0

0
0

文字

分享

0
0
0

這就是男人喜歡女人低著頭向上看,而女人喜歡男人抬著頭往下望的原因

鄭國威 Portnoy_96
・2010/12/02 ・356字 ・閱讀時間少於 1 分鐘 ・SR值 567 ・九年級

如果你跟我一樣常常看網路上的美女自拍的話,或許也對於為何美女們總是擺出低著頭向上看的姿勢感到好奇。Darren Burke與Danielle Sulikowski兩位澳洲的人類行為與心理研究學家針對「視覺觀點」與「兩性異形」的課題進行了研究,並在Evolutionary Psychology上發表了研究發現[pdf下載],他們設計了幾組3D臉部動畫照片,然後將臉孔的角度傾斜,再讓受測者選出他們認為最有男子氣概或女人味的圖片,他們發現,女人低著頭向上看被認為最有女人味,而男人抬頭往下望則最能顯出男子氣概。研究認為這與演化生物學有關,就跟貓會把背拱起來、蜥蜴會用後雙足站立顯示自己的強大一樣,抬頭可以顯示主導力量,而低頭則顯示順從。男女之間身高的差異讓男性直覺認為低著頭向上看自己的才是好女人,反之亦然。

文章難易度
鄭國威 Portnoy_96
247 篇文章 ・ 710 位粉絲
是那種小時候很喜歡看科學讀物,以為自己會成為科學家,但是長大之後因為數理太爛,所以早早放棄科學夢的無數人其中之一。怎知長大後竟然因為諸般因由而重拾科學,與夥伴共同創立泛科學。現為泛科知識公司的知識長。

3

33
7

文字

分享

3
33
7
【2021 年搞笑諾貝爾:物理獎】AT 力場全開!如何在擁擠的車站通道中不被別人撞到?
超中二物理宅_96
・2021/09/30 ・6652字 ・閱讀時間約 13 分鐘

並沒有,但朗之萬公式是今天的主角。

這兩年全世界都被 COVID-19(特殊嚴重傳染性肺炎、新冠肺炎、武漢肺炎)疫情搞得雞飛狗跳。除了疫苗之外,「口罩、洗手、社交距離」堪稱「物理防疫三神器」。我們剛度過了第二個疫情下的中秋假期,看到各大交通轉運樞紐人山人海的群聚,不禁讓人擔心,擠成這副德性,樣怎麼保持社交距離啊?

最近頒發的 2021 年「第 31 次的第一屆」搞笑諾貝爾物理獎,也跟「社交距離」有關:在行人十分擁擠的通道上,大家如何互相閃躲以避免相撞,並且順利通行?

疫情前,大家在生活中碰到這種情境的經驗應該很頻繁,反正就順著人流走,有人擠過來過互相閃一下(然後心裡暗譙一下…有時候啦),經過一個不怎麼舒服的過程後,通常能順利通過。

但是這種在生活中看起來簡單的過程,有沒有辦法以物理學來理解呢?

圖/Pixabay

物理學的主流是「化約主義」:希望用最簡單的理論來解釋各種現象。例如古典物理中用一個牛頓第二定律「F = ma」來解釋物體如何運動,用馬克斯威爾的四條方程式解釋一切電、磁與光的現象。物理學家的終極目標就是找出可以用一條方程式理解整個宇宙的過去、現在與未來的「萬物理論(The Theory of everything)」,所謂的萬物,當然是包含「人類行為」在內囉!

但是其他領域的學者可不吃這一套!比如說「人類的社會行為」,牽涉到神經科學、心理學、社會學等領域,每個領域都十分複雜,怎麼可能用物理學的化約主義來研究呢?

物理學家才不管這些,先做了再說!荷蘭 Eindhoven 科技大學、加州州立大學長灘分校以及義大利 Vergata 大學組成的研究團隊,探討了「擁擠的車站內通道的行人動力學」。其中加州州立大學的成員,是來自台灣的女科學家 Chung-min Lee 教授。

遊戲機變成高效的姿態感測器!

