0

1
1

文字

分享

0
1
1

法國男人陰囊的溫度,左右不對稱?——2019年搞笑諾貝爾解剖學獎

miss9_96
・2019/09/17 ・1543字 ・閱讀時間約 3 分鐘 ・SR值 573 ・九年級

-----廣告,請繼續往下閱讀-----

左邊,熱熱的

科學家的好奇心總是令人敬畏,早在 70 年代時,就有勇者開始量測男人的陰囊溫度1。然而,隨著儀器靈敏度的提升,學者開始發現:「咦?左邊,總是比較熱」。

法國的郵差(圖非實驗者本人XD)source:Julie Kertesz

於是追求科學之美的學者 B. Bengoudifa(法國土魯斯第三大學,Université ToulouseIII)團隊,找了一般人、郵差、巴士司機等法國男子,研究在「不同姿勢」、「裸體與否」等情況下,陰囊的溫度變化(喔喔喔 (≧w≦ヾ))1, 2。更棒的是,該研究榮獲了2019年的搞笑諾貝爾解剖學獎。

下圖以巴士司機為例子,顯示了他們的實驗統計結果。

裸體和著褲的陰囊,在不同姿勢下的溫度變化。中文資訊為本文作者標註。圖/B. Bengoudifa, R. Mieusset (2007) Thermal asymmetry of the human scrotum. Human Reproduction. 22. 2178-2182.

關鍵幾度 ℃,精蟲歸去來兮

所以從這些實驗裡,我們可以知道些啥呢?

研究發現,不論裸體、姿勢、工作與否,左側陰囊的溫度都比右側高。

-----廣告,請繼續往下閱讀-----
穿褲子的(嘖)司機工作 1.5 小時之陰囊溫度變化。中文資訊為本文作者標註。圖/B. Bengoudifa, R. Mieusset (2007) Thermal asymmetry of the human scrotum. Human Reproduction. 22. 2178-2182.

其原因仍屬未知,法國團隊推測可能是多數男人(約 89%)的陰莖偏左,高溫的陰莖加熱了陰囊。亦有可能是未知的血管散熱結構、熱受器等,導致「左邊熱熱的」。

BUT,這研究有什麼貢獻呢?(誰說一定要有貢獻啊,做實驗爽就好了啊)

精子發育的適合溫度為 33-35℃ 〔註 1 〕,而過往的研究早已證實,過高的溫度將導致睪丸細胞凋亡、精子受損,甚至不孕4。因此設計優秀的散熱裝置,是太空、航天、採礦科技等環境工程下甚為重視的一環5。甚至早在近四十年前,美國人就已發明了「水冷式睪丸散熱器」6,臨床試驗證明有效改善男性的不孕症。

AW Zorgniotti團隊發明的「水冷式睪丸散熱器」,受試者需每日配戴16小時、為期約3-4個月。水冷液體為水或水、酒精混合物,實驗發現可降低約2℃左右。From: 參考文獻6

逆轉少子化:空調.裸體裙子.救精子!

如此重要的研究,怎麼能沒有亞洲學者的參與呢?2008 年的《國際男性生理醫學期刊, International Journal of Andrology》,刊出一篇由韓國學者團隊的研究:他們研究了室內空調(18℃ 和 26℃)與椅墊高度(0-8 公分)對於陰囊溫度的關係 3。結果發現陰囊溫度和椅墊高度無關,但和室內空調溫度有關(衛福部快修法天天開冷氣啊!)

韓國學者設計的實驗裝置與結果。圖/Gook‐Sup Song, Wonwoo Kim, Ju Tae Seo (2008) Effect of air conditioning and chair cushion on scrotal temperature. International Journal of Andrology. 31. 418-426.

而德國學者們也不甘落於法國人後,他們研究了「裸體」、「寬鬆褲」和「貼身褲」對於陰囊溫度的影響7。結果不出所料,陰囊的溫度以「裸體」最低,而「貼身褲」在靜坐或行走時都會使陰囊溫度顯著上升。

-----廣告,請繼續往下閱讀-----
德國學者設計的實驗結果。From: 參考文獻7

所以為了台灣的生育率,讓我們大聲呼籲「空調.裸體裙子.救精子!」吧!

