0

10
1

文字

分享

0
10
1

2019年諾貝爾化學獎:他們開發出世界上最有力的電池

諾貝爾化學獎譯文_96
・2019/10/16 ・6867字 ・閱讀時間約 14 分鐘 ・SR值 547 ・八年級

-----廣告,請繼續往下閱讀-----

  • 翻譯/蔡蘊明,台大化學系名譽教授

他們開發出世界上最有力的電池

2019 年的諾貝爾化學獎頒發給了 John B. Goodenough (古迪納夫),M. Stanley Whittingham (惠廷翰)和 Akira Yoshino(吉野彰)三人,表彰他們為鋰離子電池的發展所做出的貢獻。

2019 年的化學獎由三人共同獲得,他們發明了鋰電池。圖/nobelprize

這種可充電電池奠定了如手機和筆記型電腦等無線電子產品的基礎。這也使得一個無石化燃料的世界成為可能,因為它可以使得從驅動電動車到儲存能量裝置的各種工具能運用可再生能源。

很少有一個元素能在戲劇中扮演中心的角色,但有關 2019 年諾貝爾化學獎的故事卻有著一個明確的主角:——一個在大爆炸的頭一分鐘內所產生的古老元素。

人類在 1817 年意識到它的存在,那是由當時瑞典化學家阿弗魏德森(John August Arfwedson)和貝吉里斯(Jöns Jacob Berzelius)從斯德哥爾摩群島中的宇土(Utö)島之礦物樣品中所提煉出來的。

貝吉里斯用希臘字 “lithos”(石頭之意)來命名此新元素。儘管名字聽來很重,但它卻是最輕的固體元素,這就是為什麼我們幾乎不會感覺到現在隨身攜帶的手機的原因。

鋰是一種金屬。在其最外的電子殼層中只有一個電子,並且具有強大的驅動力可將電子傳給另一個原子,當發生這種情況時,將會形成帶正電且更穩定的鋰離子。

更正確的說──上述的瑞典化學家實際上並未發現純的金屬鋰,而是以鋰離子形式存在的鹽類。純的鋰不知引發了多少火災警報,尤其是在我們將要告訴妳/你的故事當中。

-----廣告,請繼續往下閱讀-----

它是一種不穩定的元素,必須儲存在油中,以免與空氣反應。鋰的弱點──其反應活性──也是它的強項。

  • 1970 年代初期,惠廷翰利用鋰釋放最外部那個電子的極大驅動力,開發出了第一個可運作的鋰電池。
  • 1980 年,古迪納夫將電池的電動勢提高了一倍,創造出能獲得更強大而有用的電池之正確條件。
  • 1985 年,吉野彰成功去除了這類電池中的鋰,而改成完全基於鋰離子的電池,使其安全性比使用純鋰更高了許多,因此讓這種電池真正具有實用性。

鋰離子電池為人類帶來了最大的好處,因為它們推動了筆記型電腦、手機、電動車以及由太陽能和風能產生的能量存儲裝置等等之發展。

現在,讓我們將時間倒退五十年,回到鋰離子電池發展之初,告訴你/妳那個具有高度充電性的故事。

汽油的霧瘴重振了電池研究

在 20 世紀中葉,世界上汽油驅動的汽車數量顯著增加,它們排放的廢氣加劇了大城市的有害煙霧,加上人們逐漸體認石油乃是一種有限的資源,這都對汽車製造商和石油公司發出了警報。因此他們這些企業體認到若要生存,就需要投資電動車和替代能源。

-----廣告,請繼續往下閱讀-----
石油危機部分驅動了電池的發展。圖/pixabay

電動車和替代能源都需要可以存儲大量能量的高效能電池。在市場上,當時實際上只有兩種類型的可充電電池:1859 年發明但嫌笨重的鉛蓄電池(至今仍於汽油驅動車中用作啟動器電池),以及在 20 世紀上半葉所開發的鎳鎘電池

石油公司投資新技術

石油用盡的威脅導致石油巨頭艾克森石油公司(Exxon)決定採取多元化經營。在一項基礎研究方面的主要投資中,他們招募了當時在能源領域最頂尖的一些研究人員,只要不涉及石油,他們可以自由地進行想做的研究。

惠廷翰就是1972年進入艾克森石油公司的研究人員之一。他來自史丹佛大學,在那裏他的研究包括含有原子大小空間的固體材料,而帶電離子可以附著於其夾層中,這種現象稱為插入(intercalation),此種材料的性質在離子插入其中後將會改變。在艾克森石油公司,惠廷翰和他的同事們開始鑽研可以插入離子的超導材料,這包括了二硫化鉭(tantalum disulphide)。他們將離子加入二硫化鉭中,並研究其導電性如何受到影響。

惠廷翰發現一種能量高度密集的材料

就如同在科學研究中經常發生的例子一般,這個實驗導致了意想不到且具有價值的發現。經證明鉀離子會影響二硫化鉭的導電度後,惠廷翰開始進一步詳細研究該材料,他觀察到此材料具有很高的能量密度。鉀離子和二硫化鉭之間的插入現象令人驚訝的具有豐富能量,當他測量該材料的電壓時,它只有幾伏特,但這已經比當時的許多電池更好。

-----廣告,請繼續往下閱讀-----

惠廷翰很快意識到這是時候改換跑道了,轉向為發展未來的電動車中儲存能量的新技術。但是,鉭是較重的元素之一,而市場並不需要充斥更多笨重的電池──因此他用鈦取代了鉭,鈦具有相似的特性但重量要輕得多。

負電極中的鋰

鋰不是應該在這個故事中佔有重要地位嗎?好吧,這就是鋰進入故事中的時機──作為惠廷翰的創新電池中的負極。鋰並非隨機的選擇;電池中,電子應從負極(陽極)流向正極(陰極),因此,陽極應包含易於釋出其電子的材料,而在所有元素中,鋰是最容易釋放電子的。

首批可充電電池的電極中具有固體材料,當它們與電解液發生化學反應時會破裂,這就破壞了電池。惠廷翰鋰電池的優點是鋰離子儲存在陰極之二硫化鈦的空間中,使用電池時,鋰離子從陽極的鋰流到二硫化鈦陰極中。電池充電時,鋰離子則回流。

最終產生了可在室溫下運作的可充電鋰電池,並且──如同字面意義──具有很高的勢能(potential)。惠廷翰前往艾克森石油公司紐約總部討論這項計畫,會議持續了大約十五分鐘,管理部門小組隨後快速的決定:他們將利用惠廷翰的發現去開發一種商業上可行的電池。

電池短路因而數度發生爆炸。圖/pixabay

不幸的是,將要開始生產電池的小組遭受了一些挫折。當新的鋰電池反覆充放電時,鬚狀鋰晶體從鋰電極中生長出來,當它們接觸到另一個電極時,電池短路導致爆炸。在消防隊撲滅了好幾次的火災之後,最終威脅要讓實驗室支付用於撲滅鋰火所需使用的特殊化合物。

-----廣告,請繼續往下閱讀-----
用純鋰作為陽極的電池充電時會產生鬚狀鋰晶體,這可能會使電池短路並引起火災甚至爆炸。

為了使電池更安全,他們在鋰金屬電極中添加了鋁,在兩電極之間的電解液也做了改變。惠廷翰於 1976 年宣布他的發現,並開始為了想在太陽能驅動的鐘錶中使用它的瑞士鐘錶製造商,小規模生產這種電池。