研究者將四部微軟電視遊樂器 X-BOX 用來捕捉玩家身體姿態動作的影像捕捉週邊設備「Kinect」裝設在 Eindhoven 火車站的通道上方,用以記錄通過這個通道的人群動態。這條通道一頭是市中心,另一頭則是巴士總站。

圖一:(a) Eindhoven 車站的通道平面圖,以及 Kinect 感測器(K)配置。(b) 實景照片,上方白色橫樑可見四支 Kinect 感測器。

利用這四部 Kinect 拍攝到的行人影像,搭配影像辨識以及追跡演算法,可以同時標定每個進入畫面的行人,並且一路追蹤其軌跡直到離開畫面為止。整套系統從 2014 年 10 月到 2015 年 3 月,不間斷的記錄了六個月的時間,一共得到大約 500 萬人次的行人軌跡。

數據太複雜?別擔心,物理學家最擅長「化約」了

這些紀錄是貨真價實的複雜人類行為:有的是勇往直前一直線,有些左右搖擺,有些因為某些原因走到一半掉頭,也有真的就跟別人撞成一團的…物理學家如何發揮「化約主義」本色,將這些複雜的行為化簡成可以分析的數學形式呢?

研究團隊採取的方法是用將這長達六個月,累計數百萬行人來來去去的影片轉換成一個由一組「節點」(node)以及節點與節點之間的連線(edge)所組成的「圖」(graph)。

圖中每個節點都代表一個行人以及通過通道時的相關資訊,如行徑方向與軌跡長度。如果兩個行人(節點)在同一時間出現在同一畫面中,則這兩個節點就用線連起來,這條線的資訊包含它連結了哪兩個節點、兩節點間最大與最小的距離、同時在畫面上的時間等等。

圖二:將影像轉變為圖形,每個節點(以帶數字的圓圈表示)都是一個行人,如果兩個行人同時在鏡頭裡就會有一條連線。(a) 從影像轉來的原始圖形示意圖,這個圖可以分成四個子圖。(b) 把雖然有同時入鏡,但是距離太遠,不太可能會互相影響的兩個節點間的連線去掉(以虛線表示),讓圖形更進一步簡化。(c) 「只有一條線連結兩個節點」的子圖。(d) 行進方向相同,不需考慮迴避碰撞,所以把連結拿掉。(e) 最後剩下的「雙節點子圖」。圖/參考文獻 1

假設一個情境如下(請拿出您的耐性,搭配圖二 (a) 看):天剛亮時第 ① 個行人被攝影機捕捉到,接著第 ② 個行人跟在①後面進來,① 離開畫面後,③ 跟 ④ 分別從兩側走進來,在 ② 跟 ③ 離開畫面後,一班火車進站 ⑤⑥⑦ 先後進入畫面,然後人都離開了,中間的空檔只有 ⑧ 獨自通過,接著又有一班火車進來,⑨~⑫ 一起入鏡,最後一個離開鏡頭的 ⑫ 出鏡前瞬間 ⑬ 進來了,⑫ 離開後,⑭⑮ 進入,接著 ⑬⑭⑮ 先後出鏡,然後 ⑯ 獨自通過。

看起來有點煩,對不對?

不過轉換成圖二 (a) 的表示法,是不是就一目了然了呢?這就是「化約」的威力。即使如此,六個月累積下來的圖,上面會有 500 多萬個節點,節點間的連線數目可能上千萬,還是非常複雜。不過我們可以把這一大張圖拆成幾個「子圖」(subgraph):每個子圖包含的節點可以靠彼此的連結連成一片,不同子圖之間則完全沒有連線。

以圖二 (a) 為例,可以分成四個子圖:一、節點 ①~⑦;二、節點 ⑧;三、節點 ⑨~⑮;四、節點 ⑯。只有子圖內部的節點可能彼此有交互作用。

但是即使把整張幾百萬個節點的超大圖拆成許多節點數較少的子圖,可能還是很難分析,像圖二 (a) 的「子圖一」包含了七個節點,要分析這七個行人怎麼互動,怎麼彼此調整行進的路線,還是太複雜了。考慮實際狀況,可以再進一步簡化:

兩個人即使同時出現在畫面中,如果距離很遠或接觸時間很短,幾乎不可能影響彼此,就把這兩人之間的連線拿掉,比如前面的例子「⑫ 出鏡前瞬間 ⑬ 進來了」的情形,就可以拿掉連線。如圖二 (b) 所示,這種太弱的連線(以虛線表示)拿掉後,會把圖形分成更多、更小的子圖。以圖二 (b) 來說,變成 8 個子圖,其中最大的也只有四個節點。

