求經濟成長的 1970 年代堪稱非常反直覺的驚天論述,有其支持者,也有大量的批評接踵而來。包含諾貝爾經濟學獎得主在內的許多批評者無法理解其分析的依據,也不相信其推論,甚至認為是不負責任的危言聳聽。

出版 20 年後的 1992 年,作者群更新內容以《超過限度》(Beyond The Limits)之名重新出版,同年聯合國召開首次全球環境及發展高峰會,宣布《聯合國氣候變化綱要公約》(UN Framework Convention on Climate Change, UNFCCC)與《生物多樣性公約》(Convention on Biological Diversity);30 年後的 2002 年,作者群再更新實際發生數據研究出版《成長的極限》三十週年增訂版,再與聯合國世界永續發展高峰會議同步,跨入 21 世紀倡議永續社會;40 年後的 2012 年,聯合國通過「永續發展目標」(Sustainable Development Goals, SDGs),乃至於 2015 年 193 個會員國全數簽署《巴黎協定》(Paris Agreement)執行 1992 年的相關環境公約。本書出版 50 週年時,世界頂尖科學期刊《自然》(Nature)發表專文呼籲科學家們應該停止對成長極限的爭論而共同全力為經濟環境永續發展努力。

有「東方諾貝爾獎」之稱的唐獎永續發展獎得主、歷任三屆聯合國祕書長特別顧問的國際知名經濟學家傑佛瑞.薩克斯(Jeffery Sachs)是聯合國千禧年發展目標(MDGs)、永續發展目標(SDGs)及《巴黎協定》重要推手。曾公開表示《成長的極限》是 50 年前他就讀哈佛大學經濟系時的指定必讀名著,對其影響啟發深遠。

-----廣告,請繼續往下閱讀-----
圖/envato

時至今日,國際經濟社會已廣為倡議 SDGs 及 ESG 等等永續發展行動與政策實踐,甚至是產官學各界領導人必修知識與國民素養教育。再讀這本引領思潮,橫跨兩世紀的經典之作,我們可以用什麼視角來品析及反思學習呢?

以對話取代對立:研究方法學

本書所引發的跨世紀跨領域對話,可以從研究方法學的特性來理解。古有云:事實勝於雄辯。對於已經發生的事件及資料加以科學分析歸納,是為研究方法中的歸納法(inductive reasoning)。這種方法的好處是依據取得資料幫助吾人從經驗中學習,以及傳遞知識。然而,對於還沒有發生的未來可能,歸納法則可能受到限制或僅能以過去相關資料有限度的推測未來趨勢。演繹法(deductive reasoning)則是一種運用行為邏輯與科學分析推論未來可能發展的研究方法,可依據邏輯幫助吾人規畫未來情境並分析可能性。若是從科學研究角度,要隨著時代持續進步,最好是同時有從經驗學習的能力以及展望未來的能力,亦即歸納法加上演繹法的持續運用。反之,若將歸納法 vs 演繹法直接二選一,便容易產生對立觀點。

若要能夠開放式對話,其實我們需要理解的是歸納法強調「資料」(data),演繹法重視「規則」(rule)。這兩種研究方法並沒有直接衝突,而是關注點不同。持各種不同研究方法及論述立場的人們之間沒有不合,而是需要對話及互相理解彼此想法。分析已發生的事件及資料需重視精準度及解釋力;而對於未來看法的對話,我們既然拿不到「未來」的資料,便需要更重視行為邏輯結構的分析(structural analysis)而避免不知其所以然而為之的黑箱(black box)預測。如此大家才有機會一起探討各種未來可能的行為模式及發展趨勢。因此,作者持續的對外聲明,他們沒有要直接對未來做預測(prediction),而是希望勾勒規畫各種行為模式下的可能未來情境(scenario planning),以做為政策及個人選擇參考。