下一個目標是擴大可充電鋰電池的尺寸,使其可以為汽車供電。然而,石油價格在 1980 年代初急劇下跌,艾克森石油公司需要削減開支。因此研發工作被迫中止,而惠廷翰的電池技術則被許可給位於全球三個不同地區的三個不同公司。

但是,這並不意味著發展就停止了。艾克森石油公司放棄後,古迪納夫接手了。

石油危機使古迪納夫對電池產生興趣

小時候,古迪納夫在學習閱讀方面遇到了很多困難,這就是為什麼他被數學所吸引的原因之一,最終──在第二次世界大戰後──也被物理所吸引。他在麻省理工學院的林肯實驗室工作了數年,在那裡,他為隨機存取記憶體(RAM)的開發做出了貢獻,那仍然是一種計算機的基本元件。

-----廣告,請繼續往下閱讀-----

古迪納夫和 1970 年代的許多其他人一樣,受到石油危機的影響,期望能為替代能源的發展做出貢獻。然而,林肯實驗室乃由美國空軍資助,不允許進行各種研究,因此當他受到在英國的牛津大學擔任無機化學教授一職的邀約時,接受了這個機會,並進入了能源研究的重要領域。

當鋰離子藏在氧化鈷中時的高電壓

古迪納夫知道惠廷翰的革新性電池,但是他對物質內部的專業知識告訴他,如果使用金屬氧化物代替金屬硫化物作為陰極,此陰極可能具有更高的電位。因此其研究小組中的一些人企圖尋找一種金屬氧化物,能在插入鋰離子時產生高電壓,但是移除離子時不會崩塌。

這個系統性的搜索比古迪納夫不敢奢望的更為成功。惠廷翰電池產生的電壓超過 2 伏,但古迪納夫發現使用鋰鈷氧化物為陰極的電池,其電力幾乎是惠廷翰電池的兩倍,擁有四伏特的電壓。

成功的關鍵之一,是古迪納夫意識到不必像以前一樣,製造處於充電狀態的電池。相反的,可以在事後充電。1980年,他發表了這種新型的能量密集型陰極材料的發現。儘管它的重量輕,卻可產生電力強大的高容量電池,這是朝著無線革命所踏出的決定性一步。

-----廣告,請繼續往下閱讀-----
古迪納夫開始在鋰電池的陰極中使用氧化鈷,這幾乎使電池的電動勢增加了一倍,並使其電力更強大。

日本公司需要輕量電池用於新電子產品

但是,在西方,隨著石油變得更便宜,人們對替代能源科技的投資和電動車的發展之興趣逐漸減弱。日本的情況則有所不同;電子產品的公司迫切需要能為其創新電子產品供電之輕量且可充電的電池,例如攝影機、無線電話和電腦。

看到這一需求的人是旭化成株式會社的吉野彰,或正如他所說的:「我只是聞出趨勢正在移動的方向,你可以說我擁有很好的嗅覺。」

吉野製造出首款商業上可行的鋰離子電池

吉野彰決定開發一個實用的可充電電池時,他使用了古迪納夫的鋰鈷氧化物作為陰極,並嘗試使用各種以碳為基礎的材料為陽極。先前之研究者已經展示了鋰離子可以插入石墨的分子層中,但是石墨會被電池的電解液分解。

吉野彰開發的電池穩定、輕巧、電容量高並且可以產生驚人的四伏特電壓。鋰離子電池的最大優點是離子被插入在電極中,其它大多數電池都是基於化學反應,其中電極會緩慢但肯定的產生改變。當鋰離子電池充電或使用(放電)時,離子會在電極間移動但不會與周圍環境發生反應。這意味著電池使用壽命長,並且在其性能下降之前可以充放電數百次。

吉野彰的頓悟時刻 (eureka moment) 發生在他轉而嘗試使用石油焦炭(石油業的副產品)的時刻。當他將電子充入石油焦炭的時候,鋰離子被吸入此材料中。然後,當他開通電池時,電子和鋰離子流向電池中的氧化鈷陰極,並具有更高的電動勢。

吉野彰開發的電池穩定、輕巧、電容量高並且可以產生驚人的四伏特電壓。鋰離子電池的最大優點是離子被插入在電極中,其它大多數電池都是基於化學反應,其中電極會緩慢但肯定的產生改變。當鋰離子電池充電或使用(放電)時,離子會在電極間移動但不會與周圍環境發生反應。這意味著電池使用壽命長,並且在其性能下降之前可以充放電數百次。

-----廣告,請繼續往下閱讀-----

另一個大優點是此電池中沒有純鋰。1986 年,吉野彰為了測試電池的安全性,他謹慎行事,使用了用於測試爆炸物的設施。他在電池上丟下了一大塊鐵,但是什麼也沒發生。但是,將此實驗重複在裝有純鋰的電池上,則發生了劇烈爆炸。

通過安全測試對此電池的未來至關重要,吉野彰說這是「鋰離子電池誕生的那一刻」。

鋰離子電池:無石化燃料社會所必需

1991 年,一家主要的日本大型電子公司開始銷售首款鋰離子電池,引發了一場電子革命。手機縮小,電腦變得可攜帶,並開發出了 MP3 播放器與平板電腦。

隨後,世界各地的研究人員在元素週期表中搜尋更好的電池,但尚無人能成功發明出一種電池能擊敗鋰離子電池所擁有的高電容量和高電壓。不過鋰離子電池已經改變而進化了,其中包括古迪納夫用磷酸鐵取代了氧化鈷,使得這種電池對環境更為友善。

與其它所有事物一樣,鋰離子電池的生產也會對環境產生影響,但也有巨大的環境效益。這種電池推動了乾淨能源技術和電動車的發展,從而有助於減少溫室氣體和微粒的排放。

通過他們的工作,古迪納夫、惠廷翰和吉野彰創造了無線和不含石化燃料的社會之適當條件,因而為人類帶來了最大的福祉。

譯註

因上文較為簡略,在此以使用石墨氧化鈷為兩電極的鋰離子電池為例,進一步說明其運作。

當電池充飽了電時,石墨上擁有許多帶負電的電子,為了中和其負電荷使其穩定,於石墨層狀結構的夾層中含有等電量的鋰陽離子;相對的,此時的氧化鈷處於氧化的狀態,是以 CoO2 的形式存在,其中的鈷為正四價的氧化態。

於充飽電的狀態開始使用電池時,亦即開始放電,石墨極為陽極(負極),透過外部線路釋放電子(氧化),因為石墨上的負電荷開始減少,原先在夾層中的鋰陽離子相對太多了,為保持電中性,鋰離子會透過電池內部的電解液離開石墨極而流向陰極。反觀氧化鈷這一極,由外部線路輸入了電子產生還原,是為陰極(正極),被還原的是鈷離子,其氧化態數降低,但因氧離子的數目以及氧化態數(負二價)不變,陽離子相對的變少了,為了讓電荷保持中性,就是由上述流入的鋰陽離子來補充正電荷,也因而此極的結構式常以 LixCoO2 (0 < x ≤ 1) 來表達,稱為鋰鈷氧化物。在這種表達式中,鈷代表的不是單一的氧化價數,x 的數值則和參與的電子當量數有關;例如有 0.5 莫耳的電子輸入 1 莫耳的 CoO2 時,x 的數值為 0.5。

