網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

1
1

文字

分享

0
1
1

發燒了,然後呢?發燒的生理機制與迷思

彭士桓_96
・2019/03/11 ・2122字 ・閱讀時間約 4 分鐘 ・SR值 520 ・七年級

無論是恆溫動物或是變溫動物,在受傷或是感染的情況下都會發燒(較平常體溫高 1-4℃),這樣的生理機制用以保護個體得以生存並解決感染的狀況。但是發燒是如何真正的幫助我們度過感染的難關呢?目前詳細機制尚未完全清楚。

Image by congerdesign on Pixabay

發燒不僅僅是結果,而是開始

過去的研究指出,當人體體溫升高到 38-40℃發燒時,體內的淋巴球會被指引到次級淋巴器官如:脾臟與淋巴結等處協助身體進行免疫反應及宿主的防禦工作。淋巴球就好比體內的警察,沒事時在血管通道裡面進行巡邏,一但有人報案時就會抵達犯罪現場,並且進入罪犯躲藏的建築物內進行逮捕。

這就是在咱們血管中不斷滑行滾動的淋巴球。圖/wikipedia

淋巴球這樣的移動過程,需要仔細調控才得以進行。淋巴球在高內皮小靜脈血管(HEV,high endothelial venules)滑行滾動,當身體受感染時,再藉由化學激素活化、停止、血管內皮細胞層遷移來清除病源。每一個步驟都藉由細胞膜上與血管組織間不同的蛋白質組合相互作用(然而 T細胞上的 α4 與 β2 參予了過程中每個步驟),精密結合得以運作。

從先前的研究中,我們得知發燒時內皮細胞會大量表現細胞黏附分子(ICAM1, intercellular adhesion molecules)及 CCL21蛋白來讓淋巴球停止並穿過內皮細胞層1;另方面,淋巴球上的特定蛋白(L-selectin-dependent adhesion)也隨發燒而大量表現2

也就是說,發燒後會出現特定的訊息,造成這些蛋白質基因的表現。但它們之間是如何被發燒所調控且相互作用?中間的橋梁與機制為何?還是個未知問題!

發燒的娜美小姐讓人心疼啊。圖/imdb

發燒,燒起的一連串反應

上海中國科學院大學陳劍峰博士的研究團隊近期發表在 Cell immunity 期刊上的研究,進一步解釋:發燒是如何影響T細胞移動3

過去的研究中,已知發燒時體內的各種熱休克蛋白(HSP, heat shock protein)都會大量的表現,用以保護心臟細胞避免因外在壓力刺激而凋亡、協助蛋白質摺疊與穩定性、調控細胞膜上的荷爾蒙受器、參與初級免疫反應等。

作者發現發燒時,大量熱休克蛋白 HSP90 會專一性的與 T細胞膜上的 α4 蛋白質結合,使α4蛋白質形成雙聚體,以增進 T細胞的停止與血管內皮細胞層遷移步驟。除此之外,這樣的蛋白質相互結合也增強了下游 FAK-RhoA 訊息,使 T細胞移動功能增快來達到免疫功能(下圖)。最後作者利用了老鼠進行驗證,當老鼠感染鼠傷寒沙門氏菌(Salmonella typhimurium)時,缺乏 HSP90-α4 蛋白質結合的老鼠無法有效清除病菌,死亡率也較正常老鼠來的高。

發燒時熱休克蛋白會 T細胞膜上的 α4 蛋白質結合,影響。來源: Lin C, Zhang Y, Zhang K, et al. (2019) Fever Promotes T Lymphocyte Trafficking via a Thermal Sensory Pathway Involving Heat Shock Protein 90 and α4 Integrins. Immunity 50, 137-151

對發燒常見的迷思

  1. 燒太久,腦子會燒壞!

發燒是人體的一種正常免疫機制,基本上是不會有所謂的燒壞這檔事! 另外,微生物(細菌或病毒)感染可能會造成腦炎或腦膜炎,使腦部受損但並非發燒所導致。但若因為中暑或是物理性高溫(>41℃)而體溫居高不下,的確有造成生命危險與器官衰歇的可能性。

  1. 一定要想盡辦法退燒!

過度使用退燒藥會增加敗血症的死亡率,且退燒藥大多為暫時性的舒緩,真正退燒還是必須等體內的感染物清除後才可達成。另外冰枕等物理性降溫的做法,實際上並無任何作用,且易讓身體感覺不適。

  1. 嬰兒長牙時會發燒!

因為嬰幼兒免疫力較差,所以往往感染的時期剛好也正值長牙時期,所以流傳這樣荒謬的說詞。會發燒是因為細菌、病毒與寄生蟲感染!

發燒了該如何處理?

若不明原因持續高燒因盡速就醫。圖/imdb

適時的發燒可協助體內對抗病源,但重點是要正確的就醫,聽從醫師及藥師指示用藥,勿隨意使用不明藥品。若不明原因持續高燒,應盡速就醫!另外未滿三個月的嬰兒若發燒也請盡速就醫(通常此時期的嬰兒還有來自母親的免疫力,若發燒則須格外注意!)

常常有人說運動、泡溫泉可以增強免疫力,讀完這篇文章後您是否也想身體力行來增強自己的免疫力呢?不妨試著定期的利用升高體溫(請用正確的方法!)來鍛練下自己的免疫力吧!

