Loading [MathJax]/extensions/tex2jax.js

2

8
8

文字

分享

2
8
8

人工智慧崛起,人類從此俯首稱臣?《電腦簡史》 楔子

張瑞棋_96
・2020/02/17 ・2471字 ・閱讀時間約 5 分鐘 ・SR值 572 ・九年級

曾經,電腦只是個計算工具,雖然計算能力遠勝過人類,卻缺乏人類的智慧。但近來人工智慧崛起,在各種不同領域的表現已超越人類,以致於物理大師霍金與企業怪傑伊隆·馬斯克都憂心人類未來會受到威脅。電影《魔鬼終結者》中的「天網」有一天會成真嗎?電腦究竟如何從簡單的計算機,一步步演進為人工智慧,超越自詡為「萬物之靈」的人類?《電腦簡史:從齒輪到 AI》這本書將從齒輪時代、電腦時代、網路時代、AI時代,依序回顧電腦的演進。

楔子

2016 年 3 月 9 日,韓國首爾的四季酒店進行一場全球矚目的圍棋之戰,估計全世界有八千萬人透過網路觀賞直播賽事。

持黑子的一方是 33 歲的韓國圍棋高手李世乭,他自 2002 年起已在主要的國際賽事拿下十八座冠軍,堪稱一代巨匠。坐在他對面持白子的,是來自台灣的資工博士黃士傑,不過他並非真正的比賽選手,而是聽從指令落子而已。給予指令的倒也不是什麼不肯露面的隱世高手,事實上,要挑戰李世乭的並非人類,而是由黃士傑參與設計的電腦程式「 AlphaGo 」。

人類與電腦的激烈「棋戰」

電腦挑戰人類已不是新鮮事。早在 1997 年, IBM 的「深藍」電腦就打敗了當時的西洋棋世界冠軍卡斯帕羅夫。雖然這的確算是電腦的一大步,但許多人對這結果並不是太意外。畢竟西洋棋的棋盤只有八八六十四格,加上棋子的走法有其限制,例如士兵只能向前走一步、主教只能斜著走,因此平均而言,每一手棋大概有三十種選擇;而深藍每秒可計算兩億步,如果以三、四秒的思考時間,深藍就可以算出未來六步的所有可能變化 (30 的六次方等於 7.3 億) ,因此有很大的優勢贏過人腦。而最後深藍就以二勝三和一負,一盤的差距打敗卡斯帕羅夫。

-----廣告,請繼續往下閱讀-----

不過電腦這種「暴力法」遇到圍棋可就沒轍了。圍棋棋盤縱橫各有十九條線,形成三百六十一個交叉點,對弈雙方須輪流下在其中任一點。以初始階段每手棋有三百種選擇來估算,未來六步的所有可能性可是西洋棋的一百萬倍!更重要的是,圍棋的勝負策略與西洋棋大不相同;西洋棋的目標就在於讓對方的國王無路可走,勝負與盤面剩餘的棋子多寡有很高的相關性,因此電腦大致上只要評估未來幾步如何安全吃掉對方的棋子。但是下圍棋卻無法這麼做。

圍棋比的是誰最後圍的地比較多,局部的優勢無法保證全面的勝利,甚至前面所落的棋子到後面可能發揮意想不到的作用,因此光掌握未來幾步的所有可能性是沒有用的。難道以超級電腦現在的計算能力,不能把所有可能的棋局變化都先算出來嗎?

答案是不可能。因為圍棋所有可能的擺法有 10 的 170 次方這麼多種,而我們宇宙所有的粒子加起來也不過大約 10 的 80 次方。因此即使電腦已經在西洋棋打敗人類,但圍棋如此詭譎複雜,普遍還是相信電腦仍遠遠不及真正的圍棋高手。事實上,在 AlphaGo 出現之前,最厲害的圍棋電腦軟體也只在九段職業棋士讓四子(電腦一開始就先擺四顆棋子)的情況下,偶而贏過幾盤。

IBM 的「深藍」電腦打敗了西洋棋世界冠軍卡斯帕羅夫,當時堪稱「超級電腦」。圖\flickr

人工智慧演算法成為棋局黑馬

因此當開發 AlphaGo 的 Deep Mind 公司於 2016 年元月發表論文,宣稱它採用獨特的人工智慧 (Artificial Intelligence) 演算法,於去年十月在沒有讓子的情況下,以五戰全勝打敗歐洲圍棋冠軍樊麾時,即引起熱烈討論。