接下來,這篇論文只探討最簡單的兩種子圖:只有一個節點的,如圖二 (b) 中的 ⑧、⑬、⑯,以及兩個節點的 ①②、③④、以及 ⑭⑮,如圖二 (c)~(e)。其中 ①② 為同方向,不需要迴避相撞,所以也把這條連結拿掉,就變成各自落單的單一節點子圖了。

實際上「單節點子圖」一共有 47122 個,「雙節點子圖」一共有 9089 個。

A 編按:圖2 (a) 上「節點上的數字」代表「進入鏡頭的順序」,「節點間的連線」代表「兩人是否同時出現在同一畫面」,透過這種方式組成的圖 2 (a),可以明確區分出那些序列是有可能相撞的。

接著再細部分析每個連線,如果距離太遠或接觸時間太短,就不可能產生碰撞或閃避行為,將符合此條件的連線設為「虛線」,形成圖 2 (b)。

最後考慮圖 2 (b) 內,每個有實線連結的節點行徑方向,如果是兩節點的行徑方向相同,就不會發生碰撞或閃避行為,可以排除不用分析,得到圖 2 (e) 的圖。

雖然我們物理學家經常吹噓物理很厲害,不過事實上我們能夠解出精確答案的力學問題,只有「一個粒子的運動」跟「兩個彼此交互作用的粒子的運動」而已,碰到「三個彼此交互作用的粒子的運動」就沒輒了,只能有近似解或是用數值模擬,所以才會有像「三體」這種科幻作品的出現啊!

三個、四個、五個…粒子的問題物理學家不會算,但是當粒子數目成千上萬或更多時,「熱力學」就登場了,物理學可以回答「很多粒子的平均行為」,並且拿來解釋熱、溫度與壓力等現象。

回歸正題,人類行為顯然比質點複雜太多,所以先從「一個人」跟「互相作用的兩個人」的行為模式著手,以此為基礎來探討「很多人的集體行為」,是相當合理的策略。

行人的軌跡其實不是直線,曲折的像是水裡的灰塵

先從最簡單的「一個人的動力學」開始,在沒有其他人的影響下,行人的軌跡大多會呈現頻率約 1 Hz(每秒一次)的小幅度「抖動」,這個很容易理解,因為這大約是人類的步伐頻率;除此之外,少數軌跡也會有比較大的晃動,甚至轉頭往回走的情形。研究團隊發現,這個行為模式跟「布朗運動」——把花粉、灰塵這些細小的物體放在水中,會被亂跑的水分子撞來撞去也跟著亂跑——類似。

既然如此,就用解釋布朗運動的「朗之萬」方程式(Langevin equation,對,就是那位跟偉大的瑪麗‧居禮傳出緋聞的朗之萬)試試看吧!

圖/Pixabay

所謂的朗之萬方程式其實也很簡單,就是在物體「本來的運動傾向」之外,加上「流體的阻力」,以及「隨機的力量」。

什麼是這些行人「本來的運動傾向」呢?因為這是一條連通兩端的通道,不管是為了節省力氣或趕時間,絕大部分的人都是沿著平行通道的方向從一端以最短距離走向另一端,而不會斜著走;其次是多數人用正常速度走,但也有相當比例的人因為趕時間是快走或小跑步,其平均速率分別為每秒 1.29 與 2.70 公尺(換算成時速是 4.64 與 9.72 公里);最後就是兩個方向都有人走。以上這些「運動的傾向」,可以寫成牛頓第二運動定律的方程式。

接著是「流體的阻力」,當行人開始偏離原來的行進路線時,會受到一個與垂直原方向的速率成正比的阻力,要將這個人「推」回原來的路線。

各位在像台北車站這類擁擠的走道上時可能有注意到:雙向行人會構成「層流」的結構,走同一個方向的人自動排起來列隊前進,這是阻力較小,也會比較省力的走路方式,偏離你所在的隊伍,就可能跟隔壁的隊伍發生摩擦甚至碰撞而難以通行,所以除非有強大的改變路徑的原因,不然我們自然就會回到原來的路徑上。

最後就是「隨機的力量」,我們周圍的其他行人隨時都有狀況,停下來拿東西的、路線突然歪掉的、腳扭了一下、忘記東西回頭的…我們必須眼觀四面,耳聽八方,隨時對這些狀況做出反應,以避免可能的衝撞,同時也造成路徑的改變。

