Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

我是誰?我在哪?該擺脫腳本化行為了!——《放空的科學》

azothbooks_96
・2019/04/08 ・3126字 ・閱讀時間約 6 分鐘 ・SR值 477 ・五年級

培養分析思維或彈性思維的第一步是培養思考──更注意你何時採用自動化腳本,並在自動化腳本效果不佳時,放棄那個腳本。

腳本化行為:看似用心實則無心的演出

一九七○年代末期,心理學家艾倫.蘭格( Ellen Langer )和兩位同事寫了一篇開創性的論文,提出以下的問題:「多少行為可以在無意間進行?」他們最後發現很多行為都是如此,誠如那篇論文的標題所示〈看似用心的無心作為〉。

自動化腳本。圖/ picpedia

我們都知道有時我們是在大腦「放空」的狀態下做事。但蘭格那篇論文令人震驚的是,那種腳本化的行為在我們「複雜的社交互動」中也很常見。所謂的「複雜」,蘭格不是指刻意演出或密謀什麼,而是指社交互動攸關著某件事,即使只是小事也無妨。蘭格與同仁指出,我們面對熟悉的情況時,通常會根據既定的模式,不假思索地行動,而且由於當前情況的細節大同小異,我們幾乎不太調整行為。

測試腳本化行為的實驗:插隊影印

依循無心的腳本與他人互動。圖/ pixabay

那篇論文裡提到一個實驗,研究人員坐在桌邊,附近有一台影印機,只要看到有人走過去影印東西,他就走上前說:「抱歉,我這裡有五頁,可以讓我用影印機嗎?」六十%的人讓他影印了。但是那個人對另一群人說:

「抱歉,我這裡有五頁,可以讓我用影印機嗎?因為我趕時間。」

他這樣問時,九十四%的人讓他影印了。

-----廣告,請繼續往下閱讀-----

就像前述的母鵝一樣,這看似一種經過深思的行為。彷彿第一種情況中那些拒絕讓他影印的四十%在聽到理由後,得以權衡個人需求的急迫性與那個人的急迫性,因此做了不同的反應。

但是研究人員也實驗了第三種狀況,那個人問道:「抱歉,我這裡有五頁,可以讓我用影印機嗎?因為我想印幾頁。」這個版本的說法看起來和第二種問法的架構一樣:

都是由「敘述」、「要求」、「理由」構成的句子,但內容不同。這次的「理由」很空泛,那句「因為我想印幾頁」並未幫前面的敘述「我這裡有五頁」補充任何資訊。

如果那些影印者真的是根據「要求」是否合理來判斷自己該怎麼回應,第三種問法應該和不給理由的問法結果一樣(亦即僅六十%的人讓他影印)。但是,如果影印者是依循腳本行動,而那個腳本設定是「只要要求者給出理由──只要講了『因為……』,不管那個理由有多空泛──就答應他的要求」,那麼第三種問法的成功率應該會接近第二種狀況,亦即有九十四%的人讓他影印。實驗結果顯示,那個空泛的理由使九十三%的人讓他先影印。顯然那些被空泛理由說服的人是依循著「無心」腳本行事。

夫妻吵架都是因為腳本化行為?

這項研究和其他的研究顯示,儘管你以為自己在社交互動中很少依循腳本,但多數人其實經常這樣放空大腦做事。事實上,臨床心理學家在現實世界中隨時都可以看到腳本化的行為,尤其是在人際關係的動態中。例如,人際關係研究人員發現,有些夫妻經常採用「要求/退縮」( demand/withdraw )模式,即使這種模式對婚姻有害,他們依然會那樣做。

-----廣告,請繼續往下閱讀-----
老婆總是在生氣。圖/ Emotions Dangerous Lego Anger Angry

當夫妻中的一方(通常是女方)希望對方改變,或想跟對方討論人際關係的議題時,就會出現這種模式,那就是「要求」。那個要求會自動觸發很多男性的「退縮」反應,以避免討論。女性看到對方退縮時,那又會引發女性強化其請求,結果導致衝突加溫。