充電時則與上述過程相反,鋰陽離子透過電池內部流向石墨極。這種在充放電時,鋰離子於兩電極之間來回移動的現象類似搖椅,因此也被稱之為「搖椅式電池」。整個電池運作的原理其實並不牽涉鋰的氧化還原,不可誤解。

這種電池的成功不僅有賴於石墨的層狀結構中能插入鋰離子,同樣的氧化鈷也需要有同樣的能力。此外,當離子插入時不可產生過度的結構膨脹,因為這會脹破電極,反覆使用時,結構也不可崩塌。是否會在電極表面產生晶鬚(亦稱樹枝狀晶體;dendrite),也非常重要,上文中已經提及那會造成短路,釀成災害。電壓與可儲存的電力有關,是尋找新材料要追求的,但是電流也很重要。例如鋰離子在兩極內部以及電解液中的流動速率,影響瞬時可拉出的電流量,與實用有關,亦須考慮。是而要尋找適當的兩極材料,絕非口說般容易。

我們熟知鋰金屬與水會劇烈反應,產生氫氣。因此用鋰金屬作為放電時的陽極,主要的一個問題是其化學活性太高,有極大的安全疑慮。改以插入鋰離子的石墨為電極雖可改善此問題,但並不代表充滿電子的這個石墨電極就很安全。其實在充飽電時,此時的石墨極會處於一個高度的還原狀態,其化學活性仍然是高的,但這畢竟是二次電池(可充電式),在販售時不需事先充飽電,可避免意外,在上文中將之視為優點。這與常用的一次電池(如鋅錳電池)不同,那些電池買來時是處於電力飽滿的狀態,但因運作原理不同,牽涉的材料都很穩定安全,正常的使用下讀者不用擔心。

鋰離子電池的電解液也是一門學問,基本上因為水溶液會造成問題,可使用高極性有機溶劑溶解含鋰的電解質(如LiBF4)作為電解液。常用的溶劑包括如二甲基碳酸酯、亞乙基碳酸酯和伸丙基碳酸酯等。然而使用有機溶劑的最大缺點是普遍可燃,一旦發生意外更易導致火災。因此一個研究方向就是尋找固態的無機電解液,會安全許多,但其前提當然是鋰離子在其中的遷移速率必須夠快,才能實用。

譯者後記

鋰離子電池的確在最近數十年扮演了科技革新的重要角色,譯者近年拜常教普通化學之賜,平常亦經常關注電池研究的發展,因為能將化學能轉變為電能的電化學是普通化學裡的一個重要章節。

圖/wikipedia

鑒於電池的重要性,無怪乎過去這幾年此領域的幾位重要學者獲頒諾貝爾獎的預測聲量一直名列前茅,譯者就常聽到系上的周必泰教授多次預測古迪納夫會得獎。

然而值得諾貝爾桂冠的學者何其之多,想正確預測並不容易。兩星期前閱讀九月二號出刊的美國化學與化工會誌時,剛好讀到一篇介紹古迪納夫的短文,此君已具九七高齡但仍然活躍。數日前(十月五號)於一場會議中,本系的楊吉水教授問我今年諾貝爾化學獎有何預測?我靈機一動立刻想到了古迪納夫。

星期一傍晚正值諾貝爾醫學獎公布,我在飯桌上與太座閒聊時,順道提及今年預測古迪納夫與另一日本學者(吉野彰)可能得獎,更提及我在美國化學與化工會誌上看到的文章,懷疑可能其中有人嗅到風向,且笑言請太座作證我今年的預測。今日傍晚公布得獎人時真讓我雀躍,猜了那麼多年,今年終於被我矇對!

回到嚴肅的一面,上文提及鋰離子電池對環境的負面衝擊,惜未多言。不久前在美國化學與化工會誌上(六月十五號刊)讀到的一篇封面主題文章,就在介紹鋰離子電池的回收問題。該文提及,目前只有 5% 的鋰離子電池被回收,相對地比較,車用鉛蓄電池的回收率則達約 100%。

這樣的比較或許並不公平,因為鉛蓄電池的結構簡單,而鋰離子電池的構造則相對複雜許多。從數字來看,預期到達 2030 年時,電動車的數量將達一億四千萬輛,從現在到 2030 年之間所淘汰的鋰離子電池預測將達一千一百萬噸。因此若不能提升鋰離子電池的回收科技和回收率,屆時對環境造成的負荷將很難想像。

今年為諾貝爾獎終於肯定鋰離子電池發展的喜事而歡呼時,請別忘了,這也應該是我們吹起鋰離子電池回收號角的當兒。

蔡蘊明謹誌於2019/10/10凌晨

  • 感謝台大化學系的蔡明軒特別在假日加班幫忙將此文放上化學系的網頁。另感謝曹一允博士在第一時間對我的初稿提出之意見與討論
  • 本文譯自諾貝爾化學獎委員會公佈給大眾的新聞稿,若有興趣閱讀進階的原文資料,請參考連結。

本文轉載自臺灣大學化學系〈2019年諾貝爾獎簡介〉。

文章難易度
諾貝爾化學獎譯文_96
15 篇文章 ・ 23 位粉絲
「諾貝爾化學獎專題」系列文章,為臺大化學系名譽教授蔡蘊明等譯者,依諾貝爾化學獎委員會的新聞稿編譯而成。泛科學獲得蔡蘊明老師授權,將多年來的編譯文章收錄於此。 原文請參見:諾貝爾化學獎專題系列

0

9
5

文字

分享

0
9
5
聲音是什麼顏色、什麼味道?談聯覺與跨感官反應
雅文兒童聽語文教基金會_96
・2023/12/21 ・3162字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/陳品均|雅文基金會聽語科學研究中心 助理研究員

星期一,聽起來是什麼顏色?

先別急著回答藍色,對某些人來說,這個答案可不是受到情緒經驗的影響,而是真實的色彩反應。

星期怎麼可能聽起來有顏色?事實上,根據研究大約有 4% 左右的人[1],在某個認知或感官接收資訊刺激後,另一種感覺或認知會同步自發的出現,並且具有特定規律,此反應與刺激本身並不一定相關,這些人被稱為聯覺者,擁有像是聽到聲音時,除了聲音的反應外,同時認知到了形狀或顏色等的特徵。

舉例而言,若一位聯覺者聽見 A,除了聲音 A 以外還自動產生了它是紅色的聯覺認知,則不論是在 Apple 或 Angel 中,A 對他而言都是紅色的,不會因為 Angel 比較常以白色的型態出現,便轉換成白色的 A。在學界,聯覺的發展和原因尚在探索中,有些研究指出可能與小時候接觸抽象觀念時的發展、遺傳以及大腦神經機制有關 [2、3]

聽覺及視覺的聯覺者在聽到詞彙時,除了聲音外,同時自動產生了色彩的認知反應。(圖片來源:作者自行繪製)