參考文獻:

  • 註 1:另其他的文獻認為應低於核心體溫 1-2℃,請見參考文獻 7
  1. B. Bengoudifa, R. Mieusset (2007) Thermal asymmetry of the human scrotum. Human Reproduction. 22. 2178-2182.
  2. Winners of the Ig® Nobel Prize. (搞笑諾貝爾官方網頁)
  3. Gook‐Sup Song, Wonwoo Kim, Ju Tae Seo (2008) Effect of air conditioning and chair cushion on scrotal temperature. International Journal of Andrology. 31. 418-426.
  4. Koji Shiraishi, Hiroshi Takihara, Hideyasu Matsuyama (2009) Elevated scrotal temperature, but not varicocele grade, reflects testicular oxidative stress-mediated apoptosis. World Journal of Urology. 28. 359-364.
  5. Nunneley, Sarah A. (1994) Personal cooling systems: Possibilities and limitations. NASA Technical Reports Server. NASA. Johnson Space Center, Seventh Annual Workshop on Space Operations Applications and Research (SOAR 1993), Volume 2; p. p 559
  6. AW Zorgniotti, AI Sealfon, A Toth (1982) Further clinical experience with testis hypothermia for infertility due to poor semen. Urology. 636-640
  7. A. Jung, F. Leonhardt, W.-B. Schill, H.-C. Schuppe. (2005) Influence of the type of undertrousers and physical activity on scrotal temperature. Human Reproduction. 20. 1022-1027.
-----廣告,請繼續往下閱讀-----
文章難易度
miss9_96
170 篇文章 ・ 1078 位粉絲
蔣維倫。很喜歡貓貓。曾意外地收集到台、清、交三間學校的畢業證書。泛科學作家、科學月刊作家、故事作家、udn鳴人堂作家、前國衛院衛生福利政策研究學者。 商業邀稿:miss9ch@gmail.com 文章作品:http://pansci.asia/archives/author/miss9

0

1
0

文字

分享

0
1
0
數智驅動未來:從信任到執行,AI 為企業創新賦能
鳥苷三磷酸 (PanSci Promo)_96
・2025/01/13 ・4938字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文由 鼎新數智 與 泛科學 共同規劃與製作

你有沒有想過,當 AI 根據病歷與 X 光片就能幫你診斷病症,或者決定是否批准貸款,甚至從無人機發射飛彈時,它的每一步「決策」是怎麼來的?如果我們不能知道 AI 的每一個想法步驟,對於那些 AI 輔助的診斷和判斷,要我們如何放心呢?

馬斯克與 OpenAI 的奧特曼鬧翻後,創立了新 AI 公司 xAI,並推出名為 Grok 的產品。他宣稱目標是以開源和可解釋性 AI 挑戰其他模型,而 xAI 另一個意思是 Explainable AI 也就是「可解釋性 AI」。

如今,AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?

-----廣告,請繼續往下閱讀-----
AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?圖/pexels

黑盒子模型背後的隱藏秘密

無法解釋的 AI 究竟會帶來多少問題?試想,現在許多銀行和貸款機構已經使用 AI 評估借貸申請者的信用風險,但這些模型往往如同黑箱操作。有人貸款被拒,卻完全不知原因,感覺就像被分手卻不告訴理由。更嚴重的是,AI 可能擅自根據你的住所位置或社會經濟背景給出負面評價,這些與信用風險真的相關嗎?這種不透明性只會讓弱勢群體更難融入金融體系,加劇貧富差距。這種不透明性,會讓原本就已經很難融入金融體系的弱勢群體,更加難以取得貸款,讓貧富差距越來越大,雪上加霜。

AI 不僅影響貸款,還可能影響司法公正性。美國部分法院自 2016 年起使用「替代性制裁犯罪矯正管理剖析軟體」 COMPAS 這款 AI 工具來協助量刑,試圖預測嫌犯再犯風險。然而,這些工具被發現對有色人種特別不友好,往往給出偏高的再犯風險評估,導致更重的刑罰和更嚴苛的保釋條件。更令人擔憂的是,這些決策缺乏透明度,AI 做出的決策根本沒法解釋,這讓嫌犯和律師無法查明問題根源,結果司法公正性就這麼被悄悄削弱了。

此外,AI 在醫療、社交媒體、自駕車等領域的應用,也充滿類似挑戰。例如,AI 協助診斷疾病,但若原因報告無法被解釋,醫生和患者又怎能放心?同樣地,社群媒體或是 YouTube 已經大量使用 AI 自動審查,以及智慧家居或工廠中的黑盒子問題,都像是一場越來越複雜的魔術秀——我們只看到結果,卻無法理解過程。這樣的情況下,對 AI 的信任感就成為了一個巨大的挑戰。

為什麼人類設計的 AI 工具,自己卻無法理解?