以平常應對無常:系統動態學

許多人看到本書描繪 21 世紀可能成長超過限度並導致崩毀的反直覺景象,非常難以相信亦或是恐懼無常。然而本書卻有條有理的說明,不論是呈現持續成長、成長趨緩、超過限度並出現振盪、超過限度並導致崩毀等等看似反直覺的各種未來情境,都有 World3 模型中可以解釋各種行為模式的結構性原因。這樣的分析方式正是典型的系統動態學(System Dynamics, SD)。相較於傳統的線性思考方式,SD 重視系統思考(Systems Thinking)及因果回饋環路關係,考慮作用時間延遲,並運用電腦模型分析系統運作結構模式來推論未來發展趨勢。經歷各種複雜系統研究分析與歸納學習各種非線性動態趨勢變化後,系統科學家習以為常的運用 SD 分析方法將一般人認為動態趨勢變化的「無常」理解為可以探究其結構性原因及對策的「平常」。因此,作者在書中強調的「調整系統結構」(change the structure of the system)等等論述。雖然文字上並不親民,卻也是典型的系統科學家用語及系統思維。

-----廣告,請繼續往下閱讀-----

SD 重視脈絡分析,從心智模式(Mental Model)、系統思考、電腦模擬與未來情境分析,到對行為模式的反思學習,其持續追根究柢的科學專業,以及對未來保持開放思考的態度正是精髓所在。因此,當系統科學家在情境分析的過程中發現有非常不利的未來可能時,會防範未然提出早期警訊,呼籲要調整系統結構並儘早採取對策,便不難理解。系統動態學的應用也能有效協助規畫建立有利於未來發展的各種系統。

主動選擇勝過被動無奈

這不是無奈,這是我們的選擇。本書提到世界面臨的不是一個預先注定的未來,而是一個選擇,亦即在不同的心智思考模式之間所做的選擇。

面對成長的極限與可能的崩潰,作者仍然採取積極的思考方式,建議人類從面臨成長極限的經濟模式反思典範轉移到永續系統(Transitions to a Sustainable System),為長存發展之道。因此作者提出了許多可能協助人類邁向永續系統的作法。惟面對未來發展,值得我們重視的並不僅於作者所建議的作法,亦或是再次爭論作者所提方法的精準度,而是我們是否能夠用非常審慎的態度、以科學方法為基礎來關注分析真實環境威脅與經濟及社會需求,進而可能找到兼容並進的永續發展路徑。作者也表示其研究是在試圖找出各種可能的未來,而不是要單一預測未來。他們鼓勵讀者多學習、多思考、並做出個人的選擇。

圖/envato

思索面對未來發展,心智模式非常重要。永續發展需奠基於人類自我覺察的視界與能力。挪威前首相、唐獎永續發展獎第一屆得主布倫特蘭(Gro Harlem Brundtland)所領導的聯合國環境與發展委員會(United National Commission on Environment and Development)在 1987 年發布著名報告:〈我們共同的未來〉(Our Common Future),為「永續發展」提供經典定義:「永續發展係指能滿足當今需求,卻不犧牲未來世代滿足其需求」。在諸多學者、倡議人士的持續努力下,永續發展成為一種理性看待世界的系統性思考,有了結合物理環境、工程系統、社會經濟文化背景的分析框架。永續發展試圖理解世界經濟、全球社會和地球的實體環境等三個複雜系統的互動。而為了實現永續的經濟、社會及環境目標,也必須達成政府和企業的良善治理。

-----廣告,請繼續往下閱讀-----

邁向永續系統的未來展望

教育與自覺非常重要,我們主動選擇的行為改變與經濟社會轉型,是邁向永續系統的未來展望。聯合國倡議推動的永續發展教育(Education for Sustainable Development, ESD)已將系統思考、自我覺察、未來情境策略規畫等能力列入未來人才核心能力培育綱領。2023 年《聯合國氣候變化綱要公約》(UNFCCC)第 28 屆締約方大會(COP28),更是首度盤點全球近200國氣候行動,正視具體實踐。

羅馬俱樂部沒有停止其主動選擇權和科學精神,在《成長的極限》出版 50 年後,發布了核心主張聲明,希望協助大眾正確瞭解該書所欲傳遞的訊息。並邀請原作者丹尼斯.米道斯和喬詹.蘭德斯再撰寫出版《極限與超越》(Limits and Beyond)一書,回應他們 50 年期間對相關重大議題的持續考證與反思學習報告。羅馬俱樂部仍持續出版其他以科學探索永續發展未來路徑的書籍報告。