隨著聯合反應的感官組成不同,聯覺者的異能經驗也五花八門

你能想像當單一感官接收某一訊息時,同時產生另一感官的不同認知是怎樣的經驗嗎?BBC 的科普節目《Horizon》其中一集< Derek Tastes of Earwax >記錄了數名聯覺者的跨感官連結經驗。其中,一名酒吧老闆兼有聽覺和味覺的聯覺,當他聽見各式各樣的詞彙時,宛如品嚐綜合風味豆,讓他飽嘗各種滋味[4]

-----廣告,請繼續往下閱讀-----
聽覺和味覺的聯覺者,聽見各種名詞之際,嘴巴就像是咀嚼著各種滋味。(圖片來源:pexels

另一名受訪者是聽覺及視覺的聯覺者,經實驗後科學家發現,若聽到數字或是月份日期時,這名受訪者的腦部除了聽覺區域外,視覺區域也會產生反應。特別的是,他本身是一名視覺障礙者。

聽覺及視覺的視障聯覺者聽到日期時,腦部視覺及聽覺區域都有反應。(圖片來源:作者自行繪製)

感官認知上特別的連結,讓聯覺者所經驗的世界像是搭載了酷炫的特效般,使他們在藝術創作及記憶上屢有出色的表現,代表人物有:知名文學《蘿莉塔》作者 Nabokov[5]、以引起聽眾共鳴聞名的音樂家 Olivier Messiaen、表現主義的經典畫家 Wassily Kandinsky 等。若想檢視自身是否為天選之人的聯覺者,除了自我覺察是否有異於常人的跨感官連結反應外,目前也有相關的測驗[6]可以參考。

你我的類聯覺」跨感官反應

若說聯覺是天生具有特別音感的人,那麼跨感官反應肯定就是音樂家們透過經驗累積產生的直覺判斷,兩者不盡相同、卻又有其類似之處。那麼,不具有聯覺的異能,我們難道只能認命當麻瓜了嗎?

別急,縱使不是聯覺者,普通人也多少會有類似聯覺的經驗,這樣的類聯覺稱作跨感官反應,往往在我們渾然不覺時,悄悄地舉辦同樂會,並影響人們的喜好、感知和行為等。

-----廣告,請繼續往下閱讀-----

先來看看研究者們發現的有趣現象,請看這兩個形狀:

圖片來源:作者自行繪製

過去曾有研究者以 bouba 及 kiki 兩個虛構詞進行實驗,九成受訪者傾向認為雲朵狀的形狀是 bouba,尖銳的形狀則被認為是 kiki,即使這些受訪者其實並不認識兩個假詞,但基於聲音和形狀的特徵,卻讓多數人做出這樣的選擇[7]

後續研究者也繼續投入各式各樣以不同語言文化環境為背景、不同年齡階層為對象的研究,有趣的是,結果顯示此現象幾乎是跨語言、跨文化、跨地域存在的,甚至在少與外界互動的部落居民,或是尚未識字的幼兒身上,也有這類從聲音特徵影響其視覺形狀感知歸類的效應 [8、9、10]。除了虛構的詞彙以外,有些研究者使用真實存在的詞彙(如:Bob 及 Kirk),來對應圓潤及尖銳的剪影或人臉,最後也有相似的結果[11、12]

一般人的經驗和認知,往往加速催化感官間的互相影響

除了語言與形狀外,我們生活中還有許多感官互相影響的例子,來試試看下面這張圖,你聽見聲音了嗎?

-----廣告,請繼續往下閱讀-----
(圖片來源:GIPHY

瑞克搖(Rickrolled)的影片在 2019 年突破了 10 億次的 youtube 觀看次數[13、14],迷因化後大量的連結及有聲影片傳播,使得曾經的觀眾在看見這張圖時根據經驗,腦海中自然出現了<Never Gonna Give You Up>的旋律。

然而,不同於聯覺,若沒有經驗累積,跨感官的反應便無法被觸發,以上圖為例,即便觀看次數如此驚人,對於未曾接觸過此影片的人而言,由於缺乏經驗和認知的累積,在看見該張圖片時,理所當然也無法產生相對的聲音反應。

將跨感官反應置入在行銷中的策略,現正流行中!

在大量接收資訊的生活中,我們不自覺地累積了許多感官經驗,成為由單一感官啟動與其他感官同步作用的引線。行銷高手們從中嗅出了商機,精明的將消費者們不由自主產生的跨感官反應也算進了商業行銷的一環。如:某知名咖啡品牌在過去曾進行一項實驗,將兩杯一樣的咖啡配以不同的音效提供給不知情的消費者。前一杯搭配液體沖入便宜咖啡杯、攪拌,模仿沖泡即溶咖啡的聲音,另一杯則在播放磨豆聲、蒸氣聲以及倒進陶瓷杯的聲響後,再次提供給消費者,結果發現在不同的聲音所營造的環境氛圍下,同樣的兩杯咖啡,人們覺得後一杯更加濃醇香,並願意為之付出更高的金額[15]

近年熱門的 ASMR 亦是味覺和聽覺的跨感官應用,若想了解更多,別錯過之前的專欄文章﹤加點「聲音調味料」,享受聽覺與味覺的極致饗宴吧!﹥。

-----廣告,請繼續往下閱讀-----

下次若覺得某張圖片有聲音、光看某部電影的宣傳海報就起雞皮疙瘩,或是外帶的咖啡沒有內用的美味,也許就是跨感官反應悄悄影響了你的感覺。最後,讓我們回到一開始的問題,星期一聽起來是什麼顏色的?不論是不是藍色的,何不試試透過 GIF 圖和親朋好友無聲地分享你震耳欲聾的情感吧! 