原因有二。首先,深度學習模型結構複雜,擁有數百萬參數,人類要追蹤每個輸入特徵如何影響最終決策結果,難度極高。例如,ChatGPT 中的 Transformer 模型,利用注意力機制(Attention Mechanism)根據不同詞之間的重要性進行特徵加權計算,因為機制本身涉及大量的矩陣運算和加權計算,這些數學操作使得整個模型更加抽象、不好理解。

-----廣告,請繼續往下閱讀-----

其次,深度學習模型會會從資料中學習某些「特徵」,你可以當作 AI 是用畫重點的方式在學習,人類劃重點目的是幫助我們加速理解。AI 的特徵雖然也能幫助 AI 學習,但這些特徵往往對人類來說過於抽象。例如在影像辨識中,人類習慣用眼睛、嘴巴的相對位置,或是手指數量等特徵來解讀一張圖。深度學習模型卻可能會學習到一些抽象的形狀或紋理特徵,而這些特徵難以用人類語言描述。

深度學習模型通常採用分佈式表示(Distributed Representation)來編碼特徵,意思是將一個特徵表示為一個高維向量,每個維度代表特徵的不同方面。假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。對 AI 而言,這是理解世界的方式,但對人類來說,卻如同墨跡測驗般難以解讀。

假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。圖/unsplash

試想,AI 協助診斷疾病時,若理由是基於醫生都無法理解的邏輯,患者即使獲得正確診斷,也會感到不安。畢竟,人們更相信能被理解的東西。

打開黑盒子:可解釋 AI 如何運作?我們要如何教育 AI?

首先,可以利用熱圖(heatmap)或注意力圖這類可視化技術,讓 AI 的「思維」有跡可循。這就像行銷中分析消費者的視線停留在哪裡,來推測他們的興趣一樣。在卷積神經網絡和 Diffusion Models 中 ,當 AI 判斷這張照片裡是「貓」還是「狗」時,我需要它向我們展示在哪些地方「盯得最緊」,像是耳朵的形狀還是毛色的分布。

-----廣告,請繼續往下閱讀-----

其次是局部解釋,LIME 和 SHAP 是兩個用來發展可解釋 AI 的局部解釋技術。

SHAP 的概念來自博弈,它將每個特徵看作「玩家」,而模型的預測結果則像「收益」。SHAP 會計算每個玩家對「收益」的貢獻,讓我們可以了解各個特徵如何影響最終結果。並且,SHAP 不僅能透過「局部解釋」了解單一個結果是怎麼來的,還能透過「全局解釋」理解模型整體的運作中,哪些特徵最重要。

以實際的情景來說,SHAP 可以讓 AI 診斷出你有某種疾病風險時,指出年齡、體重等各個特徵的影響。

LIME 的運作方式則有些不同,會針對單一個案建立一個簡單的模型,來近似原始複雜模型的行為,目的是為了快速了解「局部」範圍內的操作。比如當 AI 拒絕你的貸款申請時,LIME 可以解釋是「收入不穩定」還是「信用紀錄有問題」導致拒絕。這種解釋在 Transformer 和 NLP 應用中廣泛使用,一大優勢是靈活且計算速度快,適合臨時分析不同情境下的 AI 判斷。比方說在醫療場景,LIME 可以幫助醫生理解 AI 為何推薦某種治療方案,並說明幾個主要原因,這樣醫生不僅能更快做出決策,也能增加患者的信任感。

-----廣告,請繼續往下閱讀-----

第三是反事實解釋:如果改變一點點,會怎麼樣?

