Loading [MathJax]/extensions/MathMenu.js

0

6
3

文字

分享

0
6
3

最新 IPCC 報告出爐!作爲地球公民一分子,你不可不知的氣候變遷現況

安比西林_96
・2021/09/03 ・4518字 ・閱讀時間約 9 分鐘

受疫情影響延誤數個月,距上次報告發佈八年之久後, IPCC 氣候變遷的第六次評估報告(IPCC Sixth Assessment Report,簡稱 AR6) – 第一工作小組報告的最終版草案[註1]  終於在 8 月 9 日問世。氣候變遷已近在眼前,在台灣的我們,剛經歷缺水危機後就迎來豪雨水災,極端天氣的三溫暖叫人吃不消,更遑論世界各地所遭遇的熱浪、颶風、林火等天災。這份報告就像地球的體檢診斷書,揭示了氣候變遷影響下,人類未來可能面臨到的衝擊。

IPCC 的報告為什麽如此重要?  

雖然世界上的人還是可以分成「相信氣候變遷正在發生」和「氣候變遷是無稽之談」兩大派,但氣候變遷是真是假,不是靠聲量大小決定,而是必須讓科學實證來說話。而 IPCC(Intergovernmental Panel on Climate Change,全名為政府間氣候變化專門委員) 存在的目的,就是要以嚴謹的科學,去探討氣候變化的情形,以及對人類社會經濟造成的影響。

自 1988 年由世界氣象組織和聯合國環境規劃署成立的 IPCC,正是大家耳熟能詳的《京都議定書》及《巴黎協議》背後的重要推手。他們為地球氣候變化研究所做出的貢獻,也在 2007 年被諾貝爾和平獎肯定,與美國前副總統高爾共享這份殊榮。

大家可能會 OS:IPCC 產出一份評估報告要花 5 到 7 年,這也太久了吧!但就以 AR6 為例,這份多達 3949 頁的報告引用了超過 14000 份科學論文是由各國兩百多位科學家綜整各領域研究對氣候變遷的最新數據與分析後,取得從物理到社會經濟各層面共識的集大成之作!這份報告書沒有停留在學術象牙塔,而是讓政策決定者也參與在審核的過程。第一階段由科學家們提出研究結論之後,第二階段讓各國政府代表加入審核,將科學與實踐接軌,提出政策結論,最後再請 195 個成員國政府代表,以逐字審查方式做最終的確認並背書。

在阻止氣候變遷成為失速列車前,地球命運共同體的我們都在和時間賽跑。如何將有限的資源用在刀口上,是有效調適減緩氣候變遷的關鍵。經過嚴格多階段審核的報告書,才能成為各國政府擬定政策可靠的憑據。

-----廣告,請繼續往下閱讀-----

延伸閲讀:那些關於溫室效應全球暖化的科學討論:眾志成城的 IPCC 報告是如何誕生的?

瞭解幾個重點關鍵字,就能搞懂 IPCC 報告

在進入正題之前,搞懂幾個重點觀念,你就能比較明白 IPCC 報告在説什麽。IPCC 報告的核心問題,就在於回答:人類活動是否真的造成了全球暖化的發生?如果真是這樣,未來的情況會如何?

為了要檢驗這項假設,科學家建立了可反映和模擬地球氣候與環境變化的氣候模式(Climate Models)。在衆多的氣候模式中,比較常聽見的有大氣環流模式(General Circulation Model,GCM) 和地球系統模式(Earth System Model)。前者建基於基本物理定律,以數學方程式來描述大氣、海洋、冰及地表之間的熱能和物質交換;後者則納入了生物與化學因素對氣候物理過程的影響,可以更深入地探討碳循環、與生物圈的交互作用等回饋機制與氣候變遷的關係。

要讓模型變得更加可靠,就需要用大量、長期的真實氣候數據去「訓練」它,透過與過去氣候資料比較進行校正後,才能更好地模擬未來氣候的走向。可靠的氣候模型,可以模擬過去、現在、未來的氣候趨勢,更可以用來探討在有無人為影響下的氣候變化,是協助我們驗證氣候變遷和擬定調適策略的重要工具。

-----廣告,請繼續往下閱讀-----
地球系統模型的基本架構:藍框代表著氣候模型中涉及的過程,而綠框則代表地球系統模型可納入的其他變因。圖/climateurope

但要統整世界各地海量的氣候模式資料,光是資料收集就是一大工程,IPCC 的研究又該怎麽進行呢?答案就是透過耦合氣候模式對比計劃(Coupled Model Intercomparison Project,CMIP)的協助!CMIP 扮演了國際公開資料平臺的角色,讓隸屬旗下的各國研究組織,可以讓各自產製的氣候模式資料上線,讓全球研究者能簡便地獲取和分析這些資料。

每一期 CMIP 的模式推估,皆奠基於共同制定的未來氣候推估情境(Scenarios)。就像玩 RPG 游戲時,玩家在特定狀況下設定不同的參數,或在重要關卡做出不同的選擇,都會導向不一樣的結局。科學家於是將不同指標,如人類活動的溫室氣體(Green House Gases,GHGs)排放量高低,來設定各種可能的情境,來預測人類在氣候變遷這場大型生存游戲中,不同的 if 路線下,會遇見怎麽樣的未來地球氣候,所觸發各種極端氣候事件的機率大小。每一次的 IPCC 報告,科學家都會升級 CMIP 所使用的模式中,改善物理、化學與生物過程的表達式、提高資料的解析度,就是為求預測模擬的成果能更好地反映真實的情形。

IPCC 第六次報告的重點一次看!