參考資料

  1. Simner, J., Mulvenna, C., Sagiv, N., Tsakanikos, E., Witherby, S. A., Fraser, C., Scott, K., & Ward, J. (2006). Synaesthesia: The prevalence of atypical cross-modal experiences. Perception, 35(8), 1024–1033. https://doi.org/10.1068/p5469 
  2. Bankieris, K., & Simner, J. (2015). What is the link between synaesthesia and sound symbolism? Cognition, 136, 186–195. https://doi.org/10.1016/j.cognition.2014.11.013
  3. Freeman, E. D. (2020). Hearing what you see: Distinct excitatory and disinhibitory mechanisms contribute to visually-evoked auditory sensations. Cortex, 131, 66–78. https://doi.org/10.1016/j.cortex.2020.06.014
  4. BBC. (2014, September 17). Science & Nature – Horizon. BBC.
  5. Eagleman, D. (2023, September 6). Wednesday is Indigo Blue. David Eagleman. https://eagleman.com/books/wednesday-is-indigo-blue/
  6. Eagleman, D. M., Kagan, A. D., Nelson, S. S., Sagaram, D., & Sarma, A. K. (2007). A standardized test battery for the study of Synesthesia. Journal of Neuroscience Methods, 159(1), 139–145. https://doi.org/10.1016/j.jneumeth.2006.07.012
  7. Ramachandran, V. S., & Hubbard, E. M. (2001). Synaesthesia–a window into perception, thought and language. Journal of consciousness studies, 8(12), 3-34.
  8. Ozturk, O., Krehm, M., & Vouloumanos, A. (2013). Sound symbolism in infancy: Evidence for sound–shape cross-modal correspondences in 4-month-olds. Journal of Experimental Child Psychology, 114(2), 173–186. https://doi.org/10.1016/j.jecp.2012.05.004
  9. Styles, S. J., & Gawne, L. (2017). When does Maluma/takete fail? Two key failures and a meta-analysis suggest that phonology and phonotactics matter. I-Perception, 8(4), 204166951772480. https://doi.org/10.1177/2041669517724807
  10. Ćwiek, A., Fuchs, S., Draxler, C., Asu, E. L., Dediu, D., Hiovain, K., Kawahara, S., Koutalidis, S., Krifka, M., Lippus, P., Lupyan, G., Oh, G. E., Paul, J., Petrone, C., Ridouane, R., Reiter, S., Schümchen, N., Szalontai, Á., Ünal-Logacev, Ö., Winter, B. (2021). The bouba/kiki effect is robust across cultures and writing systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 377(1841). https://doi.org/10.1098/rstb.2020.0390
  11. Barton, D. N., & Halberstadt, J. (2017). A Social Bouba/Kiki Effect: A bias for people whose names match their faces. Psychonomic Bulletin &amp; Review, 25(3), 1013–1020. https://doi.org/10.3758/s13423-017-1304-x 
  12. Sidhu, D. M., Pexman, P. M., & Saint-Aubin, J. (2016). From the bob/kirk effect to the Benoit/éric effect: Testing the mechanism of name sound symbolism in two languages. Acta Psychologica, 169, 88–99. https://doi.org/10.1016/j.actpsy.2016.05.011
  13. BBC. (2021, July 29). Rick Astley rolls into a billion YouTube views. BBC News. https://www.bbc.com/news/technology-58011677
  14. BBC. (2018, September 10). Rick Astley on the Rickroll meme that made him an online legend. BBC Scotland. https://www.bbc.co.uk/programmes/articles/5D3ZmWf1hJmCxCc5Vn0sS64/rick-astley-on-the-rickroll-meme-that-made-him-an-online-legend
  15. Jones, R. (2021)。跨感官心理學:解鎖行為背後的知覺密碼,改變他人、提升表現的生活處方箋 (陳松筠譯)。商周出版。

討論功能關閉中。

雅文兒童聽語文教基金會_96
54 篇文章 ・ 222 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

2
1

文字

分享

0
2
1
除了像風車一樣,風力發電機還能長成什麼樣?風機百百種,沒有扇葉還可以靠震動發電?!
PanSci_96
・2023/12/11 ・5185字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

你有騎車被擊落的經驗嗎?比馬路更危險的是,水鳥可能在天上飛著飛著,就被巨大的風機送去投胎。

不是,風機蓋那麼大幹嘛?既然核電有小型核電廠,風電應該也要有小型版吧?

事實上除了大型水平軸式風機外,我們還有轉向不同的垂直軸式風機、天上飛的高空風力發電機,甚至靠抖抖抖就能發電的風力發電棒。等等,這真的能發電嗎?

為何需要新的風力發電技術?

從古巴比倫人和古埃及人的時代,「風」就被視為構成世界的元素之一,因此人類也很早就開始研究如何運用風的能量。古希臘時代,有一款叫做 Heron’s Windwheel 的風琴,就是利用風力驅動風車,並帶動幫浦為風琴不間斷送風。在這之後,中國和歐洲相繼出現各種風車來替人們進行農務工作,例如大家熟悉的荷蘭式風車。雖然現在常見的現代風力發電機組個頭大很多,但構造與荷蘭式風車沒有太大差異,都是扇面垂直於地面,並且扇葉轉軸和風向平行的水平軸式風車結構。但這種已經用了幾百年的風車設計,真的是最理想的發電方式嗎?有沒有更新穎的設計構造可以用來捕捉更多風能呢?

-----廣告,請繼續往下閱讀-----
Heron’s Windwheel。圖/wikimedia
荷蘭式風車。圖/wikimedia

先來說說大家熟悉的水平軸式風車,國際間最普遍的風力發電機組是三葉式的水平軸,台灣西海岸的諸多風力發電場採用的也是這類設計。你曾經好奇,為什麼扇葉是三葉的嗎?或是不知不覺就認為,三葉就是最正常的結構?既然推動風車的力量來自於扇葉,不是越多扇葉就能獲得更多能量嗎?而且看看風車,扇葉的面積明明就不大,旁邊都是空隙,這些能量不是浪費了嗎?實際上也確實不是越多扇葉越好,其中牽涉到許多複雜的因素。簡單來說,更多的葉片會帶來更多的風阻,也會降低葉片旋轉的速度,因此從三葉增加到四葉或五葉所帶來的效率成長非常少。也就是你如果有 12 支扇葉,4 座三葉發電機的發電量,會高於 3 座四葉發電機的發電量。因此,在單支風機的建設成本就是億元起跳的情況下,三葉成為最佳選擇。

對了,雖然更多葉的風機較少見,但反過來說,還真的有雙葉片,甚至單葉片的機組設計。畢竟較少的葉片代表較低的建造成本,以及較快的轉速。但是,單一葉片在旋轉時並不穩定,需要在對面方向額外加裝重物來平衡重量,顯得多此一舉。那雙葉呢?它的問題在於扇葉角度在隨風向調整時,容易產生震動而不穩定,對扇葉和機組的強度要求也更高。在綜合因素考量下,現在大多數的風電機組都是採用三個葉片的設計。

有水平軸式風車,就有垂直軸式風車,也就是轉軸與風向平行的風車。在台灣,你可能在某些工廠或是房屋屋頂上能看到它,我不是指工廠的排風球哦,而是看起來由幾根弧形線條構成的裝置。為什麼要設計成垂直的呢?因為比起水平軸發電機有一個特定的面風向。垂直軸的優勢在於不論風來自哪個方向,它都可以發電,不需要特別轉向;此外,它也不需要水平軸式風車長長的扇葉,相對不占空間,甚至能做成各種美感十足的設計。這幾個優點讓它特別適合設置在都會區中,用來捕捉方向不固定的小規模氣流,因此台灣有些地方就可以看到這種以垂直風力供電的路燈。

垂直軸風機葉片的型態多樣且美觀。圖/PanSci YouTube

不過城市內的風畢竟還是有限,為路燈或是小型家電發發電可以,但要能成為支撐整個城市的電力,還不及海上那些水平軸式巨無霸。在外海,不僅可以設置葉片長度超過 100 公尺的巨型風機,外海的風能,就是比內陸強烈且穩定。但這些巨無霸雖然會為我們帶來戰力,也會波及無辜。雖然風機遠離人類居住的地方,但外海還是有其他原始住民的,短暫地把人類的文明,建立在其他物種的痛苦之上 最後還是會害到整體。然而,巨大風機施工和運轉的噪音會干擾到海中生物,扇葉旋轉還會擊落蝙蝠和鳥類。雖然我們在上一集,有提到可以透過驅離或是扇葉塗黑的方式,讓其他生物注意到風機的存在,進而減少誤傷。但我們有沒有全新的設計,可以一勞永逸?

-----廣告,請繼續往下閱讀-----

風力發電還能長什麼樣?