寫下了運動方程式後,就可以在電腦裡面進行模擬,然後來跟攝影機拍到的行人真正的行為比較。結果出來了,人類的行為,可能沒有比空中的灰塵,水中的花粉更高明……

圖三:行人在 (a) 平行通道人流方向速率、(b) 垂直於人流方向的速率、與 (c) 偏離路徑的程度的統計分布。實際觀察結果(紅點)與電腦模擬數據(黑圈)的比較。 圖/參考文獻 1

圖三為「一開始朝著巴士站方向走」的那些「單一節點」(沒有受到旁人影響)的運動狀況統計,紅點是攝影機拍到的真實行為,黑色圈圈是朗之萬方程式模擬的結果。

圖三 (a) 為平行通道方向的速率分布(本來的運動傾向),可以發現真實行為與模擬結果相當吻合!最多人是用秒速 1.29 公尺前進,有少數人是用跑的,所以在超過秒速兩公尺處也有一個小高峰,還有極少數的人會往回走(速率是負的),唯一沒抓到的特徵是在速率為零(停止)的附近。因為行人偶爾會因為種種原因而在路上停下來一段時間,但是布朗運動中的微小粒子只有在轉向的瞬間才會測得速率為零。

圖三 (b) 為垂直於行進方向的速率(流體的阻力),圖三 (c) 為偏離原來行進路線的距離(隨機的力量),兩者也都相當吻合。

結論是:如果行人的密度相當稀疏,不需要互相閃避時,行人的行為基本上跟水中的花粉進行的布朗運動很類似,可以用朗之萬方程式模擬出來。

接下來,就是考慮「兩個人互相靠近,需要互相迴避,但附近沒有其他人攪局」,也就是如圖四的狀況。

圖四:兩個互相接近的行人彼此閃避的示意圖。灰色實線是各自原來的預定路徑,黑色實線是真正走的路線,會有點隨機擾動,但基本上跟預定路徑同方向,(i) 發現彼此可能相撞之後,開始調整路徑,改走虛線,到 (ii) 時兩者靠得最近,此時距離為 d,(iii) 擦身而過後進入互相遠離,又會把路徑調整到與通道平行的方向,但是跟原來的預定路徑有個平移。 圖/參考文獻 1

圖四中互相靠近的兩人,原本的預定路徑,也就是兩條灰色實線的距離太近,如果堅持往前走就會撞在一起,所以靠近到某一個距離就會開始調整方向,把路徑距離拉開避免碰撞(現實中還會有兩個人很有默契的往同一邊閃、再同時換邊、再同時換邊……一直閃不開的爆笑場景,這篇論文中倒是沒有討論),然後再互相遠離。

由於真實的路徑歪七扭八,加上每個人開始轉彎的時機也不盡相同,所以我們再度發揮「化約主義」的精神,把圖四簡化成圖五。

圖五:AB 兩人互相接近、閃避、遠離的簡化示意圖。 圖/參考文獻 1

我們採用直角座標系,把通道方向(也是人流移動的分向)定義為 X 方向,垂直 X 的為 Y 方向,當大家都沿著 X 方向移動時,「會不會碰撞」是由 Y 方向的距離所決定。當兩人進入畫面時,兩條路徑的距離為 Δyi,兩人擦身而過時的距離為 Δys,遠離後的路徑距離為 Δye

在物理模型方面,得在「一個人的朗之萬模型」裡面加上「兩個人的交互作用力」,這個力分為兩部分:

  1. 「遠遠看到前方有人走過來該準備閃了」的「長程力」
  2. 「靠快撞到了趕快閃」的「短程力」

兩者都可以用數學函數寫出來加進方程式,成為「兩個人的朗之萬模型」。

研究團隊量了所有「雙節點子圖」的 Δyi,Δys,Δyie;同時也以「兩個人的朗之萬模型」在電腦上模擬了行人的行為並且量測了這三個數值,然後畫了 e(Δys) 對 Δyi 的關係圖,其中 e(Δys) 為對應於同一個 Δyi 的所有 Δys 的平均值;以及 e(Δye) 對 Δys 的關係圖,分別為圖六 (a) 與 (b)。

再一次,真實世界的行人行為(紅點)與電腦模擬(虛線)相當吻合。此外,這個模型連「發生相撞」的頻率都可以預測得很準。難道人類行為真的跟隨波逐流的布朗運動一樣?!