值得注意的是,IPCC AR6 一改過去保守的口吻,使用了强烈的措辭「毋庸置疑」(unequivocal),説明多年來模式與觀測方法的改進,已讓科學中的不確定性降低,讓氣候科學家越來越確定氣候變遷發生的證據。所以如果你還認為氣候變遷是陰謀論,也許就要重新審視一下自己的立場了。若你向來關心氣候變遷課題,那這份報告便是帶我們重溫那些令人胃痛不已的既有認知:人類在大氣、海洋及陸地暖化上難辭其咎;近期地球氣候系統的變遷是數千年來前所未有的,也和熱浪、豪雨、乾旱等極端事件的發生擺脫不了關係

這一次,科學家設定了五種情境[註2],溫室氣體排放量由低至高依序為:

-----廣告,請繼續往下閱讀-----
  1. 極低排放減緩情境 SSP1-1.9
  2. 低排放減緩情境SSP1-2.6
  3. 中度排放情境 SSP2-4.5
  4. 高排放情境 SSP3-7.0
  5. 極高排放情境 SSP5-8.5

而報告結果顯示,無論在哪一種排放情境,全球地表升溫將會持續到本世紀中。除非人們在幾十年内大幅減少二氧化碳及其他溫室氣體的排放,否則全球暖化幅度,將在 21 世紀時超過《巴黎協定》所訂定的減碳目標 1.5° C 和 2.5°C。

無論在哪一種排放情境,全球地表升溫將會持續到本世紀中。圖/IPCC 報告

持續的全球暖化,不只讓我們冷氣電費節節上升,還會提升高熱帶氣旋、熱浪、豪雨,以及部分地區農業與生態乾旱的發生頻率與强度。我們將要持續不斷和極地海冰、雪蓋與永凍土說再見。而極端降水事件頻率或強度的增加,在上一次 AR5 中被評估為中度信心,但在這一次則被評為高度信心。這說明了科學家更確定,因地球升溫而被强化的水循環,將會讓旱災洪水變得更嚴重。儘管我們知道海洋與陸地具有碳匯作用,可減緩大氣中二氧化碳的累積,但在二氧化碳排放持續增加的情境下,這些效果都會被減弱。

科學家提醒,過往認為極低機率事件如冰層崩解、海洋環流劇變,以及「禍不單行」的複合式災難(例如熱浪與乾旱一同夾擊),都將可能發生。人們必須做好「情況沒有最糟,只有更糟」的準備,將各種極端事件納入風險評估。

未來的台灣:冬天變短,夏天變長

把視角聚焦回台灣,我們身處的這座小島的氣候變遷趨勢又如何?一直在氣候變遷議題政策推動與推廣工作上不遺餘力的台灣氣候變遷推估資訊與調適知識平台計畫(TCCIP),也持續為產製在地的未來氣候推估資料做出努力。

-----廣告,請繼續往下閱讀-----

根據 TCCIP 分析,台灣年均溫在過去 110 年間已上升約 1.6°C,而且近半個世紀有升溫加速的趨勢。而氣候變遷,更使得台灣的四季分佈出現明顯的變化。二十一世紀初的夏季長度,增加到約 120 至 150 天,近年來的冬季,更縮短到 20 至 40 天。

1897 至2020 年台灣六個百年測站冬、夏兩季長期變遷趨勢(單位:日)圖/TCCIP

研究團隊也證實,未來全球高度排放的暖化情境與理想減緩情境相比較,前者對臺灣的衝擊程度將明顯大於後者。根據推估,雖然未來台灣年總降雨量呈現增加的趨勢,但與此同時,年最大連續不降雨日數也會變多,説明旱澇加劇的情況可能會更加頻繁。

雖然未來看起來不太樂觀,但也不需過於絕望

IPCC AR6 明確地警示,氣候變遷已是難以忽視的真相,而且未來推估的情況不容得我們懷有一絲僥幸和樂觀。不過我們也不該太早放棄希望,正如 IPCC 的前副主席巴瑞特所言:從科學的角度來看,每降溫 1°C,甚至小至 0.5°C 或 0.1°C 的改變幅度,都對減緩氣候變遷的影響至關重要。在面對前所未有的氣候變遷挑戰上,我們也需要前所未有的改變、刻不容緩的減碳行動,在 2050 年達到净零溫室氣體排放。

他表示,IPCC 報告的重點就在於指出:人類仍有可以選擇的路徑,去避免最糟的情況發生。這或多或少給了我們一些希望。

在游戲中不小心死翹翹,還可以讀取存檔再來一次。然而地球的氣候變遷,是一場不可重來的生死難關。人們的抉擇到底會不會走向那個無可挽回的 Bad Ending,決定權將交在我們這一代人的手中。

-----廣告,請繼續往下閱讀-----

【注解】

  1. IPCC 評估報告整體内容包含四大冊,前三冊各由一個工作小組負責,第一工作小組(Working Group,WG I)主責氣候變遷的科學基礎研究;第二工作小組(WG II)則是分析生態與人文系統在氣候變遷下受到的影響與衝擊,及不同群體面對氣候變遷的脆弱度與調適方法;第三工作小組(WG III)肩負了評估減緩氣候變遷的各式方案。第四冊是以較平易淺白的用詞表達,統整前三冊内容的綜合報告(Synthesis Reprot)。目前公佈的為第一工作小組的報告部分,第二和第三工作小組的報告預期在 2022 年公佈,而最終的綜合報告預期在 2022 年底完成。
  2. 這次報告的情境設定,都以 SSPx-y 表示,“SSPx” 代表的是納入社會經濟考量的途徑)(Shared Socio – economic Pathway),而 “y” 則是輻射强度(單位是每平方米瓦特),用來表達受自然或人為因素影響的大氣能量通量變化,會受到溫室氣體與氣溶膠的濃度影響;其中,輻射强度的正值代表地球升溫,負值則會降溫。