如果 AI 告訴你:「這家銀行不會貸款給你」,這時你可能會想知道:是收入不夠,還是年齡因素?這時你就可以問 AI:「如果我年輕五歲,或者多一份工作,結果會怎樣?」反事實解釋會模擬這些變化對結果的影響,讓我們可以了解模型究竟是如何「權衡利弊」。

最後則是模型內部特徵的重要性排序。這種方法能顯示哪些輸入特徵對最終結果影響最大,就像揭示一道菜中,哪些調味料是味道的關鍵。例如在金融風險預測中,模型可能指出「收入」影響了 40%,「消費習慣」占了 30%,「年齡」占了 20%。不過如果要應用在像是 Transformer 模型等複雜結構時,還需要搭配前面提到的 SHAP 或 LIME 以及可視化技術,才能達到更完整的解釋效果。

講到這裡,你可能會問:我們距離能完全信任 AI 還有多遠?又或者,我們真的應該完全相信它嗎?

-----廣告,請繼續往下閱讀-----

我們終究是想解決人與 AI 的信任問題

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。因此,AI 既要「可解釋」,也要「能代理」。

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。圖/unsplash

舉例來說,當一家公司要做一個看似「簡單」的決策時,背後的過程其實可能極為複雜。例如,快時尚品牌決定是否推出新一季服裝,不僅需要考慮過去的銷售數據,還得追蹤熱門設計趨勢、天氣預測,甚至觀察社群媒體上的流行話題。像是暖冬來臨,厚外套可能賣不動;或消費者是否因某位明星愛上一種顏色,這些細節都可能影響決策。

這些數據來自不同部門和來源,龐大的資料量與錯綜關聯使企業判斷變得困難。於是,企業常希望有個像經營大師的 AI 代理人,能吸收數據、快速分析,並在做決定時不僅給出答案,還能告訴你「為什麼要這麼做」。

傳統 AI 像個黑盒子,而可解釋 AI (XAI)則清楚解釋其判斷依據。例如,為什麼不建議推出厚外套?可能理由是:「根據天氣預測,今年暖冬概率 80%,過去三年數據顯示暖冬時厚外套銷量下降 20%。」這種透明解釋讓企業更信任 AI 的決策。

-----廣告,請繼續往下閱讀-----

但會解釋還不夠,AI 還需能真正執行。這時,就需要另一位「 AI 代理人」上場。想像這位 AI 代理人是一位「智慧產品經理」,大腦裝滿公司規則、條件與行動邏輯。當客戶要求變更產品設計時,這位產品經理不會手忙腳亂,而是按以下步驟行動:

  1. 檢查倉庫物料:庫存夠不夠?有沒有替代料可用?
  2. 評估交期影響:如果需要新物料,供應商多快能送到?
  3. 計算成本變化:用新料會不會超出成本預算?
  4. 做出最優判斷,並自動生成變更單、工單和採購單,通知各部門配合執行。

這位 AI 代理人不僅能自動處理每個環節,還會記錄每次決策結果,學習如何變得更高效。隨時間推移,這位「智慧產品經理」的判斷將更聰明、決策速度更快,幾乎不需人工干預。更重要的是,這些判斷是基於「以終為始」的原則,為企業成長目標(如 Q4 業績增長 10%)進行連續且動態地自我回饋,而非傳統系統僅月度檢核。

這兩位 AI 代理人的合作,讓企業決策流程不僅透明,還能自動執行。這正是數智驅動的核心,不僅依靠數據驅動決策,還要能解釋每一個選擇,並自動行動。這個過程可簡化為 SUPA,即「感知(Sensing)→ 理解(Understanding)→ 規劃(Planning)→ 行動(Acting)」的閉環流程,隨著數據的變化不斷進化。

偉勝乾燥工業為例,他們面臨高度客製化與訂單頻繁變更的挑戰。導入鼎新 METIS 平台後,偉勝成功將數智驅動融入業務與產品開發,專案準時率因此提升至 80%。他們更將烤箱技術與搬運機器人結合,開發出新形態智慧化設備,成功打入半導體產業,帶動業績大幅成長,創造下一個企業的增長曲線。