圖六:(a) 兩個人擦身而過時的距離平均值與起始路徑距離的關係。(b) 兩人互相遠離後的路徑距離平均值與擦身而過時的距離的關係。紅點為真實世界的人類行為,虛線為電腦模擬結果,通過原點的點線為兩人都不改變方向直直往前走的情形。 圖/參考文獻 1

每個人都有 AT 力場,半徑 1.4 公尺

值得注意的是,當 Δyi 較小時,互相走近的兩人會開始調整方向,把距離拉開,讓兩人擦身而過時,不至於撞到(Δy > 0.6m)。有趣的是,這個現象從 Δyi < 1.4m 就開始發生,在 0.6m~1.4m 這個範圍內,即使不改變方向,也不會撞到,但是這個距離已經夠近,讓人感到「個人領域受到侵犯」的威脅,而開始迴避對方,把距離拉開。

也就是說,在擁擠的通道中,「讓人安心的社交距離」是 1.4 公尺(我是很想把它叫做「AT-Field 絕對領域」啦…),我們不太想讓陌生人靠近到這個距離以內。要提醒各位的是,這是「一大堆人的行為」的平均值,並不是每個人都是同一個數值。

雖然說得到的是「搞笑諾貝爾獎」,不過這個研究過程可是很嚴謹的,一點也不搞笑。這個研究也說明了,個人的想法跟行為很複雜,人與人之間的互動很複雜,但是一大堆人的行為平均起來,可能會呈現簡單的模式,可以用物理學的「化約主義」方法,來理解「人類群體的行為」。

當然這還是相當初步的研究,而車站裡移動的人潮,也不過是人類的社會行為中一個非常簡單的現象,所以想用物理學的方法論,來研究社會科學,還有很長的路要走(而且社會科學家可能也會不高興)。

但是在物聯網越來越盛行的今日,各式各樣的人類活動被轉換成大量的資料累積下來,可以預見研究人類行為的方式會越來越多樣化。到最後會不會出現像艾希莫夫的科幻經典「基地系列」中,可以預知人類未來命運,並且扭轉其方向的「心理歷史學」呢?讓我們繼續看下去——

※ 更多搞笑諾貝爾的相關介紹,請到泛科專題【不認真就輸了!搞笑諾貝爾獎】

參考文獻

  1. Alessandro Corbetta, Jasper A. Meeusen, Chung-min Lee, Roberto Benzi, and Federico Toschi, Physics-based modeling and data representation of pairwise interactions among pedestrians, Phys. Rev. E 98, 062310 (2018).
所有討論 3

0

0
0

文字

分享

0
0
0
為什麼聊天總忍不住要翹腳?翹二郎腿真的會讓人骨盆歪斜、椎間盤突出嗎?
活躍星系核_96
・2020/08/19 ・2073字 ・閱讀時間約 4 分鐘 ・SR值 555 ・八年級

  • 文/Dr.9.81|畢業於 University of Montana Doctor of Physical Therapy ,專長於人體動作物理學,試著以重力(gravity of earth = 9.81) 解釋一切抗重力的動作。

翹二郎腿很傷脊椎,還會導致骨盆歪斜和椎間盤突出,這是真的或是聳人聽聞?若傷害這麼大,為什麼人總是克制不了翹腳的衝動?甚至沒翹腳就會不知如何聊天,渾身不自在?以下將從心理學至醫學角度依序解開以上謎題。

總是忍不住翹腳?小動作揭社交秘密

心理學與腦科學教授蘇珊‧懷特柏内(Susan Whitbourne)從心理學角度分析,當我們處於不安、焦慮時,通常會反射性地將一腳跨放至另一腳上。當上方腳的方向背離對方時,這個姿勢會使身體與外在環境形成一個屏障,將自己保護著,表示正陷入不安的情緒中,而這樣的反射動作是出自於本能1

除要保護自己,美國聯邦調查局(FBI)前探員,同時也是非言語溝通的專家喬‧納瓦羅(Joe Navarro),在他的書中《What Every Body is Saying》(中譯:《FBI教你讀心術》)更分析如何從翹腳方向判斷對話進行是否順利。