【參考資料】

  1. AR6 Climate Change 2021:The Physical Science Basis
  2. IPCC 氣候變遷第六次評估報告之科學重點摘錄與臺灣氣候變遷評析更新報告
  3. General circulation model
  4. 政府間氣候變化專門委員會
  5. Earth is warming faster than previously thought, scientists say, and the window is closing to avoid catastrophic outcomes
  6. IPCC AR6:更確定的氣候變遷證據
  7. Earth System Modeling, a definition
-----廣告,請繼續往下閱讀-----
文章難易度
安比西林_96
10 篇文章 ・ 9 位粉絲
本職為生態環境領域的可撥煙酒生。 不定時掉落科普文章。 大家一起嗑科科(❍ᴥ❍ʋ)

0

3
1

文字

分享

0
3
1
為機器人換上「物理大腦」:一場終結AI數位囚禁的革命
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/03 ・5732字 ・閱讀時間約 11 分鐘

本文與 研華科技 合作,泛科學企劃執行

我們都看過那種影片,對吧?網路上從不缺乏讓人驚嘆的機器人表演:數十台人形機器人像軍隊一樣整齊劃一地耍雜技 ,或是波士頓動力的機器狗,用一種幾乎違反物理定律的姿態後空翻、玩跑酷 。每一次,社群媒體總會掀起一陣「未來已來」、「人類要被取代了」的驚呼 。

但當你關掉螢幕,看看四周,一個巨大的落差感就來了:說好的機器人呢?為什麼大街上沒有他們的身影,為什麼我家連一件衣服都還沒人幫我摺?

這份存在於數位螢幕與物理現實之間的巨大鴻溝,源於一個根本性的矛盾:當代AI在數位世界裡聰明絕頂,卻在物理世界中笨拙不堪。它可以寫詩、可以畫畫,但它沒辦法為你端一杯水。

-----廣告,請繼續往下閱讀-----

這個矛盾,在我們常見的兩種機器人展示中體現得淋漓盡致。第一種,是動作精準、甚至會跳舞的類型,這本質上是一場由工程師預先寫好劇本的「戲」,機器人對它所處的世界一無所知 。第二種,則是嘗試執行日常任務(如開冰箱、拿蘋果)的類型,但其動作緩慢不穩,彷彿正在復健的病人 。

這兩種極端的對比,恰恰點出了機器人技術的真正瓶頸:它們的「大腦」還不夠強大,無法即時處理與學習真實世界的突發狀況 。

這也引出了本文試圖探索的核心問題:新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦,真的能終結機器人的「復健時代」,開啟一個它們能真正理解、並與我們共同生活的全新紀元嗎?

新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦 / 圖片來源:研華科技

為何我們看到的機器人,總像在演戲或復健?

那我們怎麼理解這個看似矛盾的現象?為什麼有些機器人靈活得像舞者,有些卻笨拙得像病人?答案,就藏在它們的「大腦」運作方式裡。

-----廣告,請繼續往下閱讀-----

那些動作極其精準、甚至會後空翻的機器人,秀的其實是卓越的硬體性能——關節、馬達、減速器的完美配合。但它的本質,是一場由工程師預先寫好劇本的舞台劇 。每一個角度、每一分力道,都是事先算好的,機器人本身並不知道自己為何要這麼做,它只是在「執行」指令,而不是在「理解」環境。

而另一種,那個開冰箱慢吞吞的機器人,雖然看起來笨,卻是在做一件革命性的事:它正在試圖由 AI 驅動,真正開始「理解」這個世界 。它在學習什麼是冰箱、什麼是蘋果、以及如何控制自己的力量才能順利拿起它。這個過程之所以緩慢,正是因為過去驅動它的「大腦」,也就是 AI 晶片的算力還不夠強,無法即時處理與學習現實世界中無窮的變數 。

這就像教一個小孩走路,你可以抱著他,幫他擺動雙腿,看起來走得又快又穩,但那不是他自己在走。真正的學習,是他自己搖搖晃晃、不斷跌倒、然後慢慢找到平衡的過程。過去的機器人,大多是前者;而我們真正期待的,是後者。

所以,問題的核心浮現了:我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好?

-----廣告,請繼續往下閱讀-----
我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好? / 圖片來源:shutterstock

機器人的大腦,為什麼不能放在雲端?

聽起來好像很合理,對吧?把所有複雜的運算都交給雲端最強大的伺服器,機器人本身只要負責接收指令就好了。但……真的嗎?

想像一下,如果你的大腦在雲端,你看到一個球朝你飛過來,視覺訊號要先上傳到雲端,雲端分析完,再把「快閃開」的指令傳回你的身體。這中間只要有零點幾秒的網路延遲,你大概就已經鼻青臉腫了。

現實世界的互動,需要的是「即時反應」。任何網路延遲,在物理世界中都可能造成無法彌補的失誤 。因此,運算必須在機器人本體上完成,這就是「邊緣 AI」(Edge AI)的核心概念 。而 NVIDIA  Jetson 平台,正是為了解決這種在裝置端進行高運算、又要兼顧低功耗的需求,而誕生的關鍵解決方案 。

NVIDIA Jetson 就像一個緊湊、節能卻效能強大的微型電腦,專為在各種裝置上運行 AI 任務設計 。回顧它的演進,早期的 Jetson 系統主要用於視覺辨識搭配AI推論,像是車牌辨識、工廠瑕疵檢測,或者在相機裡分辨貓狗,扮演著「眼睛」的角色,看得懂眼前的事物 。但隨著算力提升,NVIDIA Jetson 的角色也逐漸從單純的「眼睛」,演化為能夠控制手腳的「大腦」,開始驅動更複雜的自主機器,無論是地上跑的、天上飛的,都將NVIDIA Jetson 視為核心運算中樞 。

-----廣告,請繼續往下閱讀-----

但再強大的晶片,如果沒有能適應現場環境的「容器」,也無法真正落地。這正是研華(Advantech)的角色,我們將 NVIDIA Jetson 平台整合進各式工業級主機與邊緣運算設備,確保它能在高熱、灰塵、潮濕或震動的現場穩定運行,滿足從工廠到農場到礦場、從公車到貨車到貨輪等各種使用環境。換句話說,NVIDIA 提供「大腦」,而研華則是讓這顆大腦能在真實世界中呼吸的「生命支持系統」。

這個平台聽起來很工業、很遙遠,但它其實早就以一種你意想不到的方式,進入了我們的生活。

從Switch到雞蛋分揀員,NVIDIA Jetson如何悄悄改變世界?