MIT System Dynamics Group 持續推廣系統科學研究並成立永續發展倡議單位。國際系統動態學會(System Dynamics Society)在全球五大洲許多國家及區域設立分會,以推廣相關教育及產業社會服務。在臺灣,系統思考能力的培養已列入教育部頒布的十二年國民教育課綱(108 課綱),系統動態學的核心管理科學技術已經國科會核定成立全國第一個 ESG 產學技術聯盟。SDGs 與 ESG 等永續發展行動與相關政策已經在具體實踐過程中,如本書所建議的方針「In transition to a sustainable system」,以科學基礎和建設性的對話,大家一起集思廣益地球與人類發展典範轉移邁向永續系統。最後呼應本書以及聯合國的倡議及努力,「Towards sustainable system development from the limits to growth」,從成長的極限到永續系統發展的積極作為,是我們共同的未來。

——本文摘自《成長的極限》,2024 年 03 月,臉譜出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

1

3
4

文字

分享

1
3
4
改良天然氣發電技術不會產生二氧化碳?灰氫、藍氫、綠氫分別是什麼?
PanSci_96
・2024/02/11 ・5659字 ・閱讀時間約 11 分鐘

用天然氣發電可以完全沒有二氧化碳排放?這怎麼可能?

2023 年 11 月,台電和中研院共同發表去碳燃氫技術,說是經過處理的天然氣,燃燒後可以不產生二氧化碳。

誒,減碳方式百百種,就是這個聽起來最怪。但仔細研究後,好像還真有這麼一回事。這種能發電,又不產二氧化碳的巫術到底是什麼?大量使用天然氣後,又有哪些隱憂是我們可能沒注意到的?

去碳燃氫是什麼?

去碳燃氫,指的是改良現有的天然氣發電方式,將甲烷天然氣的碳去除,只留下乾淨的氫氣作為燃燒燃料。在介紹去碳燃氫之前,我們想先針對我們的主角天然氣問一個問題。

-----廣告,請繼續往下閱讀-----

最近不論台灣、美國或是許多國家,都提升了天然氣發電的比例,但天然氣發電真的有比較好嗎?

好像還真的有。

根據聯合國底下的政府間氣候變化專門委員會 IPCC 的計算報告,若使用火力發電主要使用的煙煤與亞煙煤作為燃料,並以燃燒率百分之百來計算,燃料每釋放一兆焦耳的能量,就會分別產生 94600 公斤和 96100 公斤的二氧化碳排放。

如果將燃料換成天然氣,則大約會產生 56100 公斤的二氧化碳,大約只有燃燒煤炭的六成。這是因為天然氣在化學反應中,不只有碳元素會提供能量,氫元素也會氧化成水並放出能量。

圖/pexels

除了碳排較低以外,煤炭這類固體燃料往往含有更多雜質,燃燒時又容易產生更多的懸浮顆粒例如 PM 2.5 ,或是溫室效應的另一主力氧化亞氮(N2O)。具體來說,產生同等能量下,燃燒煤炭產生的氧化亞氮是天然氣的 150 倍。

當然,也別高興這麼早,天然氣本身也是個比二氧化碳更可怕的溫室氣體,一但洩漏問題也不小。關於這點,我們放到本集最後面再來討論。

-----廣告,請繼續往下閱讀-----

燃燒天然氣還是會產生二氧化碳?

雖然比較少,但也有燃煤的六成。像是綠能一樣的零碳排發電方式,不才是我們的終極目標嗎?別擔心,為了讓產生的二氧化碳量減到最小,我們可以來改造一下甲烷。

圖/unsplash

在攝氏 700 至 1100 度的高溫下,甲烷就會和水蒸氣反應,變成一氧化碳和氫氣,稱為蒸汽甲烷重組技術。目前全球的氫氣有 9 成以上,都是用此方式製造的,也就是所謂的「灰氫」。

而產物中的一氧化碳,還可以在銅或鐵的催化下,與水蒸氣進一步進行水煤氣反應,變成二氧化碳與氫氣。最後的產物很純,只有氫氣與二氧化碳,因此此時單獨將二氧化碳分離、封存的效率也會提升不少,也就是我們在介紹碳捕捉時介紹的「燃燒前捕捉」技術。

去碳燃氫又是什麼?