-----廣告,請繼續往下閱讀-----

值得一提的是,數智驅動不僅帶動業務增長,還讓員工擺脫繁瑣工作,讓工作更輕鬆高效。

數智驅動的成功不僅依賴技術,還要與企業的商業策略緊密結合。為了讓數智驅動真正發揮作用,企業首先要確保它服務於具體的業務需求,而不是為了技術而技術。

這種轉型需要有策略、文化和具體應用場景的支撐,才能讓數智驅動真正成為企業持續增長的動力。

還在猶豫數智驅動的威力?免費上手企業 AI 助理!👉 企業 AI 體驗
現在使用專屬邀請碼《 KP05 》註冊就享知:https://lihi.cc/EDUk4
訂閱泛科學獨家知識頻道,深入科技趨勢與議題內容。

👉立即免費加入

-----廣告,請繼續往下閱讀-----
文章難易度
鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
解密離岸風電政策環評:從審查標準到執行成效,一次看懂
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/21 ・3546字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文由 環境部 委託,泛科學企劃執行。 

政策環評是什麼,跟一般環評差在哪?

隨著公共建設的規模越來越大,傳統的環境影響評估(EIA),難以應對當今層層疊疊的環境議題。當我們評估一項重大政策時,只看「單一開發案」已經不夠,就像評估一棵樹,卻忽略了整片森林。因此,政策環境影響評估(SEA)應運而生,它看樹,也看森林,從政策的角度進行更全面的考量與評估。

與只專注於「單一開發案」的個案環評不同,政策環評更像是一場全面性的檢視,強調兩個核心重點:「整合評估」與「儘早評估」。簡單來說,這不再是逐案評估的模式,而是要求政府在制定政策時,就先全面分析可能帶來的影響,從單一行為的侷限中跳脫,轉而聚焦在整體影響的視角。無論是環境的整體變化,還是多項行為累計起來的長期影響,政策環評的目的就是讓這些潛在問題能儘早浮現、儘早解決。

除此之外,政策環評還像是一個大型的協商平台,以永續發展為最高指導原則,公開整合來自不同利益團體、民眾與各機關的意見。這裡,決策單位不再只是單純的「評分者」,而是轉為「協調者」或「仲裁者」,協調各方的意見看法在這裡得到整合,讓過程更具包容性。

-----廣告,請繼續往下閱讀-----

政策環評並沒有所謂的「否決權」,而是側重意見的蒐集與整合,讓行政機關在政策推動時,能更全面地掌握各方意見。政策環評旨在建立系統化、彈性的決策評估程序(包含量化、特徵化等評估方式),也廣納社會面或民眾滿意度等影響因子,把正式與非正式的作法一併考量進去。再來,決策程序中能層層檢討、隨時修正,也建立了追蹤機制和成效評估標準(如環境殘餘效應、累積效應等),透過學習來強化決策品質與嚴謹度。就像一場球賽,隨時根據變化、調整策略。

這樣的制度設計,就非常適合離岸風電這類規模大、跨區域、影響層面廣泛的能源政策評估,讓我們可以在政策推動初期就想到整個工程對環境、產業發展與社會的諸多影響,也為後續政策執行奠定更穩固的基礎。

政策環評並沒有否決權,而是重在整合各方意見、量化影響以及建立追蹤與修正機制,這樣的制度設計便適用於離岸風電等大型政策評估。圖/envato

離岸風電為何需要的是政策環評?

離岸風電是能源轉型的重要策略之一,但這不是只在某塊空地上架幾個風車,而是要在廣闊的大海中進行大規模建設,牽涉的不僅是發電,還涉及海洋保育、航空交通、水下文化資產等議題,更與當地漁民的權益息息相關。

這樣的大型離岸風電工程,因海洋環境的風險和不確定性極高,很容易讓人擔心生態影響。如何在海洋生態保護和綠能發展之間找到平衡點?這就需要政策環評的把關,從多方檢視這些複雜的挑戰,確保政策推行既能穩妥,又能達成發電目標。

-----廣告,請繼續往下閱讀-----

2016 年 3 月,經濟部自願提出「離岸風電區塊開發政策評估說明書」,是臺灣首次針對再生能源政策所進行的政策環評。根據這份評估說明書,政府將採分期公告、逐年檢討的方式,每三年開放 0.5~1 百萬瓩(GW)的電量額度鼓勵業者投入開發。當時環保署(現為環境部)歷經九個月召開 2 次意見徵詢會議,蒐集環評委員、專家學者、相關機關、民眾等意見,最終於同年 12 月的環評委員會作出徵詢意見。這些協商和檢討的過程,讓政策「名正言順」,得以充分顧及各方利益與生態平衡。