-----廣告,請繼續往下閱讀-----

不過歐洲的圍棋風氣不盛,樊麾雖是冠軍,但其實棋力只有二段,遠遜於李世乭這樣高達九段的頂尖高手,不足以代表人類的最高水準。這就是為什麼這次在首爾舉行五回合的人機大戰如此引人注目,如果李世乭也輸了,意謂著連圍棋這個需要衡量整體局勢與微妙變化,應是人類智慧獨擅勝場的領域,也被電腦超越了。

李世乭在賽前研究過 AlphaGo 與樊麾對弈的棋譜,他自己評估 AlphaGo 約有三段的棋力,因此頗有自信能拿下比賽勝利。其他職業棋士與電腦專家也都普遍看好李世乭將會勝出,例如人工智慧專家李開復估算 AlphaGo 每盤獲勝的機率只有 11 % ,因此以五戰三勝以上的戰績勝出的機率僅百分之一;世界排名第一的中國棋士柯潔更笑稱願賭李世乭以五比零橫掃。至於 Deep Mind 這邊,執行長哈薩比斯 (Demis Hassabis) 雖然宣稱 AlphaGo 這幾個月經過人工智慧的自我訓練,棋力已再大幅躍進,卻也沒必勝的把握,僅保守評估可能會是五五波的比賽。

開局李世乭採取前所未見的下法,或許是認為 AlphaGo 既然是從人類過去的棋譜汲取經驗,那就出其不意讓它無所適從。不過出險招的代價反而讓他自己一路被 AlphaGo 壓著打,難挽劣勢。所幸中盤 AlphaGo 竟下了一手失著,李世乭逮住機會,扭轉局面。眼見漸入佳境之際,卻見 AlphaGo 又一個妙手侵入黑棋地盤,再度奪回優勢,最後李世乭眼見大勢已去,只得棄子認輸。

這個結果不只李世乭自己感到驚訝,所有觀賽的人也都不敢置信:電腦竟然打敗數一數二的圍棋大師!

-----廣告,請繼續往下閱讀-----

但畢竟這只是第一盤,或許是李世乭過於輕敵,也或許是他不該故意出險招,總之人們相信往後幾場李世乭若能穩紮穩打,應該還是會反敗為勝。不料結果完全出乎大家意料之外,接連兩盤也都由 AlphaGo 勝出,李世乭竟連輸三盤!直到第四盤他才以完全不在 AlphaGo 計算之內的「神之一手」,讓 AlphaGo 應對失誤,終於贏得一盤,為人類扳回一點顏面。不過第五盤李世乭未能乘勝追擊,最終 AlphaGo 就以四勝一敗的戰績贏得這場世紀之戰。

原本不被看好勝率的 AlphaGo ,在與圍棋高手對戰中拿下前所未有的勝利。圖\flickr

AlphaGo 再度點燃「人工智慧」熱潮

如果有人還堅持這只能代表李世乭個人的輸贏,那麼 2017 年元月,升級版的 AlphaGo 匿名在網路上以六十連勝橫掃中國棋壇所有高手,接著不到三個月又以三比零擊潰「人類最後希望」柯潔後,就再也無人懷疑:圍棋這塊聖地,人類也得對電腦俯首稱臣了。

自此,「人工智慧」這個沉寂已久的名詞再次沸沸揚揚的出現在各種不同領域:自駕車、人臉辨識、智慧音箱、醫療診斷、……;許多我們過往認為電腦做不到的事,如今人工智慧不僅都做到了,還做得比人類更好。

電腦究竟如何從簡單的計算機,一步步演進為人工智慧,超越自詡為「萬物之靈」的人類?且讓我們回顧這段電腦演進史吧。

-----廣告,請繼續往下閱讀-----
人工智慧是由前人一步一步累積的智慧結晶,電腦的成長史耐人尋味。圖\pixabay

 

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
張瑞棋_96
423 篇文章 ・ 1030 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
1

文字

分享

0
2
1
我預判了你的預判!為什麼高手過招總會和局?——《大話題:賽局理論》
大家出版_96
・2023/04/21 ・1459字 ・閱讀時間約 3 分鐘

什麼是「賽局理論」?