圖/pexels

即便我們能將甲烷蒸氣重組,但只要原料中含有碳,那最終還是會產生二氧化碳。那麼,我們把碳去掉不就好了?去碳燃氫,就是要在第一步把甲烷分解為碳和氫氣。這樣氫氣在發電時只會產生水蒸氣,而留下來的碳黑,也就是固態的碳,可以做為其他工業原料使用,提升附加價值。

-----廣告,請繼續往下閱讀-----

在氫氣產業鏈中,我們習慣將氫氣的來源做顏色分類。例如前面提到蒸氣重組後得到的氫氣被稱為灰氫,而搭配碳捕捉技術的氫,則稱為藍氫。完全使用綠能得到的氫,例如搭配太陽能或風力發電,將水電解後得到最潔淨的氫,則稱為綠氫。而介於這兩者之間,利用去碳燃氫技術分解不是水而是甲烷所得到的氫,則稱為藍綠氫。

但先不管它叫什麼氫,重點是如果真的不會產生二氧化碳,那我們就確實多了一種潔淨能源可以選擇。這個將甲烷一分為二的技術,聽起來應該也不會太難吧?畢竟連五◯悟都可以一分為二了,甲烷應該也行吧。

甲烷如何去碳?

甲烷要怎麼變成乾淨的氫氣呢?

很簡單,加溫就好了。

圖/giphy

只要加溫到高過攝氏 700 度,甲烷就會開始「熱裂解」,鍵結開始被打斷,變成碳與氫氣。

-----廣告,請繼續往下閱讀-----

等等等等…為了發電還要耗費能源搞高溫熱裂解,划算嗎?

甲烷裂解確實是一個吸熱反應,也就是需要耗費能量來拆散原本的鍵結。根據反應式,一莫耳甲烷要吸收 74 千焦耳的熱量,才會裂解為一莫耳的碳和兩莫耳的氫氣。但是兩莫耳的氫氣燃燒後,會產生 482 千焦耳的熱量。淨能量產出是 408 焦耳。與此相對,直接燃燒甲烷產生的熱量是 891 千焦耳。

而根據現實環境與設備的情況,中研院與台電推估一公噸的天然氣直接燃燒發電,與先去碳再燃氫的方式相比,發電量分別為 7700 度和 4272 度。雖然因為不燃燒碳,發電量下降了,但也省下了燃燒後捕存的成本。

要怎麼幫甲烷去碳呢?

在近二十幾年內,科學家嘗試使用各種材料作為催化劑,來提升反應效率。最常見的方式,是將特定比例的合金,例如鎳鉍合金,加熱為熔融態。並讓甲烷通過液態的合金,與這些高溫的催化劑產生反應。實驗證實,鎳鉍合金可以在攝氏 1065 度的高溫下,轉化 95% 的甲烷。

-----廣告,請繼續往下閱讀-----

中研院在 2021 年 3 月,啟動了「 Alpha 去碳計畫」,進行去碳燃氫的設備開發。但團隊發現,盡管在理論上行得通,但實際上裝置就像是個不受控的火山一樣,熔融金屬與蒸氣挾帶著碳粒形成黏稠流體,不斷從表面冒出,需要不斷暫停實驗來將岩漿撈出去。因此,即便理論上可行,但熔融合金的催化方式,還無法提供給發電機組使用。

去碳燃氫還能有突破嗎?

有趣的是,找了好一大圈,驀然回首,那人卻在燈火闌珊處。

最後大家把目光放到了就在你旁邊,你卻不知道它正在等你的那個催化劑,碳。其實過去就有研究表明碳是一種可行的催化劑。但直到 201 3年,才有韓國團隊,嘗試把碳真的拿來做為去碳燃氫的反應催化劑。

圖/pexels

他們在高溫管柱中,裝填了直徑 30 nm 的碳粒。結果發現,在 1,443 K 的高溫下,能達到幾乎 100 % 的甲烷轉化。而且碳本身就是反應的產物之一,因此整個裝置除了碳鋼容器以外,只有碳與氫參與反應,不僅成本低廉,要回收碳黑也變得容易許多。

-----廣告,請繼續往下閱讀-----

目前這個裝置需要加緊改良的,就是當碳不斷的積蓄,碳粒顆粒變大,反應會跟著下降。如何有效清除或更換濾網與反應材料,會是能否將此設備放大至工業化規模的關鍵。

最後,我們回頭來談談,在去碳燃氫技術逐漸成熟之後,我們可能需要面對的根本問題。

天然氣是救世主,還是雙面刃?