如果我告訴你,第一代的任天堂Switch遊戲機與Jetson有相同血緣,你會不會很驚訝?它的核心處理器X1晶片,與Jetson TX1模組共享相同架構。這款遊戲機對高效能運算和低功耗的嚴苛要求,正好與 Jetson 的設計理念不謀而合 。

而在更專業的領域,研華透過 NVIDIA Jetson 更是解決了許多真實世界的難題 。例如

-----廣告,請繼續往下閱讀-----
  • 在北美,有客戶利用 AI 進行雞蛋品質檢測,研華的工業電腦搭載NVIDIA Jetson 模組與相機介面,能精準辨識並挑出髒污、雙黃蛋到血蛋 
  • 在日本,為避免鏟雪車在移動時發生意外,導入了環繞視覺系統,當 AI 偵測到周圍有人時便會立刻停止 ;
  • 在水資源珍貴的以色列,研華的邊緣運算平台搭載NVIDIA Jetson模組置入無人機內,24 小時在果園巡航,一旦發現成熟的果實就直接凌空採摘,實現了「無落果」的終極目標 。

這些應用,代表著 NVIDIA Jetson Orin™ 世代的成功,它讓「自動化」設備變得更聰明 。然而,隨著大型語言模型(LLM)的浪潮來襲,人們的期待也從「自動化」轉向了「自主化」 。我們希望機器人不僅能執行命令,更能理解、推理。

Orin世代的算力在執行人形機器人AI推論時的效能約為每秒5到10次的推論頻率,若要機器人更快速完成動作,需要更強大的算力。業界迫切需要一個更強大的大腦。這也引出了一個革命性的問題:AI到底該如何學會「動手」,而不只是「動口」?

革命性的一步:AI如何學會「動手」而不只是「動口」?

面對 Orin 世代的瓶頸,NVIDIA 給出的答案,不是溫和升級,而是一次徹底的世代跨越— NVIDIA Jetson Thor 。這款基於最新 Blackwell 架構的新模組,峰值性能是前代的 7.5 倍,記憶體也翻倍 。如此巨大的效能提升,目標只有一個:將過去只能在雲端資料中心運行的、以 Transformer 為基礎的大型 AI 模型,成功部署到終端的機器上 。

NVIDIA Jetson Thor 的誕生,將驅動機器人控制典範的根本轉變。這要從 AI 模型的演進說起:

-----廣告,請繼續往下閱讀-----
  1. 第一階段是 LLM(Large Language Model,大型語言模型):
    我們最熟悉的 ChatGPT 就屬此類,它接收文字、輸出文字,實現了流暢的人機對話 。
  2. 第二階段是 VLM(Vision-Language Model,視覺語言模型):
    AI 學會了看,可以上傳圖片,它能用文字描述所見之物,但輸出結果仍然是給人類看的自然語言 。
  3. 第三階段則是 VLA(Vision-Language-Action Model,視覺語言行動模型):
    這是革命性的一步。VLA 模型的輸出不再是文字,而是「行動指令(Action Token)」 。它能將視覺與語言的理解,直接轉化為控制機器人關節力矩、速度等物理行為的具體參數 。

這就是關鍵! 過去以NVIDIA Jetson Orin™作為大腦的機器人,僅能以有限的速度運行VLA模型。而由 VLA 模型驅動,讓 AI 能夠感知、理解並直接與物理世界互動的全新形態,正是「物理 AI」(Physical AI)的開端 。NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 。

NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 / 圖片來源:研華科技

其中,物理 AI 強調的 vision to action,就需要研華設計對應的硬體來實現;譬如視覺可能來自於一般相機、深度相機、紅外線相機甚至光達,你的系統就要有對應的介面來整合視覺;你也會需要控制介面去控制馬達伸長手臂或控制夾具拿取物品;你也要有 WIFI、4G 或 5G 來傳輸資料或和別的 AI 溝通,這些都需要具體化到一個系統上,這個系統的集大成就是機器人。

好,我們有了史上最強的大腦。但一個再聰明的大腦,也需要一副強韌的身體。而這副身體,為什麼非得是「人形」?這不是一種很沒效率的執念嗎?

為什麼機器人非得是「人形」?這不是一種低效的執念嗎?

這是我一直在思考的問題。為什麼業界的主流目標,是充滿挑戰的「人形」機器人?為何不設計成效率更高的輪式,或是功能更多元的章魚型態?