共通性環境議題與因應對策

在「離岸風電區塊開發政策評估說明書」中,環評會議盤點了開發過程中共通的環境議題。

首先,對於海洋生態保育的重點,特別是對中華白海豚的保護。環評會要求風機基座必須距離白海豚棲地1公里以上,以減少對其生態的干擾。實際上,這項規範在後續的實務執行中更為嚴格,例如,福海二期示範風場已退縮到 2.5 公里外,臺電二期風場甚至退到 4.2 公里外,顯示政策環評確實發揮了實質作用。此外,針對施工期間的聲音干擾,要求施工需有 30 分鐘以上的打樁緩啟動時間,並限制聲量不得超過 180 分貝等。

針對鳥類保育,政策環評也訂立了具體規範。其中,包括風機之間必須留設 500 公尺以上的鳥類穿行廊道,並在施工期間避開每年 11 月至隔年 3 月的候鳥過境期。同時,為確保這些措施確實生效,工程方也被要求設置「鳥類活動監測系統」,持續追蹤、評估風場對鳥類的影響。

-----廣告,請繼續往下閱讀-----

此外,環評會也確立了「先遠後近」的開發原則,要求優先開發較單純的航道外側區塊,待累積足夠經驗及相關資料後,再進行近岸區域的開發。這項原則考量了近海生態系的複雜性,也顧到養殖漁業的漁民權益,展現出政策環評在平衡發展需求與環境保護上的價值。

新一代的審查機制:達成能源轉型及環境保護雙贏

為提升環評效率並確保審查品質,環境部參考過去離岸風電審查經驗,制定「風力發電離岸系統開發行為環境影響評估初審作業要點」,建立了全新的二階段審查機制。

環境部推動二階段審查機制,提升離岸風電環評效率與審查品質。圖/envato

這套新機制分為兩個階段。第一階段,就像「初步檢查」,由環境部依照檢核表進行初審,並由環評審查委員會執行秘書邀集 2-5 位環評委員進行初審,通過第一階段初審之業者,可取得經濟部遴選資格,其初審結果有效期為兩年,必要時可申請展延一年。接著進入「第二階段」,開發單位檢附目的事業主管機關核配的容量證明文件等資料,提供更詳細的環境影響說明書以進行實質審查。

檢核表明確規範了 15 大項審查事項、112 項檢核項目,涵蓋開發案的全生命週期。

-----廣告,請繼續往下閱讀-----

工程面,包含風機及海上變電站基礎設置、海域電纜路線規劃、陸域設施工程等硬體設施的規範。其中,風機基礎設置必須避開海岸保護區、河口、潮間帶等環境敏感區域,且須進行地震危害度分析。海域電纜部分,除特殊情形外,埋設深度至少須達 1.5 公尺,且不得跨越中華電信海底電纜 1 公里的範圍。

環境保護上,檢核表則對施工噪音管制訂立了明確標準。舉例來說,打樁期間警戒區 750 公尺範圍內的水下噪音不得超過 160 分貝,且必須全程採用最佳噪音防制工法。同時,每個開發案或聯席審查的風場,同一時間內只能進行一支基樁施作,而日落前一小時到日出前也不得啟動新的打樁作業。

環境監測計畫更是檢核表中的重點,分為「施工前、施工期間、營運期間」三階段,每個階段都規定了詳細的監測要求(包括海域底質監測、水下噪音監測、鯨豚目視監測等)。以鯨豚監測為例,每年需執行20趟次,四季中每季至少執行 2 趟次。此外,所有監測數據都必須上傳至環境部「環保專案成果倉儲系統」(https://epaw.moenv.gov.tw/)供各界查閱。

這套標準化的審查機制不僅解決了「同一風場可能有多家廠商重複調查或審查」的資源浪費,也透過明確的檢核項目,讓開發單位在規劃階段就能掌握更具體的環境保護要求。不僅如此,該機制亦確保了環境保護標準前後一致,避免不同案件之間標準不一。