面對目前風力發電的困境,有人重新思考風力發電的構造,提出全新的設計。其中一種便是漂浮式的離岸風電機組。

我們為了獲得更多風能,近年來積極發展離岸風電廠,作法非常簡單,就是把原本在陸地上的風電整根插到海床上。這光想起來就是非常浩大的工程曠日廢時,而且成本高,施工過程中產生的水底噪音也會影響到海洋生態。

可是海上的風就是比陸地上強上好幾倍,這麼香的風力來源怎麼能放著不用呢?來自挪威的公司 World Wide Wind 提出了一種浮標式風電機組,省去了海底工程的麻煩。這種風電機組採用垂直軸的設計,這樣機組就不會被海風吹著跑。整個裝置可以靠著海面下的配重平衡地直立在海面上,除了電纜之外不須要任何固定措施。這大大地擴展了離岸風電的發展空間。許多最佳的風場位在離岸較遠的深海區域,我們沒辦法在這些海床上豎立巨大的水平軸風車,這時候就可以透過漂浮式構造來擴張風電的勢力範圍。

反轉式直立渦輪(COUNTER-ROTATING VERTICAL TURBINES)。圖/World Wide Wind

不只如此,最特別的是,它是以兩組旋轉方向相反的葉片組成,因此被取名為反轉式直立渦輪(COUNTER-ROTATING VERTICAL TURBINES)。這麼做不只可以讓旋轉時更加穩定,還可以增加發電效率。由於發電用的渦輪是透過兩組扇葉之間的相對旋轉來發電,所以反向旋轉就像是用雙手擰毛巾一樣,等於收集到幾乎兩倍的能量。而且因為上下兩組扇葉所接收的風來自水平方向,所以彼此干擾並不大,展現了垂直軸風電的獨特優勢。一般的水平軸風車可沒有辦法玩這套,因為風在流過第一組葉片之後就會變成速度較慢的亂流。

-----廣告,請繼續往下閱讀-----

垂直軸提供了新選擇,但只要有軸,發電機就是會旋轉,還是有機會擊落海面上飛行的生物。如果要不傷及鳥類,看來……只能讓風機不旋轉了嗎?等一下,風機不旋轉還能發電嗎?誒,還真有可能。一家西班牙的新創能源公司 Vortex Bladeless 在幾年前開發出了全新的「渦流」發電技術,就是這根抖動的棒子。

不要懷疑,這個像搖頭娃娃一樣左右震動的棒子是一種完全不需要扇葉的渦流震動發電機。奇怪了,為什麼風吹會造成這種震動呢?原來當有空氣流經過圓柱狀的物體時,會在後方形成不穩定的渦流,讓物體產生左右震動的現象。如果振動頻率剛好和物體的自然頻率接近,便會產生出乎意料的強大共振。1940 年代,有座位在美國的塔科馬海峽吊橋,就是因為氣流共振導致扭曲斷裂,所幸最後無人傷亡。這個威力強大的現象如今也被拿來進行發電。

塔科馬海峽吊橋與氣流共振。

而這根風力發電棒的尺寸和材質,都經過特別設計來和渦流產生共振。它的上半部可以自由的晃動,位於底部的磁鐵和線圈接著可以將震動轉換為電能。這種設計不只看起來很有趣,產生的噪音也小很多,還能減少對鳥類的威脅。甚至因為沒有快速轉動的葉片,也能設置在靠近人群的都市環境中。目前一根約三公尺高的裝置,在有風的情況下可以產生一百瓦的電力。想像一下,只要把高速公路分隔島上排滿這種震動發電機,就能產生很可觀的電能。對了 這就像一個人訂閱泛科學看似影響不大,但如果每個人都同時按下訂閱泛科學,就能給我們莫大的支持與力量,麻煩各位了,跟我們一起共振吧!

話說回來,這種振動發電的轉換效率終究是比渦輪旋轉發電低,能夠捕獲的風量也較少。它的競爭優勢則在於較低的建造和維護成本,或許適合和太陽能互補為住家和都市地區提供電能。此技術已經在多年前證明可行,但目前在設計與量產方面仍處於開發階段,還須要更多的時間和資金才有辦法進入大規模生產。

-----廣告,請繼續往下閱讀-----

講完了海上與陸地上的風機,最後,既然要靠風發電,那麼風能最豐沛的高空,能不能也來發電一下呢?

高空的發電量會更高嗎?

最早在 2014 年就有 Altaeros Energies 這家公司嘗試這個做法。他們將風電機組裝在氦氣的飛船中央,放到離地表三百到六百公尺的高空。在這高度的風速比地表快上兩倍左右,由於風能正比於風速的三次方,所以風能是地面的八倍。這些風能會在高空就轉為電能,之後透過纜線傳回地上。除了電纜以外,也會有幾條固定纜線可讓地面人員控制氣球的高度與方向。

圖/Altaeros Energies

除了用氦氣球搭載發電機外,也有一些設計是透過風箏來將小型風電機組放到空中,形成隨到隨用的風力發電裝置。不過可以想像的是,雖然高空發電可以節省地面空間,還能取得豐沛的風能。但不論是汽球還是風箏,在維護上肯定需要投入更多的成本。如果要大規模設置,對於鳥類或是飛安的影響又是另外一個問題。目前,這些浮空風電裝置最大的優勢是它們絕佳的機動性,可以為遠離電網的偏遠地區,或是臨時性的研究站提供電力。又或是如果在大型演唱會的上空放一顆風力發電氣球來為活動供電,那好像也是挺浪漫的。

圖/wikimedia

雖然今天講到那麼多有創意的設計,但大多數的新創能源公司,都會因為現實上的競爭力不足而永遠停留在模型階段,還無法進入商業化生產。短期內的風力能源,還是得靠興建更多岸上和離岸的大型風電機組來扛起。不過,未來再生能源的需求只會持續地增加,我們確實需要有更多新想法、新設計,尤其是能廣泛設置,同時對環境影響低的新型態發電方式。而隨著材料科學的進步,當這些新設計的成本下降,我們就有機會在生活周遭看到它。

-----廣告,請繼續往下閱讀-----

最後也想請大家預測一下,20 年後風力發電的主力會是哪一種裝置呢?

  1. 漂在海面上的反轉式直立渦輪,感覺技術成熟後,施工成本可以降到很低
  2. 渦流震動發電棒,對環境傷害小,又不挑地方到處都能設置,積少成多
  3. 大型水平軸風機技術還是最成熟 成本也不斷破底,估計還是發電主力

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

討論功能關閉中。

PanSci_96
1219 篇文章 ・ 2184 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

15
6

文字

分享

0
15
6
我們需要覆蓋率更高的網路!低軌道衛星通訊的好處在哪?臺灣有機會發展自己的「星鏈」嗎?
PanSci_96
・2023/12/04 ・6233字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

要是海底電纜被截斷,馬斯克的星鏈又不幫忙?台灣會不會成為資訊孤島?

近年 SpaceX 不斷發射 Starlink,看起來野心滿滿,多到都成為光害了。

在烏俄戰爭爆發後,Starlink 為烏克蘭提供的不間斷網路服務,更讓全世界看見低軌道衛星通訊的重要性。

通訊戰已經逐漸打到太空,台灣也不遑多讓。今年 11 月 12 日,鴻海與中央大學合作的兩枚低軌道通訊衛星珍珠號,以及成功大學與智探太空合作的立方衛星「IRIS-C2」已經成功升空,三顆衛星都已經取得了聯繫。台灣,也能很快擁有自己的星鏈嗎?我們還欠缺哪些關鍵技術呢?