去碳燃氫後的第一階段,還是會以天然氣為主,只混和 10 % 以下的氫氣作為發電燃料。

這是因為甲烷的燃燒速度是每秒 0.38 公尺,氫氣則為每秒 2.9 公尺,有著更劇烈的燃燒反應。因此,目前仍未有高比例氫氣的發電機組,氫氣的最高比例,通常就是 30 % 。

目前除了已成功串連,使用 10 % 氫氣的小型發電機組以外。台電預計明年完成在興達電廠,使用 5 % 氫氣的示範計畫,並逐步提升混和氫氣的比例。根據估計,光是 5 % 的氫氣,就能減少每年 7000 噸的二氧化碳排放。

-----廣告,請繼續往下閱讀-----

但隨著天然氣的使用量逐步提高,我們也應該同時留意另一個問題。

天然氣洩漏導致的溫室效應,是不可忽視的!

根據 IPCC 2021 年的報告,若以 20 年為評估,甲烷產生的溫室效應效果是二氧化碳的 82.5 倍,以 100 年為評估,效果為 29.8 倍,是僅次於二氧化碳,對於溫室效應的貢獻者第二名。這,不可不慎啊。

圖/unsplash

從石油、天然氣井的大量甲烷洩漏,加上運輸時的洩漏,如果沒有嚴格控管,我們所做的努力,很有可能就白費了。

非營利組織「環境保衛基金」曾在 2018 年發表一篇研究,發現從 2012 到 2018 年,全球的甲烷排放量增加了 60 % ,從煤炭轉天然氣帶來的好處,可能因為甲烷洩漏而下修。當然,我們必須相信,當這處漏洞被補上,它還是能作為一個可期待的發電方式。

圖/giphy

另一篇發表在《 Nature Climate Change 》的分析研究就說明,以長期來看,由煤炭轉為天然氣,確實能有效減緩溫室氣體排放。但研究也特別提醒,天然氣應作為綠能發展健全前的過渡能源,千萬別因此放慢對於其他潔淨能源的研究腳步。

去碳燃氫技術看起來如此複雜,為什麼不直接發展綠氫就好了?

確實,綠氫很香。但是,綠氫的來源是電解水,而反應裝置也不可能直接使用雜質混雜的海水,因此若要大規模發展氫能,通常需要搭配水庫或海水淡化等供水設施。另外,綠氫本來就是屬於一種儲能的形式,在台灣自己的綠能還沒有多到有剩之前,當然直接送入電網,還輪不到拿來產綠氫。

圖/unsplash

相比於綠氫,去碳燃氫針對的是降低傳統火力發電的碳排,並且只需要在現有的發電廠旁架設熱裂解設備,就可以完成改造。可以想像成是在綠能、新世代核能發展成熟前的應急策略。

當然,除了今天提到的灰氫、藍氫、綠氫。我們還有用核能產生的粉紅氫、從地底開採出來的白氫等等,都還沒介紹呢!

除了可以回去複習我們這一集的氫能大盤點之外,也可以觀看這個介紹白氫的影片,一個連比爾蓋茲都在今年宣布加碼投資的新能源。它,會是下一個能源救世主嗎?

最後,也想問問大家,你認為未來 10 年內,哪種氫能會是最有潛力的發展方向呢?

  1. 當然是綠:要押當然還是壓最乾淨的綠氫啦,自產之前先進口也行啊。
  2. 肯定投藍:搭配碳捕捉的藍氫應該會是最快成熟的氫能吧。
  3. 絕對選白:連比爾蓋茲也投資的白氫感覺很不一樣。快介紹啊!

什麼?你覺得這幾個選項的顏色好像很熟悉?別太敏感了,下好離手啊!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 1
PanSci_96
1262 篇文章 ・ 2447 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。