-----廣告,請繼續往下閱讀-----

答案,簡單到令人無法反駁:因為我們所處的世界,是徹底為人形生物所打造的。

從樓梯的階高、門把的設計,到桌椅的高度,無一不是為了適應人類的雙足、雙手與身高而存在 。對 AI 而言,採用人形的軀體,意味著它能用與我們最相似的視角與方式去感知和學習這個世界,進而最快地理解並融入人類環境 。這背後的邏輯是,與其讓 AI 去適應千奇百怪的非人形設計,不如讓它直接採用這個已經被數千年人類文明「驗證」過的最優解 。

這也區分了「通用型 AI 人形機器人」與「專用型 AI 工業自動化設備」的本質不同 。後者像高度特化的工具,產線上的機械手臂能高效重複鎖螺絲,但它無法處理安裝柔軟水管這種預設外的任務 。而通用型人形機器人的目標,是成為一個「多面手」,它能在廣泛學習後,理解物理世界的運作規律 。理論上,今天它在產線上組裝伺服器,明天就能在廚房裡學會煮菜 。

人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態 / 圖片來源:shutterstock

但要讓一個「多面手」真正活起來,光有骨架還不夠。它必須同時擁有強大的大腦平台與遍布全身的感知神經,才能理解並回應外在環境。人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態。但這些訊號若沒有通過一個穩定的「大腦平台」,就無法匯聚成有意義的行動。

這正是研華的角色:我們不僅把 NVIDIA Jetson Thor 這顆核心晶片包載在工業級電腦中,讓它成為能真正思考與反應的「完整大腦」,同時也提供神經系統的骨幹,將感測器、I/O 介面與通訊模組可靠地連結起來,把訊號傳導進大腦。你或許看不見研華的存在,但它實際上遍布在機器人全身,像隱藏在皮膚之下的神經網絡,讓整個身體真正活過來。

但有了大腦、有了身體,接下來的挑戰是「教育」。你要怎麼教一個物理 AI?總不能讓它在現實世界裡一直摔跤,把一台幾百萬的機器人摔壞吧?

打造一個「精神時光屋」,AI的學習速度能有多快?

這個問題非常關鍵。大型語言模型可以閱讀網際網路上浩瀚的文本資料,但物理世界中用於訓練的互動資料卻極其稀缺,而且在現實中反覆試錯的成本與風險實在太高 。

答案,就在虛擬世界之中。

NVIDIA Isaac Sim™等模擬平台,為這個問題提供了完美的解決方案 。它能創造出一個物理規則高度擬真的數位孿生(Digital Twin)世界,讓 AI 在其中進行訓練 。

這就像是為機器人打造了一個「精神時光屋」 。它可以在一天之內,經歷相當於現實世界千百日的學習與演練,從而在絕對安全的環境中,窮盡各種可能性,深刻領悟物理世界的定律 。透過這種「模擬-訓練-推論」的 3 Computers 閉環,Physical AI (物理AI) 的學習曲線得以指數級加速 。

我原本以為模擬只是為了節省成本,但後來發現,它的意義遠不止於此。它是在為 AI 建立一種關於物理世界的「直覺」。這種直覺,是在現實世界中難以透過有限次的試錯來建立的。

所以你看,這趟從 Switch 到人形機器人的旅程,一幅清晰的未來藍圖已經浮現了。實現物理 AI 的三大支柱已然齊備:一個劃時代的「AI 大腦」(NVIDIA Jetson Thor)、讓核心延展為「完整大腦與神經系統」的工業級骨幹(由研華 Advantech 提供),以及一個不可或缺的「教育環境」(NVIDIA Isaac Sim 模擬平台) 。

結語

我們拆解了那些酷炫機器人影片背後的真相,看見了從「自動化」走向「自主化」的巨大技術鴻溝,也見證了「物理 AI」時代的三大支柱——大腦、身軀、與教育——如何逐一到位 。

專家預測,未來 3 到 5 年內,人形機器人領域將迎來一場顯著的革命 。過去我們只能在科幻電影中想像的場景,如今正以前所未有的速度成為現實 。

這不再只是一個關於效率和生產力的問題。當一台機器,能夠觀察我們的世界,理解我們的語言,並開始以物理實體的方式與我們互動,這將從根本上改變我們與科技的關係。

所以,最後我想留給你的思想實驗是:當一個「物理 AI」真的走進你的生活,它不只是個工具,而是一個能學習、能適應、能與你共同存在於同一個空間的「非人智慧體」,你最先感受到的,會是興奮、是便利,還是……一絲不安?

這個問題,不再是「我們能否做到」,而是「當它發生時,我們準備好了嗎?」

研華已經整裝待發,現在,我們與您一起推動下一代物理 AI 與智慧設備的誕生。
https://bit.ly/4n78dR4

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
231 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
0

文字

分享

0
2
0
末日模擬!從氣候變遷到核戰爭,人類未來將走向哪個結局?
PanSci_96
・2024/11/19 ・1957字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

科學家模擬的末日場景

隨著二氧化碳排放持續增加,全球的政治局勢日益緊張,世界上各國的承諾屢屢在國際會議中被辜負,戰爭的結束也似乎遙遙無期。警示世界末日的「末日鐘」越來越接近午夜,人類與地球的未來變得越來越悲觀。

這並非一種刻意的悲觀,而是基於氣候變遷和人類衝突升溫的現實。許多人或許和我一樣好奇,末日會不會真的臨近?如果會,那又會是什麼樣的場景?是氣候徹底失控的《明天過後》?還是生態浩劫後的全面沙漠化,需要武力生存的《沙丘》和《瘋狂麥斯》?或者是核戰之後,所有人生存在廢墟中的《異塵餘生》?

我們的未來走向尚未確定,但科學家已經率先模擬了不同的可能結局,讓我們可以一窺未來的模樣。這些模擬告訴我們,如果人類繼續走某些路徑,地球的結局將是如何。至於我們是否能避免這些結果,就得由全體人類共同決定。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

如何模擬出整顆星球的氣候變化?