-----廣告,請繼續往下閱讀-----

什麼是低軌道衛星?它可以取代海底電纜嗎?

在全民都會上網的現代,我們的電腦網路依靠光纖等實體線路,手機、WIFI 通訊則仰賴周遭的基地台,因此只要手機離基地台太遠,就會收不到訊號。未來,這些問題低軌道通訊衛星都能解決。這些在天上快速移動的衛星,只要數量夠多,就能覆蓋整個地球表面。因此不論你是在遠離基地台的深山,甚至是高空中的飛機,都能透過通訊衛星來連線上網。

除此之外,在 5G 通訊逐漸成熟的現在,下一代通訊技術 B5G 追求更快、更低延遲的數據傳輸,也會需要低軌通訊衛星來解決傳統基地台功率與覆蓋性不夠的問題。

但因為人口密集、土地面積小,台灣現在的無線網路服務覆蓋率已經很高了。台灣需要擔心的另一個問題是對外的海底電纜斷裂,使我們與世界失去聯繫手段。

除了要擔心戰爭爆發時敵人為了封鎖台灣消息,而主動破壞電纜以外。台灣周邊的電纜也常因為底拖網、抽砂船作業時被破壞,甚至天災都可能導致電纜被破壞。例如 2006 年恆春地震發生時,高屏海底峽谷就產生海底濁流,也就是海底的土石流。這股海底濁流一衝而下,破壞了呂宋海峽的數條電纜,不只影響了整個東亞以及東亞到美國、英國之間的通訊,包括許多跨國銀行交易。海底電纜斷裂的影響層面非常廣,2006 年恆春電纜斷裂事件發生後,還被聯合國國際減災策略署(ISDR)形容為「現代新型態災難」。

-----廣告,請繼續往下閱讀-----
2006 年恆春地震震央與海底電纜位置。圖/wikimedia

不論海底電纜斷裂的原因會是什麼,我們都需要有充足的準備來應對,而低軌道通訊就是其中的首選。

目前全球有在發展低軌道通訊的不只有 SpaceX 的 Starlink,其他還有 Amazon 的 Kuiper、加拿大的 Telesat 和由美國、歐洲、日本等企業投資的 EutelSat OneWeb 等等。

當然,其中最受矚目的當然還是 Starlink,而且它的發展速度真的有夠誇張。Starlink 在 2020 年才開始在北美提供服務, 去年 4 月我們製作了一集節目在介紹 Starlink,當時就已經總共有 2,000 顆星鏈衛星被發射上太空,服務使用者有 25 萬人。到了今年 8 月,短短又 16 個月經過,在低軌道運行的衛星數量,從兩千顆增加到了 4500 顆,用戶人數從 25 萬人暴增到突破 200 萬人,這肯定是打了針或是吃了藥。當然,訂閱 Starlink 的服務可能需要考慮考慮,但訂閱泛科學頻道,請不要再考慮了,就在這邊,趕快按下去吧! 然後別忘了,SpaceX 的野心,是在天上佈下總計 42000 顆的通訊衛星,大約是現在數量的再十倍,當這個目標達成時,我們的通訊手段可能將迎來天翻地覆的變化。

你可能好奇,這些距離地面遙遠的通訊衛星,能提供多快的上網速度?會不會衛星通訊到頭來只是個噱頭?在光纖電纜的技術進步下,海底電纜的速度確實已經非常快,傳輸速度是低軌衛星的五千到十萬倍左右,這根本是阿烏拉對上芙莉蓮,只有被虐的份啊!

-----廣告,請繼續往下閱讀-----

世界越快心則慢,但網路越慢心更急。Starlink 到底夠不夠用呢?依照 Starlink 實際用戶的實測回饋,雖然星鏈服務的 Ping 值多落在 15~60ms 左右,下載約 100 Mbps,上傳約 15Mbps,但對於一般消費者來說已經算是能接受的了。尤其對於偏遠地區、研究站的通訊,又或是未來 B5G、6G 物聯網中,與大量自動駕駛汽車、智慧裝置的連動,通訊衛星都將成為可考慮的另類選擇。

星鏈服務的 Ping 值多落在 15~60ms 左右,下載約 100 Mbps,上傳約 15Mbps。圖/PanSci YouTube

但如果我們未來不想只看馬斯克或是大公司的臉色,勢必需要發展屬於自己的通訊衛星。那麼,發展一顆通訊衛星,需要哪些技術呢?

低軌道有多「低」?低軌道通訊衛星需要哪些技術?

實際上,在低軌通訊衛星出現之前,我們早就有使用衛星進行通訊的經驗,例如衛星電視使用的廣播衛星。然而廣播衛星和低軌道衛星卻有著完全不同的設計邏輯,這是挑戰,也是機遇。

廣播衛星位於地球同步軌道,距離地面約 4 萬 2 千公里,優點是距離地面遠,因此一顆衛星的覆蓋範圍極廣,只要三顆衛星就能覆蓋地球大部分地區。缺點就是距離地面真的太遠了,就算以光速傳遞訊息,來回 8 萬 4 千公里,就有 0.28 秒的延遲,想必沒有人希望用這種速度來上網。 而低軌道衛星,例如 Starlink,就將他們的衛星分布在距離地面 350 至 1500 公里之間,只有地球同步軌道的 120 分之一到 28 分之一的距離和訊號延遲。反過來說,低軌道的優點是延遲短,缺點就是覆蓋面積小,因此才需要那麼多的衛星來覆蓋整個地球。

-----廣告,請繼續往下閱讀-----

再來,在天線的設計上也完全不同。接收廣播衛星訊號的天線,就是我們暱稱為小耳朵的衛星碟形天線,通常設計成凹面鏡的樣子。根據光學原理,平行光入射凹面鏡後,會聚焦在焦點。也就是說,接收器不是圓盤本身,我們會將接收器放置在焦點來接受最強的訊號。除了小耳朵之外,大型電波望遠鏡的設計,也是出於同樣的原理。

Starlink 的做法則不是這樣,因為用戶不只有接收訊息,還需要發送訊息。Starlink 的天線,是一個稱作 Dishy McFlatface 的小圓盤,只是後來變成方形了就是了。當你在自家屋頂或庭院設置了 Dishy,它內建的 GPS 會鎖定自己與附近 Starlink 衛星的位置,並且建立點對點的雙向資料傳輸。

Starlink 的方形天線。圖/PanSci YouTube

重點來了,要做到點對點的傳輸,代表這些電磁波訊號不能再是廣播衛星那種廣發的波狀訊號,而是要聚集到一條又窄、能量密度又高,如同雷射般的筆直路線上。

有在看我們節目的泛糰肯定有印象,這是我們今年第三次提到這個技術了。沒錯,在無線獵能手環還有宇宙太陽能這兩集中,都有遇到需要遠距傳遞電磁波能量或訊號的情況。其實用到的技術都相同,那就是波束成型(Beamforming)。誒,我們都報明牌那麼明顯了,還不趕快找概念股,然後訂閱一下泛科學嗎?