賽局理論是在研究策略性互動。策略性互動也是很多桌遊的關鍵元素,賽局理論因此得名。你的決策影響別人的行動,反之亦然。賽局理論的不少術語直接取自這類遊戲。我們把決策者稱為「參與者」(player)。參與者做決定後,就採取了行動(move)。

以策略性互動為基礎的賽局理論。圖/《大話題:賽局理論》

運用模型簡化複雜世界

真實世界的策略性互動可能非常複雜。例如在人際互動中,不僅行動,包括我們的表情、聲調和肢體語言都會影響他人。

在與他人往來時,人們展現不同的經歷與觀點。這樣無以計數的變化會使得情況異常複雜,也很難分析。

藉由稱為「模型」的簡化結構,我們可以大幅縮減複雜的程度。模型雖然簡單且容易分析,但仍然捕捉了真實世界問題的某些重要特徵。選用適當的簡單模型,可以有效幫助大家學習真實世界的複雜問題。

-----廣告,請繼續往下閱讀-----
藉由模型簡化真實世界的複雜策略性互動。圖/《大話題:賽局理論》

西洋棋可以幫助我們瞭解這些變化會讓參與(及預測)賽局變得多麼複雜。西洋棋的規則明確,雖然每一步棋的選項有限,但整體棋局的複雜度令人生畏。不過比起許多人類的基本互動,西洋棋其實簡單多了!

西洋棋儘管複雜,但比人類互動簡單多了。圖/《大話題:賽局理論》

高手過招容易和局!

像西洋棋之類的桌遊有個特性:玩家愈熟練,就容易產生平手的結局。我們如何解釋這種現象?

因為西洋棋太複雜,難以全面分析,以下我們用簡單的井字遊戲來說明一個重要特性。西洋棋和井字遊戲都有明確的勝負規則。玩家輪流落子,且可以下的地方有限。

井字遊戲無法表現西洋棋中的許多特性。但由於兩者有些共同特徵,因此井字遊戲可以幫助人們瞭解高手對陣為什麼容易產生和局。

-----廣告,請繼續往下閱讀-----
井字遊戲因為較簡單,掌握規則後就很容易平手。圖/《大話題:賽局理論》
因為井字遊戲太容易平手,因此人們開始挑戰更複雜的遊戲。圖/《大話題:賽局理論》

被簡化的世界縮影:「賽局」

賽局理論的首要關注並非西洋棋之類的桌遊,而是要增進我們對人際、對企業間、對國家間、對生物間……等互動行為的瞭解。原因是,真實的問題可能過於複雜且難以充分掌握。

因此,在賽局理論中我們創造了非常簡化的模型,稱之為「賽局」。創造有用的模型既是科學,也是藝術。

好的模型夠簡單,讓人能充分瞭解驅動參與者的誘因。同時,模型必須能夠捕捉真實世界的重要元素,以富有開創性的洞察力與判斷力決定哪些元素最為相關。

沒有模型能適用任何狀況,因為真實世界如此複雜。圖/《大話題:賽局理論》

——本文摘自《大話題:賽局理論》,2023 年 3 月,大家出版出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
大家出版_96
14 篇文章 ・ 11 位粉絲
名為大家,在藝術人文中,指「大師」的作品;在生活旅遊中,指「眾人」的興趣。

1

3
0

文字

分享

1
3
0
平民登月計劃?核融合真的來了?——2023 最值得關注十大科學事件(下)
PanSci_96
・2023/01/31 ・3226字 ・閱讀時間約 6 分鐘

在上一篇中,我們介紹了將在 2023 年發生的五個醫藥健康大事件。

延伸閱讀:
用迷幻藥治憂鬱?基因編輯療法將通過批准?——2023 最值得關注十大科學事件(上)

這次我們轉向能源、宇宙與科技領域,從首趟平民月球之旅、物理學的標準模型新發現,再到第一個核廢料永久儲存設施正式營運!