回想一下,當談話氣氛尷尬或緊繃時,是否下意識開始翹腳,且通常是遠離對方的翹腳方式,這動作便洩漏想要逃跑的渴望;相反地,當上方腳的方向朝向對方,且身體略傾向他,通常顯示雙方談話是愉快、融洽的2

納瓦羅更透露,利用模仿,即和對方做相同的動作與姿勢,會讓對方感受到認同感,這是人際間最有利的表現。所以說,下次在談案子或是約會時,不妨試試這招,讓對方不知不覺中對你留下好感。

遠離對方的翹腳方式,洩漏了氣氛不對想要逃跑的渴望(圖/Pexels

翹腳時,上方腳的方向若朝向對方,且身體也略傾向他,通常表示談話是愉快、融洽的。(圖/Pexels

翹腳是「腰椎殺手」?解密下背痛真實主因

若在 GOOGLE 搜尋翹腳,幾乎所有結果都警告翹腳會危害健康,導致下背痛、椎間盤突出、骨盆歪斜、脊椎側彎等等,甚至還出現「腰椎殺手」、「殺手級坐姿」等驚悚關鍵字,內文也不外乎警告大家想要保持脊椎健康,千萬別翹腳,但是真的嗎?

腰痠背痛是不少辦公室族群的共同毛病,主因便是久坐容易導致脊椎向前彎曲。在一般建議的姿勢下,腰椎會有一個向前凹的弧度。但當脊椎向前彎曲,腰椎反而會往後凸,這樣的姿勢會使下背部的肌肉受到拉扯,久而久之肌肉會漸漸疲乏,喪失應有的彈性與張力,就出現腰痠背痛這常見的毛病3

辦公室放眼望去幾乎人人都是脊椎向前彎曲、腰椎呈現後凸弧度的坐姿。(圖/Pexels

當腰椎並非處於「向前凹」的標準姿勢時,椎間盤受到的壓力便會大幅增加。如果長久下來椎間盤內的膠狀物質有可能無法再承受巨大壓力,像破掉的水球向後溢出,這就是大家熟知的椎間盤突出(disc protrusion)。臨床上的症狀包含下背疼痛、腳麻等感覺異常,甚至還會有無力感。

光是坐著壓力就比站著多1.4倍,越往前彎,壓力一路上升到1.85倍,甚至2.75倍。(圖/Rohlmannt et al. (2001) 4

那翹腳會造成下背痛、椎間盤突出嗎?

在 2016年有篇系統性研究中5,用最縝密、最高的標準探討了所有下背痛與椎間盤突出的危險因子,裡面卻完全沒提及翹腳。

為什麼?因為下背痛、椎間盤與翹不翹腳無關,最根本原因是來自腰椎長時間處於前彎的姿勢,進而造成肌肉過度緊繃、椎間盤壓力過大。

其實重點在於,腰椎究竟在哪種姿勢下會讓腰椎弧度後凸,導致椎間盤壓力大。若翹腳能保持重心向前,維持好腰椎應有的「向前凹」曲度,反而能讓下背處在最舒服的狀態,不容易引起下背痛、椎間盤突出;反而坐太軟、椅面過深、缺乏適當椅背支撐的椅子,才會使得腰椎弧度越差,造成下背痛、椎間盤突出。

那翹腳到底會怎麼樣?

理論上來說,翹腳是將一腳跨上另一腳,骨盆與脊椎需要配合做出旋轉的動作,且翹腳坐著時,身體重心會偏向下方腳的那一側臀部,兩側邊的受力不平衡。若是長久保持翹著同一腳的姿勢,確實有很大的機率使骨盆位置歪斜、左右兩側的肌肉長短不一致、脊椎與骨盆的關節活動度不對稱,甚至演變功能性長短腳等問題。但請注意,這是以長久保持翹著同一腳的姿勢為前提下的理論

只要提醒自己兩腳輪流翹,並且同一姿勢不要維持超過 20 分鐘,並不會造成大家擔心的骨盆歪斜、功能性長短腳、下背肌肉與腰椎受力不均的問題。至於下背痛、椎間盤突出,若能夠維持腰椎的自然弧度,便能夠降低發生的可能性。

善用適當的用力方式,翹腳並不會真的害了你,可別放棄這個來自我們潛意識的本能反射,畢竟透過翹腳,或許能夠讓對方喜歡上跟你聊天!