同樣的,人際關係中的一人可能做某件事而惹毛對方,引發可預測的憤怒反應。不幸的是,那怒氣往往又反過來觸發第一人的反應,他覺得對方的怒氣是衝著自己來的,而不是因為自動化腳本而產生的無心反應。結果又跟上面一樣,導致雙方的摩擦加劇,陷入熟悉的衝突與爭論循環。

如何擺脫腳本化行為?用六感來培養分析思維

治療師告訴患者,擺脫那種循環的方法是:學會發現那種情況的發生,接著一起打破那個腳本。就像那些影印的人那樣,他們也可以注意自己的反應是否出現自動化的現象。那就像你開車上班時,聽到救護車的警笛聲或遇到某些異常狀況,你會馬上掙脫平常的放空模式,用心去面對當下的情況。

更廣義地說,培養分析思維或彈性思維的第一步是培養思考──更注意你何時採用自動化腳本,並在自動化腳本效果不佳時,放棄那個腳本。因為當你有自知之明時,才能中斷不合適的自動化腳本。蘭格稱這種自知之明為覺醒( wakefulness ),如今心理學家稱之為正念( mindfulness ),那是根源於佛教冥想的概念。

-----廣告,請繼續往下閱讀-----
你吃了什麼會決定你是誰。圖/pexels

美國心理學家威廉.詹姆斯( William James )說:「相較於應有的潛能,我們只處於半醒狀態。」正念正好和那種半醒的狀態相反。你用心的時候,會充分注意到當下的觀感、知覺、感受、思考流程,並且冷靜地接受它們,彷彿從遠方觀看一樣。正念需要投入的心力並不難,但是就像改善姿勢一樣,需要不斷地下功夫,才會有效果。幸好,最近有很多研究顯示,正念可以透過一些簡單的大腦練習來培養。下面我會介紹一些比較知名的練習,有興趣的人可以試試看:

  1. 掃描全身。以舒服的姿勢坐下或躺下來,這個活動只需要十到二十分鐘。鬆開緊身衣物並閉上眼睛。深呼吸幾次,把注意力集中在整個身體上,感受到身體在地板或椅子上的重量,以及身體接觸地板或椅子的感覺。然後,從腳開始,意識到身體每個部分的感覺。你的腳是溫的、還是冰的?繃緊的、還是放鬆的?你感覺到任何刺激、不適或疼痛嗎?慢慢地讓注意力移到腳踝、小腿、膝蓋、大腿、臀部,然後移上軀幹。接下來,把注意力集中在手指上,然後往上移至手臂,接著移到肩膀、脖子、臉部、頭部和頭皮。最後,逆轉整個流程,讓注意力慢慢地順著身體往下移動。
  2. 注意想法。就像掃描全身一樣,這也可以在二十分鐘內完成。首先,閉上眼睛,深呼吸幾次。把注意力放在呼吸上,直到你靜下心來。接著,放鬆注意力,讓思緒流入。以超然的方式注意每個念頭,不做任何判斷,也不參與:那是一種感覺、一種心像( mental image )、還是一種內在對話?那個念頭是單純散去,還是導向另一個念頭?你在練習過程中遇到難以理解的念頭時,也接受並觀察那個念頭。
  3. 用心進食。這個練習更短,但很有趣,應該只需要五分鐘。你可以把它套用在你喜歡的任何食物上,大家常拿葡萄乾做練習,我則是趁這個機會吃一片巧克力。以下是我的做法,一開始就像其他的練習一樣,先深呼吸幾次,清除腦中雜念。接著,把巧克力放在手上,注意著它。如果它是包著,先感受那個包裝。在指間轉動,感受外包裝的質地。接著打開包裝,感受巧克力的質地,注意它的外觀。將它拿到鼻尖,聞它的香味,注意身體對它的反應。現在慢慢地拿到嘴邊,輕輕地放入嘴裡,但不要咀嚼或吞嚥。閉上眼睛,把舌頭移到巧克力上,注意那個感覺。注意舌頭嚐到的滋味和感受。在嘴裡移動著巧克力,若是出現想要吞下它的慾望,只要注意它就好。巧克力融化時,慢慢地吞下,持續注意那個感覺。