No. 5 氣候與能源衝擊

世界各國能否聽從科學家的警告,採取實際行動,朝淨零之路前進嗎?看起來不行。由於疫情與俄烏戰爭,去年 11 月在埃及舉辦的「聯合國氣候變化會議 COP27」幾乎是原地踏步。

不過還是有一個重要的決議,那就是建立氣候損失和損害基金。根據協議,排放量較高的富裕國家將在經濟上補償受氣候變化影響最大的貧窮國家。「過渡委員會」將於 2023 年 3 月底前舉行會議,提出資金運用的建議,並在 11 月的 COP28 會議上提交給世界各地的代表。

-----廣告,請繼續往下閱讀-----

至於核能的部分,新型核分裂發電與核融合發電,都會在 2023 年有所進展。

另外,世界上第一個核廢料儲存設施,今年將在芬蘭西南海岸外的奧爾基洛托島正式啟用。這個由芬蘭政府於 2015 年批准建造的地下處置庫,將負責封存超過 6500 噸有放射性的鈾;這些鈾會被裝在銅罐中,再用厚厚的粘土覆蓋,最後埋在地下 400 公尺深的花崗岩隧道內,預期將被密封數十萬年,直到輻射水平達到完全無害的程度。

另一個好消息是,今年 1 月 1 日就任的巴西總統——魯拉(Luiz Inácio Lula da Silva),將推翻前任總統開放的雨林開發,保護生態與文化。

然而深海則有新危機。若 2023 年 7 月前,聯合國的國際海床管理局(ISA)沒能讓各國對深海採礦管理準則達成共識,那海底的礦產資源可能會被某些政府和企業盯上,不受限制地開挖,海洋生態將迎來浩劫……。

-----廣告,請繼續往下閱讀-----

許多關於能源的抉擇包含了科學和政治,能源短缺也激勵了綠能跟潔淨能源的投資力道及採用意願;至於今年還會不會發生更棘手的麻煩?使能源轉型更加舉步維艱。

巴西新任總統推翻雨林開發,保護生態與文化。圖/Envato Elements

No. 4 超越標準模型

2022 年 4 月,美國費米國家加速器實驗室的物理學家,公佈了渺子 g-2 實驗的首批結果;這項實驗研究了被稱為「渺子的短命粒子在磁場中的行為」。

過去 50 年來,標準模型(Standard Model)[註]的理論預測通過了所有測試,但其實物理學家普遍認為標準模型肯定還不完備,並且認為可以從渺子身上找到破綻;如果今年再次公佈更精確的數據,顯示渺子的磁矩比理論預測來得大,那就代表還有新粒子等待被發現,而標準模型就得修正。

位於中國廣東的江門地下的微中子實驗觀測站,也將在今年展開尋找超越標準模型的物理學之旅;利用位於地下七百公尺的探測器,來準確測量微中子的振盪。

-----廣告,請繼續往下閱讀-----

註:標準模型為能描述強核力、弱核力、電磁力這三種基本力,以及所有物質基本粒子的理論。

另外,物理學家們在今年會有升級的新設備。第一個是 LCLS-II 直線加速器相干光源 2 代(Linac Coherent Light Source-II),它將創造終極 X 射線機器,看到分子內原子的運動!另一個則是新的重力波獵人—— Matter-Wave Laser Interferometric Gravitation Antenna(物質波雷射干涉重力天線);這個設施把銣原子冷卻成「物質波」,能夠梳理黑洞和其他超大質量天體碰撞產生的時空漣漪,揪出現有重力波設施錯放的事件,甚至可以幫我們尋找暗物質!

而在瑞典隆德附近、由歐洲 17 國攜手成立的歐洲散裂中子源(ESS),將使用史上最強大的線性質子加速器產生強中子束,來研究材料的結構;雖然預計 2025 年才會完工,但於今年迎來第一批研究人員,開始實驗。

No.3 就是要抬頭看天空

許多人心中 2022 年科學事件第一名,正是韋伯太空望遠鏡傳回的驚人照片;沒有意外的話,韋伯在 2023 年會繼續大顯身手,揭露星系演變的真相,與遙遠系外行星的生命印記,找尋地球之外的生命。

今年還會有更多驚喜!來自於新的太空望遠鏡,如:由歐洲太空總署開發的歐幾里得太空望遠鏡,今年發射後將繞行太陽六年,拍攝宇宙的 3D 圖;日本宇宙航空研究開發機構 JAXA 的 X 射線成像、光譜任務 XRISM,則是繞地球軌道運行的太空望遠鏡,將探測來自遙遠恆星和星系的 X 射線,預計在今年 4 月升空。