要模擬整顆星球的大氣變化是一項龐大的任務,至少需要三大要素:理論、資料、和計算資源。

-----廣告,請繼續往下閱讀-----

首先,人類對氣候系統的物理和化學模式需要有足夠的了解,也就是大氣理論必須足夠完備。其次,需要足夠多的資料來模擬整個行星。這些資料包括地球半徑、自轉速度、海洋分布、太陽輻射、大氣成分等等,甚至是地表的狀況與地形。台灣的中央山脈就能影響到西太平洋的颱風走向,進而影響整個東亞的氣候。如果希望盡可能還原地球的真實情況,還需考量海洋的垂直溫度分布、植物分布導致的生物地球化學反應等。

最後,還需要強大的計算資源,也就是超級電腦。由於資料量龐大,每個參數的小誤差都可能引發蝴蝶效應,影響到預測結果。因此,科學家通常會微調各項參數,並對每組參數進行多次計算,這些都需要大量的運算能力。

模擬沙丘中的荒漠星球

科幻小說《沙丘》中的厄拉科斯,經布里斯托大學模擬,揭示未來氣候可能。圖/wikimedia

科幻小說《沙丘》中的厄拉科斯(Arrakis)是一顆完全荒漠化的星球,英國布里斯托大學的亞歷山大·法恩沃斯等人曾對這顆星球進行了模擬。他們使用在研究地球氣候變遷時使用的氣候模型,並結合小說中的設定,如大氣中的二氧化碳濃度和臭氧含量等,模擬了 500 年後的厄拉科斯氣候。

模擬結果顯示,厄拉科斯的赤道和熱帶地區夏季高溫達 45 度,冬季不低於 15 度。而高緯度地區則更為極端,夏季高溫可達 70 度,冬季最低可達 -75 度。由於大氣濕度和雲層的存在,極地反而比赤道更溫暖。此外,儘管小說中描述厄拉科斯幾乎沒有降雨,但模擬顯示高緯度和山區仍會有少量降雨。

-----廣告,請繼續往下閱讀-----

這些結果顯示,科學家不僅愛科幻,也樂於用科學方法來驗證科幻中的設定。這些模擬能讓我們更了解地球的氣候系統,並讓我們警惕荒漠化的危機。

核戰後的世界:核冬天的可怕景象

如果人類全面爆發核戰爭,戰後的世界會是什麼樣子?研究顯示,大規模的核武攻擊將產生大量的輻射塵和煙灰,進入大氣層並遮蔽陽光,導致「核冬天」的到來。

2019 年的一篇研究模擬了美俄之間的全面核戰爭,結果顯示,爆發後的第一年,全球氣溫將大幅下降,北半球的夏季溫度將下降 25 度,冬季氣溫則會降至零下,植物生長期縮短至僅剩 25 天。煙灰遮蔽陽光,導致全球糧食供應崩潰,第二年可能有 50 億人面臨飢餓。

這些模擬結果告訴我們,全面核戰將帶來毀滅性的後果,核冬天將使人類無法正常生活,這是真正的末日場景。

-----廣告,請繼續往下閱讀-----
核戰模擬顯示,氣溫驟降與糧食崩潰將致全球大饑荒。圖/envato

地球的未來會是如何?

地球未來的命運取決於我們今天的選擇。如果我們對氣候變遷置之不理,兩極冰帽將完全融化,海平面上升,許多沿海地區將被淹沒。雖然不至於像《水世界》中那樣極端,但低地區域的居民將面臨嚴重的生存挑戰。

如果人類選擇繼續衝突,甚至爆發毀滅性戰爭,我們的未來將如《瘋狂麥斯》或《異塵餘生》般,生存在廢墟中,面對乾旱、糧食短缺與持續的環境破壞。

歡迎訂閱 Pansci Youtube 頻道 鎖定每一個科學大事件!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

1
0

文字

分享

0
1
0
把握 2050 淨零轉型契機!了解「產品碳足跡」提升企業 ESG 績效
宜特科技_96
・2024/10/06 ・5540字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

圖/宜特科技

邁向 2050 淨零轉型,當企業在面對客戶價值鏈要求時,導入 ESG 早已成為提升營運績效的重要指標。而「產品碳足跡」是企業在品質、價格、規格之外,貼近客戶價值鏈、爭取國際品牌廠青睞的重要關鍵。透過本文一起深入探討,如何有效率地開展產品碳足跡計算與報告領域。

本文轉載自宜特小學堂〈把握淨零轉型契機 用產品碳足跡提升 ESG 績效〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

全球氣候變遷早已成為國際間重要環境議題,目前不同國家和地區具有針對碳足跡的要求和指南,例如:法國的 ADEME(環境和能源管理署)指南和日本的碳足跡計劃;而國際大廠(包含 Microsoft 及 Bosh 等車電大廠等)也積極推動供應商碳足跡管理,以降低整體供應鏈的碳排放,致力於實現其永續發展目標(Sustainable Development Goals,簡稱 SDGs)。臺灣也針對「2050 淨零轉型」提出四大策略及兩大基礎。

臺灣 2050 淨零排放路徑及策略總說明。圖/國家發展委員會

企業導入產品碳足跡可以幫助其成為客戶 ESG(Environmental, Social, and Governance)發展策略中重要合作夥伴,促進長期合作關係。然而,在企業開始進行碳足跡計算時,常常會面臨邊界設定、數據收集與量化等方面的各種問題,不知道該從何下手導致進展受阻。

宜特科技已有為數百家企業提供輔導服務的豐富經驗,成功協助客戶獲得多項增值認證,順利進入國際產業供應鏈。在本文中,我們將分享透過實例經驗,並深入探討如何有效率地開展產品碳足跡計算與報告領域,滿足客戶在 ESG 需求,從而幫助企業在國際供應鏈中保持競爭優勢!