-----廣告,請繼續往下閱讀-----

結語

透過新的審查機制,環境部正積極推動再生能源開發案的環評審查作業,在提升行政效率之餘,也確保環境影響評估的品質,支持臺灣的離岸風電開發及國家能源轉型政策,也做好把關。藉由標準化檢核表和二階段審查制度,期待能在推動能源轉型的同時落實環境保護。

為確保制度能持續精進,環境部每半年至一年會進行制度檢討,並持續公開所有環評書件於「環評書件查詢系統」(https://eiadoc.moenv.gov.tw/eiaweb/)。此外,環評會議召開前一週,也必須在指定網站公布開會訊息,讓民眾能申請列席旁聽或發表意見。透明化措施一方面展現了政府推動永續發展的決心,另一方面也確保全民能共同參與監督離岸風電的發展過程。未來,這套制度將在各界的檢視與建議中持續完善,為臺灣的永續發展貢獻心力,發揮環評作業的最大效益。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
2

文字

分享

0
3
2
精子從哪裡進入卵子會影響胚胎發育?——《生命之舞》
商周出版_96
・2023/10/20 ・2697字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

當我第一次驚喜瞥見打破對稱性的可能起源時,我驚訝地發現到這段歷程似乎很早就開始了,而這也為我運用綠色螢光蛋白追蹤細胞分化的研究鋪起了大道。卡羅琳娜與我想要進一步探索這個研究發現,所以我們提出了一個有關其終極源頭的簡單問題:精子進入卵子的位置是否對於胚胎一開始失去對稱性有任何影響?在線蟲與青蛙這類動物的胚胎中確實是這樣,但在哺乳動物(例如小鼠)的胚胎中也一樣嗎?

對稱藝術

當我們將生命的起源以動畫演繹出時,常常看到的影像就是精子設法進入沒有任何特徵的圓形卵子上,並融入其中。若情況是這樣的話,就很難看出精子進入卵子的位置是要如何對未來一切發育有所影響。在這個理想化的卵子上,任一處表面都與其他表面沒有任何差異。不過,當然還是存在有個參考指標,那個等同於「這邊是上面」的指標就是:極體。

圖/pexels

極體是從減數分裂的不對稱過程中所產生,細胞「骨架」在這個過程中會聚集以協助細胞進行分裂。這個細胞骨架稱為紡錘體,它會從細胞中心點往細胞邊緣移動,產生出一個大大的卵子與一個小小的極體。我們可以合理認為,紡錘體與染色體的移動可能打破了卵子的對稱性,也造成了擠壓極體的發育。許多人的確注意到極體最終總是會落在受精卵進行分裂的那個平面上。

理查.加德納這位我們之前見過的科學家,發現極體會附著在卵子上,它不只會確立受精卵首次分裂成兩個細胞的那個平面,它還會在幾天後確立出囊胚的對稱軸。這項發現讓我們有所啟發。這真的是因為卵子中的軸向資訊會一直持續到囊胚階段,還是有其他的因素會影響胚胎發育的對稱性?在我們進行科學研究的過程中,我與卡羅琳娜在當下這個時間點想要知道的是,精子進入卵子的位置是否也會影響胚胎發育,並提供第二個定位線索。

卵子上的座標——精子進入的位置會影響胚胎發育嗎?

就像在地表上某個地點跟北極的相對位置,可以定義所謂的經線,我與卡羅琳娜想要知道,精子進入卵子的位置是否也可以提供相對於極體位置的另一位置資訊。若真的是這樣,我們就能更精準確立進行首次分裂的那個平面。這感覺起來很合理,因為極體的形成與精子的進入位置都會重新排列之後會運用在卵子分裂上的細胞骨架。若不是這樣,分裂的那個平面與精子的進入位置之間就只有隨機的關係。

-----廣告,請繼續往下閱讀-----

以現代科技來說,我們很容易就可以解決這個問題。我們可以將這個過程拍成影片,來看看從精子進入卵子後到後續細胞進行分裂的幾天之間究竟發生了什麼事。但在我們開始研究的那個年代,不存在這樣的選項。我們無法拍攝小鼠胚胎從受精開始進入發育的影片,要等到幾天後胚胎進入囊胚階段才行。我們只能想辦法去標記精子進入的位置,以便可以追蹤它與受精卵在數小時後首次分裂的那個平面之間的關係。