-----廣告,請繼續往下閱讀-----

一般來說,電磁波都會如同水波般向外發散,波束成型會先把一個訊號源拆成數個小訊號源,將這些訊號源排成一排,並且控制大家的相位。在電磁波的互相干涉下,就會形成一條筆直前進的電磁波。你可以想像一群本來正各自單兵作戰的士兵,透過整隊與喊口號將大家都動作同步,那麼這些士兵就會一起筆直地朝一個方向前進。在比較舊的 Dishy 型號中,寬 55 公分的圓形接收器上,裡面共有 1280 個六角型,每個六角形裡面都是一個天線,這些天線在波束成型後,會構成一個筆直、能量又強的電磁波束,與天上的衛星展開通訊。

咦?但衛星一直在動啊,難道天線也要一直追著衛星跑嗎?其實不用,我們只要對這群士兵下向左轉、向右轉的口令就好。例如我們喊向左轉,那只要左邊的士兵步伐放慢,右邊的士兵加快速度,就能完成轉向。同樣的道理,我們只要改變每個訊號源發出訊號的時機,改變每個波的相位,就能讓干涉出的訊號朝向特定角度,而不用機械式的移動天線本身。而能做到這種功能的天線,我們稱為相控陣列天線。

相控陣列天線(Phased array)的工作原理是改變每個訊號源發出訊號的時機和每個波的相位,讓干涉出的訊號朝向特定角度。圖/wikimedia

知道了地面天線如何和低軌道通訊衛星取得聯繫後,還沒完。這些丟出去的指令,衛星收到了沒錯,但如果你想要連上網際網路,最終這些訊號還是要能連上有線網路。

在星鏈 1.0 時,每顆 Starlink 衛星都是單獨運作,衛星在接收地面天線發出的訊號後,會傳遞到附近的地面接收站 Gateways,接著 Gateways 一樣會走光纖電纜的方式與網際網路連接,讓用戶得以上網。地面接收站一般設有 9 個雷達天線,每個直徑 2.86 公尺。衛星本體,例如 Starlink 2.0 上,則配有四個陣列天線,兩個用來與使用者相連,兩個連向地面接收站。

-----廣告,請繼續往下閱讀-----

然而,這樣的設計限制了 Starlink 的服務,因為這代表地面接收站與你的天線,必須同時在同一顆衛星的訊號範圍內。但是低軌衛星的覆蓋範圍又不大,一個地面站只能照顧方圓 800 公里內的用戶。因此如果你家附近沒有地面接收站,抱歉,你還是收不到訊號的。如果你在廣闊的大海上,就更不用想了。再來,就算 Starlink 提供全台灣的無線網路服務,但如果這個地面接收站就設置在台灣,那麼當台灣的對外海底電纜斷了,就一樣回天乏術,星鏈的設置可說是毫無價值。

Starlink 2.0 上配有四個陣列天線,兩個用來與使用者相連,兩個連向地面接收站。圖/PanSci YouTube

SpaceX 當然也想擺脫地面接收站的束縛,況且如果到了海上就收不到訊號,那可遠遠無法稱上「全球通訊」。因此到了 Starlink 2.0 時,衛星間通訊技術 LISL (Laser Inter Satellite Link) 全面安裝到了衛星上,藉由衛星間的通訊,取代海底電纜的作用,進行跨地區的通訊服務。你看,現在不只海底有資訊高速公路,在天上也出現了網路任意門。比起過去衛星間使用的無線電傳輸,使用 LISL 技術的衛星與衛星之間,用的是雷射。雷射傳訊不僅頻寬較寬,因為光在真空中的速度是最快的,比在光纖中還快。因此與海底電纜相比,傳輸速度反而有可能更快,衛星間的雷射通訊技術,也成為目前太空研究領域中非常重要的一環。

在通訊研究中,除了硬體技術的革新外,另一個最大的問題是,如此龐大的星鏈星座網路該怎麼設計?如何選擇地面天線要與哪個衛星通訊?每個衛星該攜帶多少個雷射發射器與接收器?資料傳輸要經過幾個衛星,才不會因為過多的路由,造成網路延遲飆升。哇~諸如此類的網路設計難題,都是因應通訊衛星而生的新型態網路結構所需面對的課題。而當這些問題被解決,那麼 Starlink 將真正全面擺脫地面接收站,並且能向地球上任何一個角落提供不受限的網路服務。

台灣的低軌道通訊衛星

根據中央社報導,台灣和 SpaceX 從 2019 年開始就展開嘗試性商談,但至今仍未能談妥。今年 11 月 14 日,中華電信成功與另一家公司簽署了台灣低軌衛星的獨家代理合約。這間搶在 SpaceX 之前簽約的公司,就是前面也提到過的 Eutelsat OneWeb。相較於 SpaceX 已經發射升空的 Starlink 大約有 4500 顆,Eutelsat OneWeb 現在的低軌衛星數量大約有 600 顆。台灣的目標,則是在 2024 年底前,布建國內 700 個、國外 3 個非同步軌道衛星的終端設備站點、以及 70 個將資訊候傳的設備站點,建構能完整覆蓋全台的衛星通訊。

-----廣告,請繼續往下閱讀-----

除了與現有的低軌道通訊服務公司簽約外,在打造自製台版星鏈的道路上,也傳來令人振奮的消息,就在簽約的兩天前,11 月 12 日,由中央大學與鴻海科技集團共同研發的珍珠號 PEARL-1C 和 PEARL-1H,兩顆立方衛星升空,並且與地面取得聯繫。搭載的儀器除了中央大學的電離層探測儀之外,還包含了 Ka 頻段的通訊酬載以及剛剛介紹的相控陣列天線,希望能為台灣自製的低軌道衛星通訊打下基礎。

國家太空中心則預計在 2026 年,將第一顆低軌通訊衛星送入太空,2028 年發射第 2 顆。希望能推動 B5G 的發展,並成為發展台版星鏈的敲門磚。

目前台灣的太空領域,許多的技術都正在發展、測試階段。除了這集提到的相控陣列天線、衛星間通訊技術,還有這集還來不及提到的長時間航行的充電問題、姿態校正問題,甚至是未來自行發射衛星的所需要的火箭科技,都需要一步步來解決、實踐。而且根據太空中心估計,至少要擁有 120 顆低軌道通訊衛星,才能確保全台 24 小時的通訊都不間斷,要達成這個艱鉅的任務,我們還有好多路要走,好多衛星要升空。

但千里之行,始於足下,千星之鏈,始於發射架。從福衛系列衛星到獵風者衛星,台灣的太空路線越來越鮮明,也讓人期待包括火箭、衛星到通訊技術的未來發展。

這集我們以 Starlink 為例,詳細的介紹了低軌通訊衛星的重要性,以及需要面對的技術突破。

也想問問大家,你覺得未來低軌通訊衛星,會如何改變網路市場呢?

  1. 衛星通訊成為常態,到哪都可以上網,等等這代表不管去哪都無法以網路不穩當藉口了嗎?可惡!
  2. 衛星通訊只是壁花配角,有線的海底電纜終究是主流
  3. 先等等,衛星競爭太激烈,衛星都比星星還要多了,真的不會在天上發生連環車禍嗎?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

討論功能關閉中。