-----廣告,請繼續往下閱讀-----

在地球上,位於智利的薇拉魯賓天文台(Vera C. Rubin Observatory)將於今年 7 月啟用;其望遠鏡採用特殊的三鏡面設計,相機包含超過 30 億像素的固態探測器,每三個夜晚就能掃描整個南天,也是監測可能危害地球小行星的守護者之一。而世界上最大的可動望遠鏡——新疆奇台射電望遠鏡(QTT)也將在今年完工;其口徑達 110 公尺,能夠觀測天空中 75% 的星星。

詹姆斯.韋伯太空望遠鏡(James Webb Space Telescope,JWST)去年發布的圖片——史蒂芬五重星系。圖/維基百科

No. 2 好多月球任務,還有一個鐵小行星

2022/12/11 這天,包括阿拉伯聯合大公國的拉希德漫遊者月球車、NASA 的月球手電筒立方衛星、以及日本的白兔 HAKUTO-R M1 登陸器,共同搭乘 SpaceX 的獵鷹九號發射升空;HAKUTO-R 如今正緩緩帶著拉希德前往月球,預計在今年 4 月著陸。

而印度太空研究組織 ISRO 的第三次探月任務月球飛船 Chandrayaan-3,預計今年年中發射,並於月球的南極著陸。

還有首次民間人士的月球之旅 dearMoon。SpaceX 的 Starship 將載著 11 位平民上太空,包含創業家、明星跟 YouTuber;如果 Starship 成功發射,將會成為史上最大的火箭。Blue Origin 的 New Glenn 也預計在今年首度發射。若兩者都成功,將推動太空科學與商業進入新時代,讓進入太空的成本大幅下降。

-----廣告,請繼續往下閱讀-----

歐洲太空總署的木星冰月探測器 JUICE 也將在今年 4 月升空,並於 2031 年抵達木星系統;目標是研究木星以及三顆衛星:木衛二三四的環境,了解他們有沒有可能支持生命存在。

NASA 將於今年 10 月後發射延遲了一年的 Psyche 靈神星小行星軌道飛行器,其研究對象為 16 Psyche 靈神星小行星;科學家認為它可能不是一般的小行星,而是一顆年輕行星裸露的鐵核心。如果今年順利發射,將在 2029 年到達。 

看來對太空迷來說,2023 又將是幸福熱鬧的一年。

由超大型望遠鏡(Very Large Telescope,VLT)拍攝的靈神星。圖/維基百科

No.1 GPT-4 跟 AlphaFold 的衝擊波襲來

借過借過,AI 已預約登上 2023 年最大科學事件!

-----廣告,請繼續往下閱讀-----

如果 GPT-3.5 開發的 ChatGPT 還沒有嚇到你,那 GPT-4 就要來了!

而在科學領域,DeepMind 的 AlphaFold 帶來的衝擊不亞於 ChatGPT;它能夠根據蛋白質的一維氨基酸序列,準確預測折疊後的三維形狀,對生物與醫療研究影響非常大。 AlphaFold 2 於 2021 年發布了另外 2 億多種蛋白質的結構,幾個月來,來自 190 個國家/地區、超過 50 萬名研究人員,使用 AlphaFold 研究了 200 萬種不同的蛋白質結構。另外,Meta 的 ESMFold 的速度甚至又比 AlphaFold 快 60 倍,預測的蛋白質超過 6 億種!

基於 AlphaFold 跟 ESMFold 的研究量將大大增加,這些龐大新知識也將開始應用於各學科,包括新疫苗和塑膠開發。

法規管制總是比科技進步緩慢,隨著 AI 越來越強大、滲透到社會的方方面面,各國政府必須回應。歐盟在今年將通過人工智慧法案,為使用人工智慧制定標準,其他國家和科技巨頭將密切關注,跟進與調適。

-----廣告,請繼續往下閱讀-----
圖/GIPHY

以上就是「2023 最值得關注十大科學事件」,你最期待的是哪一個?哪個是你心中的 No.1?又有哪些我們漏掉了,但你覺得該列入的呢?歡迎留言討論!

歡迎訂閱 Pansci Youtube 頻道 鎖定 2023 年的每一個科學大事件!

-----廣告,請繼續往下閱讀-----
所有討論 1