參考資料

  1. Susan Krauss Whitbourne. (2012). The Ultimate Guide to Body Language. Psychology Today
  2. Joe Navarro. (2014). 9 Truths Exposing a Myth About Body Language. Psychology Today
  3.  Drzaƚ-Grabiec, J., Truszczyn´ ska, A., Fabjan´ ska, M., Trzaskoma, Z. (2016). Changes of the body posture parameters in the standing versus relaxed sitting andcorrected sitting position. J. Back Musculos. Rehabil. 29 (2), 211–217
  4. Rohlmann, A., Burra, N. K., Zander, T., & Bergmann, G. (2007). Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis. European Spine Journal, 16(8), 1223-1231.
  5. Huang, W., Han, Z., Liu, J., Yu, L., & Yu, X. (2016). Risk factors for recurrent lumbar disc herniation: a systematic review and meta-analysis. Medicine, 95(2).
  • 責任編輯/YP
活躍星系核_96
752 篇文章 ・ 96 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
2

文字

分享

0
1
2
身體受傷會發炎,但你知道心智也有可能會發炎嗎?——《終結憂鬱症》
PanSci_96
・2020/04/28 ・2697字 ・閱讀時間約 5 分鐘 ・SR值 523 ・七年級

  • 作者/艾德華.布爾摩 (Edward Bullmore);譯者/高子梅
  • 編按:本書不同於傳統生理、心理二元論觀點,而從免疫學的角度切入、結合神經科學,重新思考憂鬱症與身體發炎的關聯。文中的 P 太太為類風濕性關節炎患者,也被作者診斷有憂鬱症的症狀。

我曾經簡單地以為,心智在發炎可能類似身體的發炎。從羅馬時期以來,我們就知道身體發炎時會紅腫。所以,我以前把發炎的心智想像成腫脹、憤怒、滿溢、激切、不受控制、潛藏著危險。用精神醫學的用語來說,大概就是躁症。

不過我現在的想像完全相反:那不會是一個易怒和極具威脅的傢伙,而是一個陰鬱和沉悶的人。像 P 太太,她雙手因發炎的關節而腫脹變形,心裡暗自納悶自己的情緒怎麼這麼低落,精神不濟。現在,她在我眼中就是典型的心智在發炎,不是比喻,而是運作上就是如此。

心智的發炎不像身體發炎那樣的「狂暴」,更多是陰鬱、沉悶。圖/GIPHY

發炎常出現在憂鬱之前?

把「心智在發炎」從隱喻轉化為實際狀況,首先我們要有十足的證據顯示發炎和憂鬱症的強烈關聯。承認兩者之間有關就是好的開始(這種關聯有時候就在眼前,卻被視而不見)。不過關鍵問題是因果。

一個後二元論的全新思維要能穩固扎根,就需要從科學上證明發炎不只跟憂鬱症有關,而是會直接造成憂鬱症。看看各事件發生時間的先後,可以幫助我們理出因果關係,前因一定先於後果。如果發炎是憂鬱症狀的前因,那麼我們希望有證據顯示發炎出現在憂鬱症之前。最近有研究提出了這方面的證據。

舉個例子,2014 年,一項研究發現,布里斯托(Bristol)和英格蘭西南部 15000 名孩童中,九歲時沒有憂鬱症但有輕微發炎的孩童,在十年後滿 18 歲時極有可能罹患憂鬱症。這只是其中一個例子。目前已有數十項人類研究和數百項動物研究顯示,發炎出現在憂鬱症或憂鬱行為之前。

想確認發炎與憂鬱的關係,有先後順序還不夠。

但光是順序的先後,並不足以讓大家正視發炎是憂鬱症的前因。科學家和醫師會質疑發炎是如何引發憂鬱症的:究竟是什麼樣的生物機轉,一步一步從血液的細胞激素,到大腦出現變化,進而引發憂鬱的心情。

動物實驗中,也觀察到老鼠被注射致病菌後,也會有類似人類憂鬱症的症狀。圖/GIPHY

關於這些問題,最近的動物和人體實驗也提出了有力的證據。實驗結果顯示,如果一隻老鼠被注射致病菌,行為上就會變得有點像是我在看過牙醫後的樣子。牠會退縮,不願與其它動物互動,活動力降低,睡眠和進食周期受到干擾。簡而言之,在動物身上,感染確實會引發一種被稱為疾病行為(sickness behaviour)的症候群,有點類似人類的憂鬱症。