-----廣告,請繼續往下閱讀-----

產品碳足跡-基於生命周期評估(Life Cycle Assessment,簡稱 LCA)

碳足跡是一種特定的環境指標,用於量化某個活動、產品或服務在生命周期內,直接和間接產生的溫室氣體排放量,通常會以二氧化碳當量(CO2e)來表示。而產品碳足跡是基於 ISO 14040  和 14044 所定義之系統化的方法,針對整個生命周期中對暖化的影響加以評估,這其中包括從原材料的獲取、製造、使用到最終處置的各個階段排碳量。

( 一 ) ISO 14040:生命周期評估原則與框架(Life Cycle Assessment-Principles and Framework)提供了 LCA 的總體框架和原則,涵蓋了 LCA 的基本概念、應用範圍和限制,以及進行 LCA 的基本步驟和程序。

ISO 14040 產品生命周期評估原則與框架。圖/宜特科技

( 二 ) ISO 14044:生命周期評估需求與準則(Life Cycle Assessment-Requirements and Guidelines)描述了 LCA 各階段的技術要求,包括數據收集、數據品質、影響評估方法和解釋結果的方法。ISO 14044 對 LCI(Life Cycle Inventory,生命周期清單) 的實施提供了全面指導和技術要求,LCI 作為 LCA 的一個關鍵階段,在 ISO 14044  的框架下進行,可以確保其數據的品質和結果的可靠性。常見 LCI 如下:

ISO 14044 下常見的 LCI(生命周期清單)。圖/宜特科技

綜合上述 LCA 提供了一個全面的環境影響評估,可以幫助企業和決策者了解各種環境影響並進行綜合決策;LCA 涵蓋了多種環境影響指標(如暖化效應、臭氧層破壞、資源消耗、酸化效應、生態毒性等),而碳足跡是則聚焦於暖化效應。

-----廣告,請繼續往下閱讀-----

產品碳足跡系統邊界設定:

設定產品碳足跡盤查範疇(Boundary)是準確量化碳足跡的關鍵步驟。此過程包括確定哪些生命週期相應階段、活動和排放源應被納入碳足跡計算,並據此推動相關減排措施。基於生命週期的產品碳足跡,通常會涵蓋以下幾個主要階段:

  1. 原材料獲取:從自然資源中提取和加工原材料。
  2. 生產:製造和裝配產品的過程。
  3. 運輸和配銷:產品從生產地運輸到消費地的過程。
  4. 使用:產品在其使用壽命期間的階段。
  5. 最終處理階段:產品使用壽命結束後的處理,包括回收、再利用或廢棄處置。

完成生命週期設定後,需要進一步定義產品系統的邊界,包括哪些過程和活動應該納入盤查範疇。例如對於包材,應涵蓋包材的生產、製程中的能源消耗以及廢棄包裝的處理等完整階段,以供後續執行數據分配,如下圖所示:

生命週期之產品碳足跡主要階段。圖/宜特科技

若屬於 B2C 產品將涵蓋上述完整五個階段,而 B2B 產品則只包含上述前兩階段;下圖是 B2C 產品碳足跡的案例。

B2C 產品碳足跡案例。圖/工研院

量化產品碳足跡:依據 ISO14067 產品碳足跡來量化要求與指引

ISO 14067 提供了關於如何量化產品碳足跡的詳細指引,產品碳足跡計算基於「活動數據」與「排放係數」,下圖為相關案例。

-----廣告,請繼續往下閱讀-----
ISO 14067 產品碳足跡計算案例。圖/工研院

( 一 ) 如何蒐集活動數據

基於生命週期的不同階段,說明如下:

  1. 原材料階段

  • 原材料(包含輔材與包材)使用量:每種原材料的數量和重量。
  • 原材料製造過程的排放:包括從自然資源提取和加工過程中的溫室氣體排放。
  • 運輸數據:原材料從提取地點到加工廠的運輸距離和運輸方式(如貨運、海運等)。

  2. 生產階段

-----廣告,請繼續往下閱讀-----
  • 能源消耗:生產過程中使用的電力、燃料(如天然氣、汽柴油)等能源的消耗量。
  • 製程排放:生產過程中直接排放的溫室氣體(如化學反應產生的排放)。
  • 廢棄物管理:製造過程中產生的固體廢棄物、廢水和廢氣的處理過程中,涉及燃燒、分解等清理方式之處理量。

  3. 運輸和分銷階段

  • 運輸距離和方式:產品從生產地到消費地的運輸距離和運輸方式。
  • 運輸工具的能源消耗:運輸過程中運輸工具的燃料消耗量和類型。

  4. 使用階段

  • 使用過程中的能源消耗:產品在使用過程中消耗的能源(如家電使用的電力,車輛使用燃料等)。

  5. 最終處理階段

  • 廢棄物處理方式:產品生命終期(End of Life)不同處理方式(如焚燒、掩埋)對應之處理量。

( 二 ) 蒐集與應用排放係數

-----廣告,請繼續往下閱讀-----

藉由排放係數(Emission Factors,簡稱EF)可將活動數據(如能耗、材料使用等)轉換為溫室氣體排放量。ISO 14067 提供了量化產品碳足跡相關指引,幫助企業有效地收集和應用排放係數。以下是收集和使用排放係數的步驟和建議:

1.選擇排放係數來源

  • 官方資料庫:使用來自政府和國際組織的標準化排放係數,例如: United States Environmental Protection Agency(EPA)的排放係數資料庫、European Environment Agency(EEA)的排放係數、國際能源署(IEA)的能源數據以及台灣碳足跡資料庫。
  • 供應商提供的一手數據(Primary Data):來自供應商自行盤查的數據。
  • 第三方商業資料數據:市售第三方商業數據庫和工具,如 Ecoinvent(Simapro)和 GaBi。