重要的是要訓練大腦

其他的練習還有很多種,你可以上網輕易找到。

你挑選哪種練習並不重要,但根據研究,只要每週做那個練習三到六次,一個月後,你避免自動反應的能力會有顯著的改善,大腦的其他「執行功能」也會有明顯改善,例如專注力、把注意力從一項任務轉移到另一項任務的能力。那些技能可以幫你更有效地掌控思維的運作,也可以讓你更明察生活中遇到的議題和問題。

 

 

 

摘錄自《放空的科學:讓你的理性思維休息,換彈性思維開工,啟動大腦暗能量激發新奇創意》,2018年10月,漫遊者文化出版

-----廣告,請繼續往下閱讀-----

 

 

-----廣告,請繼續往下閱讀-----
文章難易度
azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
NCC 公民培力課程 邀您一同打造數位時代的媒體素養
鳥苷三磷酸 (PanSci Promo)_96
・2023/11/15 ・530字 ・閱讀時間約 1 分鐘

本文為 國家通訊傳播委員會廣告

國家通訊傳播委員會(NCC)因應數位匯流發展,為促進通訊傳播產業健全發展,保障消費者及尊重弱勢權益,持續推動「公民培力推廣計畫」,鼓勵廣電媒體及公民團體運用既有資源,協力推動全民媒體素養,以串連其影響力至閱聽眾端,並於今(112)年度規劃「認識媒體」、「防制假訊息」、「性別平權」及「公民新媒體內容產製」等議題,增進社會大眾對於通訊傳播產業的認識。

今年度藉由與廣電媒體、公民團體等合作,包括公視、法律白話文運動、正聲廣播、新聲廣播、鳳鳴廣播、陽明山電視和全聯電視等單位,於今(112)年 7 月至 12 月在北、中、南、東部地區舉辦 19 場媒體識讀活動,包括防制假訊息相聲演出、媒體素養營隊、參訪公視等,針對不同年齡層及族群設計互動課程,將媒體素養教育的種子向下扎根,提高全民媒體素養,打造更優質的社會環境。NCC 誠摯邀請銀髮族、兒少、身心障礙者、新住民及社會大眾一起參加,培養正確閱聽習慣及獨立思考能力,提升公民素養,進而創造更健全的媒體環境,報名方式及活動內容詳見活動網站

-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

28
1

文字

分享

0
28
1
大科學人專訪|職業棋士黑嘉嘉:台語課我考了一百分,事實上我一句台語都不會講
LIS_96
・2023/01/01 ・2006字 ・閱讀時間約 4 分鐘

自己可以選擇想做的事是很棒的事

Q:黑嘉嘉在國小、國中、高中分別遇過什麼「有成就感」或是「特別挫折」的經驗

我的媽媽是數學和英文老師,因為姊姊國中要開始自學,我就跟著姐姐自學,後來國中就到美國讀書,小時候媽媽給了我很多的學習資源,比方說圍棋。

我在美國念中學是兩點半就下課,學業滿輕鬆的,每週五學校規定老師不可以給學生出作業,週末要好好去玩,禮拜一會比較晚上課,整個設計都是非常人性化。我們有一堂課,是可以自己選擇要上什麼,像是電腦、合唱團唱歌、美術。這三堂課是妳可已自己選擇要上哪一堂課,這樣可以自己選擇是很棒的事情!

整個求學過程算是滿快樂的,應該算是滿順利的。

沒有環境就自己創造

Q:你覺得什麼是學習過程中最重要的關鍵?

我覺得有興趣是最重要的,我到美國之後,是完全沒有圍棋的環境,在美國找不到圍棋老師,也找不到會下棋的任何人,我有點靠著自學,在網路上自己找對手下棋,自己看棋譜,自己覆盤。因為我對圍棋很有興趣和熱情,所以我願意花很多間,哪怕我沒有環境,我也自己創造環境給自己。

-----廣告,請繼續往下閱讀-----
黑嘉嘉憑著對圍棋的熱情,創造學習的環境給自己。圖/Envato Elements

除了學習動機獨立思考和勇於嘗試同等重要

Q:自學的過程中是否遇到挫折和挑戰?又如何解決困難和挑戰?