圖/pexels

我一開始想著要用某種自然一點的東西,像是胚胎幹細胞這種非常微小的細胞,在卵子受精後馬上附著在精子進入點上,因為那時還可以看到進入點,但最後我有了更簡單的辦法:我們改用肉眼看不見的微小螢光珠。我們成功了,但我很後悔沒有給這些珠子取個像「微球體」這樣酷炫的科學名稱。當然,同領域人士不認同的不僅僅只是這些珠子要怎麼命名,但「珠子」這個名稱有種簡樸感,所以批評者會用這個名稱來貶低我們的研究,這就是我們得要付出的代價。

一開始很容易就能看到精子是從哪裡進入卵子的。它會留下一個名為受精錐(fertilization cone)的小小凸起。受精錐是由卵子的細胞骨架所建構,並由肌動蛋白的纖維所組成,它大約會凸起半個小時。這時間剛好足夠嵌入一至兩個珠子來標記位置。

我們將這些珠子浸到名為植物血凝素(phytohemagglutinin)的蛋白質混合物中,珠子就會具有黏性。植物血凝素常用於讓細胞聚集在一起。因為人的手不夠穩定,所以卡羅琳娜會以一隻機械手臂來拿取具有黏性的珠子,並將珠子放到卵子的表面上,同時還會以另一隻機械手臂牢牢固定住剛受精的卵子。

-----廣告,請繼續往下閱讀-----
圖/pexels

雖然珠子很小,直徑只有 0.0001 至 0.0002 公分,但在紫外線的照射下看起來大多了,亮綠色的點讓我們很容易就可以追蹤它的命運。觀察受精卵的發育時,我們發現珠子最終會來到細胞首次分裂所產生的兩個細胞之間的邊緣,或者是非常接近這個地方。

受精卵的分裂平面真的是由精子決定的嗎?

我們一直都在挑戰我們的思考與發現。上述情況有可能是任何落在卵子表面的珠子都會掉進分裂溝(cleavage furrow)中。所以為了確認,我們進行了一項對照實驗,卡羅琳娜將另一顆類似的珠子隨機放在卵子表面的其他地方。令我們欣慰的是,這顆珠子最終沒有掉進細胞分裂時所產生的分裂溝中。對我們而言,這表示精子進入卵子的位置以某種方式「被記住」了,並且成為受精卵偏好進行分裂的地點。換句話說,若我們是對的,受精卵之所以會在這個平面進行分裂,是因為偏好(biased)而非隨機(randomly)。

我們持續獲得了各種新發現。在胚胎從兩個細胞發育成四個細胞的階段中,帶有精子進入標記的那個細胞,會傾向於先進行分裂。這個細胞的命運之所以會改變,是因為精子帶入的物質滋養了它嗎?受精的三天後,精子進入標記會留置在囊胚兩部位之間的邊緣處,一個部位是含有會形成胚胎本體的胚胎部分,另一個則是胚外部分。

這表示了,兩細胞胚胎內的其中一個細胞較容易發育成胚胎,另一個則傾向於變成胚外部分。我們感到震驚。我們觀察影像好幾個小時,甚至好幾天。我一開始根本不敢相信這些發現,所以我請卡羅琳娜一再重複進行實驗,打破早期對稱性的證據怎麼這麼簡單,會不會太簡單了?

-----廣告,請繼續往下閱讀-----

可以理解地,對此感到懷疑的人士可能會吹毛求疵地表示,決定分裂平面的不是精子進入點,而是將珠子嵌在進入點的這個動作。為了驗證這個可能性,我們進行了許許多多的對照實驗,我之後會提到。我們已經確認過,將珠子放置在受精錐以外的任何一個地方,都不足以決定分裂的平面。但我們還有諸多其他事項要一而再、再而三的確認,因為我們必須很確定。

這張圖片的 alt 屬性值為空,它的檔案名稱為 0823--300.jpg

——本文摘自《生命之舞》,2023 年 9 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
商周出版_96
119 篇文章 ・ 362 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。