2.評估和選擇排放係數

  • 地理相關性:確保排放係數與產品生產和使用的地理位置相關。例如,電力生產的排放係數在不同國家或地區可能差異很大。
  • 時間相關性:使用最新的排放係數數據,因為技術更新可能會影響排放量。

 3.應用排放係數

-----廣告,請繼續往下閱讀-----
  • 計算流程標準化:在計算產品碳足跡時,應建立標準化計算流程來應用排放係數,確保一致性和可比性。
  • 善用軟體工具:使用專門 LCA 軟體工具來管理和應用排放係數,如 SimaPro、GaBi 等。
  • 數據整合:將排放係數整合到產品碳足跡的計算公式中,與活動數據(如能源使用、材料消耗等)相結合,以計算總的溫室氣體排放量。

確保碳足跡量化數據品質

ISO 14067 對數據品質管理提出了明確的要求,以確保產品碳足跡量化準確性和可信度。以下是 ISO 14067 對數據品質管理的主要要求:

  1. 數據品質的評估指標
  • 代表性(Representativeness):數據應該反映真實的情況,包括地理範圍、時間範圍的相關性。
  • 一致性(Consistency):應使用一致的方法和假設來收集和處理數據,確保不同數據集之間的可比性。
  • 可靠性(Reliability):數據應該來自可信的來源,並經過適當的驗證。
  • 精確度(Accuracy):數據應該盡可能準確,減少誤差。
  • 完整性(Completeness):數據應該包含生命週期各階段重大排放,確保碳足跡計算的全面性。
  • 可追溯性(Traceability):數據來源和處理方法應該可追溯至原始單據,以便審查和驗證。

   2. 管控數據品質

  • 內部稽核:定期進行內部查核,評估數據品質,確保數據的準確性和可靠性。
  • 外部驗證:在必要時,進行外部驗證,確保數據和碳足跡計算結果的可信度。

   3. 執行數據敏感度分析

  • 碳足跡的敏感度分析是確保碳足跡計算結果的可靠性和準確性的重要步驟。敏感度分析有助於識別和理解不同參數對碳足跡數據的影響,從而幫助決策者進一步優化產品環境表現。
  • 執行方式為識別在碳足跡計算中使用的所有主要參數(能源消耗、材料用量、排放係數)等。選擇那些對結果有較大影響或存在較大不確定性的變量進行分析。
  • 執行方式為單因素分析(逐一改變每個變量,在保持其他變量不變的情況下,逐一調整每個變量的值,計算並記錄每次調整後的碳足跡結果)或多因素分析(同時改變多個變量,評估這些變量之間的交互作用及其對碳足跡結果的綜合影響)。
  • 根據敏感度分析結果,提出具體的改進方案,例如替換高碳排放材料、提高能源效率等。

 4. 持續改善和更新

-----廣告,請繼續往下閱讀-----
  • 持續改進:定期檢討和改進數據收集和處理流程,採用最新的技術和方法,提高數據品質。
  • 數據更新:根據最新的技術、方法和排放因子,定期更新數據,確保碳足跡計算的準確性。

ISO 14067 對數據品質管理的要求涵蓋了數據收集、評估、管控、改進的各個方面。通過遵循這些要求,企業可以確保其產品碳足跡計算的數據是準確、可靠和透明的,從而提高碳足跡報告的可信度和科學性。

碳足跡與產品環境宣告(Environmental Product Declaration):

產品碳足跡和產品環境宣告(Environmental Product Declaration,簡稱 EPD)是兩個相關但不同的概念,它們都提供產品的環境衝擊資訊,以幫助企業與消費者做出更可持續的選擇。

產品環境宣告是根據 ISO14025 國際標準所編制的技術文件,提供產品在生命周期內的環境影響資訊。EPD 基於生命周期評估(LCA)數據,可申請第三方認證。產品碳足跡通常是 EPD 中的一部分數據,尤其是在全球變暖潛勢(GWP)方面。EPD 包含了更廣泛的環境影響數據,而碳足跡專注於溫室氣體排放,相關範例如下:

產品環境宣告案例。圖/Fujitsu

運動飲料上針對碳足跡的標誌。圖/公視

產品碳足跡和產品環境宣告(EPD)兩者都是評估和傳達產品環境影響的重要工具。產品碳足跡專注於溫室氣體排放,而 EPD 則提供全面的環境影響資訊。兩者結合使用,可以幫助企業和消費者做出更可持續的選擇,推動環境保護和可持續發展。除了 ISO14067 外,溫室氣體議定書(GHG Protocol)也提供了計算產品碳足跡的詳細指導方針和方法。

自 2011 年起,宜特透過經濟部技術處科技專案「產品碳足跡與節能減碳資訊服務平台暨工具開發計畫」,積累輔導國內指標企業導入碳足跡的豐富經驗。我們認為,供應商碳排占比與減量機會,都是彰顯「產品環境績效」之關鍵,這正是導入碳足跡的重要目的之一。

因此供應商實地盤查至關重要,尤其針對排放貢獻占較大的本土供應商,宜特已定義出約 30 種盤查指標,企業可利用相關數據,偕同供應商建構減碳價值鏈。

我們輔導的客戶中包含全球知名代工龍頭廠、半導體設備製造廠、IC 設計廠商、光電業、電子元器件製造業、電子系統廠、傳產等國內上市櫃公司。在 ESG 輔導方面,亦有協助溫室氣體盤查、產品碳足跡、氣候相關財務揭露建議(TCFD)及 SBTi (科學基礎減量目標倡議,Science Based Targets Initiative)與 ISO 50001 能源管理與節能等相關輔導服務。

宜特科技可協助企業進行的 14 個輔導面向。圖/宜特科技

本文出自 宜特科技

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

宜特科技_96
17 篇文章 ・ 5 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室