我覺得當我在台灣我有圍棋老師的時候,我發現老師說什麼,我就聽什麼,沒有真的理解。比方老師說要下這裡好,我不知道為什麼,我下次就下這裡,但我沒有真的就理解為什麼要下這裡,到美國沒有老師,我就必須全部自己思考,那為什麼下這裡呢?到底好在那裡?我就開始不下這裡,看看會發生什麼事,在這一次次的失敗中學習,自學的過程當中會發現很多過去沒有想過的問題。

除了動機之外「獨立思考的能力」、「嘗試」也同等重要,得自己思考和理解過後才會變成你自己的,如果硬背可能很快就忘記了!

培養獨立思考的能力,並且從嘗試中學習。圖/Envato Elements

小朋友能夠擁有選擇的權利

Q:給台灣教育的建議?

就我過去在台灣唸小學的經驗,我覺得最大的問題就是我會被強迫去背很多東西,這些東西考完試之後就忘光了,之後也是完全不會用到,還有一次台語課我考了一百分,事實上我一句台語都不會講,我就覺得很離譜,一句都不會講怎麼會考到一百分,這個情況是不正常的,不應該出現這樣的情況,運用應該是最重要的,不應該是我考了一百分覺得自己很棒,但那應該是要有慚愧的心情,我考了一百分但我一句台語都不會講。應用才是我覺得更重要的事情!

我會希望小朋以能夠有更多選擇的權利,他們可以選擇喜歡什麼,自己想要學習什麼,也喜望他們能夠有更多獨立思考的能力,這也是需要老師去帶領他們,學習獨立思考。

-----廣告,請繼續往下閱讀-----
需由老師帶領孩子,學習如何獨立思考。圖/Envato Elements

響應本次「LIS 第二季大科學計劃」, 黑嘉嘉分享給我們的大科學人宣言:

❛❛ 人生如棋,在 19 X 19 的棋盤宇宙中,學習處事真理;落子無悔,每個選擇都牽動著下一個結果。  ❜❜  ——黑嘉嘉

人生如棋,落子無悔,是黑嘉嘉喜歡的圍棋格言,棋盤上的道理都是可以運用到科學和生活當中。在這邊也跟大家分享「黑嘉嘉的圍棋線上教室」最近剛好滿一週年,科學是生活,生活是科學,如果你對棋盤中的思考模式想進一步了解,歡迎大家報名體驗,有成人和小朋友的課程可以試上哦。

邀請您一同成為各行各業中的大科學人,您的捐款將支持「科學公益教材」的穩定開發,一起 支持台灣科學教育,讓孩子從小開始像「科學家一樣思考」,帶著自信長大成為各行各業中「 永保好奇」、「邏輯思辨」的大科學人!

【LIS 大科學計畫 ✦ 第二季】|暖心上線 ▸▸▸▸▸▸▸
❛ 教育不只是老師的事,這是我們的任務,下一個世代的科學史,現在就得開始寫起! ❜
募資倒數 30 天,尚缺 60 萬元定期定額製作啟動金
每月 523 小額捐款,支持全台十萬名孩子都期待的科學教材 http://bit.ly/3joDOC7
#參與募資成為大科學人,#解鎖泛科學贈送的神祕好禮關注 LIS 最新消息歡迎加入 FB 社團「LIS大科學人製造所

-----廣告,請繼續往下閱讀-----
LIS_96
22 篇文章 ・ 11 位粉絲
LIS ( Learning in Science )情境科學教材,成立於2013年7月,是一個非營利組織,致力於為國中小自然教師及學生,設計有別於填鴨教育的科學教材,協助教師進行STEAM和科學素養導向的教學,讓教師更簡單地進行教學創新,幫助更多孩子找回對科學的學習動機,並培養解決問題的能力。 在 Youtube 頻道【LIS情境科學教材】上,我們會即時更新所有LIS教材的影片,而完整的教案、學習單,亦同步上傳於【LIS教材平台網】歡迎您前往瀏覽完整內容。