事實上,要觀察到這種疾病行為,你甚至不必先讓老鼠遭受感染,只要在牠身上注射細胞激素就可以,這也證明了並非是細菌本身造成疾病行為,而是對感染的免疫反應造成的。發炎會在動物身上直接引發類似憂鬱症的行為,這一點無庸置疑。

此外,我們現在也很清楚發炎會如何影響老鼠的大腦。我們知道神經細胞若是暴露在細胞激素下,死亡機率會升高,而且不太會再生。我們也知道神經細胞若是發炎,它們之間的連結(稱為突觸[synapses])在資訊學習上就會比較無力。而且發炎會降低血清素的供給,而血清素是神經細胞之間的傳導物質。

所以至少從動物實驗中,我們可以直接連結發炎與大腦神經細胞運作方式的改變,來解釋看似憂鬱症的疾病行為。

發炎的生理機制真的會讓人產生憂鬱嗎?

修但幾勒!我們並不能以實驗之名把危險的細菌注射進人體內。圖/GIPHY

但要在人體內複製類似的連結,就不太容易了。畢竟我們不能以實驗之名把危險的細菌注射進人體內,也不能把細胞激素(或任何其它物質)直接注射進健康人士的大腦裡,所以不可能觀察發炎會對活生生的人類神經細胞造成什麼影響。

另外,要一次觀察一個細胞很難。絕大部分的人類神經細胞(大概有一千億個)都緊密地集中在大腦裡,受到頭骨的嚴密保護,與外在世界完全隔離。要想「看到」一個活人頭殼裡的運作,唯一方法只能靠磁振造影這樣的大腦掃描技術。

最近的 fMRI 研究已經開始證明,人體發炎對大腦和心情有直接的因果關係。

舉例來說,健康的年輕人在接受傷寒疫苗的注射後,就會跟實驗室的老鼠被注射細菌後一樣,免疫系統出現反應,血液裡的細胞激素會倏地升高。這些受試者出現輕微憂鬱,他們大腦內某些區域活躍了起來,而這些區域就我們所知跟情感表現有關。

所以精神免疫學已經成熟到能以新的角度和合理的說法,來幫忙解答我為什麼看完牙醫後會變得憂鬱。我不需要搬出機器裡的鬼魂。我可以理所當然地主張,是我接受的根管手術造成細胞激素上升,穿透血腦屏障,傳遞發炎訊號,讓大腦神經細胞的情緒處理網絡起了變化,進而導致憂鬱症發作,害我老是揮之不去死亡的陰影。

發炎這種免疫反應,為何會引發憂鬱呢?

這套反二元論的說法,在每一個步驟上都有可靠的實驗證據,不過還是不夠完整。畢竟在現有的證據基礎上,仍有一些缺口和異常,雖然這種情況對任何一門發展迅速的科學領域來說都在所難免。然而,就算我們已經可以回答「如何引發」,我們還是很想問「為何引發」。

發炎反應引發的憂鬱會不會是想讓我們好好在床上休息呢?圖/GIPHY

在科學上,唯一可以接受的答案就是演化。為什麼發炎會引發憂鬱症?只能說這是物競天擇的結果。一定是因為唯有對感染或任何發炎出現憂鬱反應,才有利於我們的生存(或者至少在以前是有利於我們的生存)。我們一定是繼承了這種自好幾代以前就物競天擇下來的基因,能讓我們在發炎的當下因憂鬱反應而受惠。

以我來說,我可以合理推測,我遺傳了曾經幫助先人熬過感染的基因,所以在看過牙醫後,短暫地感到憂鬱。這樣的基因遺傳很可能有助我從根管治療的輕微創傷復原,一方面積極地殺死任何致病菌,另一方面指揮我待在床上,保留體力。

當然,不管是神經免疫學還是精神免疫學這類 A 加 B 式的新領域,重點並不是要找到我不喜歡看牙醫的理由,而是說,一旦我們可以繪出一條從身體經由免疫系統通到大腦和心理的路徑,一旦我們以後二元論的概念來闡明發炎的心智,就能找到全新的方法來對付精神問題。

image description

——本書摘自《終結憂鬱症:憂鬱症治療大突破》,2020 年 2 月,如果出版社

PanSci_96
1011 篇文章 ・ 1113 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。