參考資料

___________
你是國中生或家有國中生或正在教國中生?
科學生跟著課程進度每週更新科學文章並搭配測驗。來科學生陪你一起唸科學!

文章難易度
彭士桓_96
14 篇文章 ・ 0 位粉絲
生活即是科學,科學即是生活。臺大分醫所博士,虔誠信科學者。希望透過文字介紹有趣的科學,並期望自己在有限度的生命中,創造無限的價值。


0

12
5

文字

分享

0
12
5

揭開人體的基因密碼!——「基因定序」是實現精準醫療的關鍵工具

科技魅癮_96
・2021/11/16 ・1998字 ・閱讀時間約 4 分鐘

為什麼有些人吃不胖,有些人沒抽菸卻得肺癌,有些人只是吃個感冒藥就全身皮膚紅腫發癢?這一切都跟我們的基因有關!無論是想探究生命的起源、物種間的差異,乃至於罹患疾病、用藥的風險,都必須從了解基因密碼著手,而揭開基因密碼的關鍵工具就是「基因定序」技術。

揭開基因密碼的關鍵工具就是「基因定序」技術。圖/科技魅癮提供

基因定序對人類生命健康的意義

在歷史上,DNA 解碼從 1953 年的華生(James Watson)與克里克(Francis Crick)兩位科學家確立 DNA 的雙螺旋結構,闡述 DNA 是以 4 個鹼基(A、T、C、G)的配對方式來傳遞遺傳訊息,並逐步發展出許多新的研究工具;1990 年,美國政府推動人類基因體計畫,接著英國、日本、法國、德國、中國、印度等陸續加入,到了 2003 年,人體基因體密碼全數解碼完成,不僅是人類探索生命的重大里程碑,也成為推動醫學、生命科學領域大躍進的關鍵。原本這項計畫預計在 2005 年才能完成,卻因為基因定序技術的突飛猛進,使得科學家得以提前完成這項壯舉。

提到基因定序技術的發展,早期科學家只能測量 DNA 跟 RNA 的結構單位,但無法排序;直到 1977 年,科學家桑格(Frederick Sanger)發明了第一代的基因定序技術,以生物化學的方式,讓 DNA 形成不同長度的片段,以判讀測量物的基因序列,成為日後定序技術的基礎。為了因應更快速、資料量更大的基因定序需求,出現了次世代定序技術(NGS),將 DNA 打成碎片,並擴增碎片到可偵測的濃度,再透過電腦大量讀取資料並拼裝序列。不僅更快速,且成本更低,讓科學家得以在短時間內讀取數百萬個鹼基對,解碼許多物種的基因序列、追蹤病毒的變化行蹤,也能用於疾病的檢測、預防及個人化醫療等等。

在疾病檢測方面,儘管目前 NGS 並不能找出全部遺傳性疾病的原因,但對於改善個體健康仍有積極的意義,例如:若透過基因檢測,得知將來罹患糖尿病機率比別人高,就可以透過健康諮詢,改變飲食習慣、生活型態等,降低發病機率。又如癌症基因檢測,可分為遺傳性的癌症檢測及癌症組織檢測:前者可偵測是否有單一基因的變異,導致罹癌風險增加;後者則針對是否有藥物易感性的基因變異,做為臨床用藥的參考,也是目前精準醫療的重要應用項目之一。再者,基因檢測後續的生物資訊分析,包含基因序列的註解、變異位點的篩選及人工智慧評估變異點與疾病之間的關聯性等,對臨床醫療工作都有極大的助益。

基因定序有助於精準醫療的實現。圖/科技魅癮提供

建立屬於臺灣華人的基因庫

每個人的基因背景都不同,而不同族群之間更存在著基因差異,使得歐美國家基因庫的資料,幾乎不能直接應用於亞洲人身上,這也是我國自 2012 年發起「臺灣人體生物資料庫」(Taiwan biobank),希望建立臺灣人乃至亞洲人的基因資料庫的主因。而 2018 年起,中央研究院與全臺各大醫院共同發起的「臺灣精準醫療計畫」(TPMI),希望建立臺灣華人專屬的基因數據庫,促進臺灣民眾常見疾病的研究,並開發專屬華人的基因型鑑定晶片,促進我國精準醫療及生醫產業的發展。

目前招募了 20 萬名臺灣人,這些民眾在入組時沒有被診斷為癌症患者,超過 99% 是來自中國不同省分的漢族移民人口,其中少數是臺灣原住民。這是東亞血統個體最大且可公開獲得的遺傳數據庫,其中,漢族的全部遺傳變異中,有 21.2% 的人攜帶遺傳疾病的隱性基因;3.1% 的人有癌症易感基因,比一般人罹癌風險更高;87.3% 的人有藥物過敏的基因標誌。這些訊息對臨床診斷與治療都相當具實用性,例如:若患者具有某些藥物不良反應的特殊基因型,醫生在開藥時就能使用替代藥物,避免病人服藥後產生嚴重的不良反應。

基因時代大挑戰:個資保護與遺傳諮詢

雖然高科技與大數據分析的應用在生醫領域相當熱門,但有醫師對於研究結果能否運用在臨床上,存在著道德倫理的考量,例如:研究用途的資料是否能放在病歷中?個人資料是否受到法規保護?而且技術上各醫院之間的資料如何串流?這些都需要資通訊科技(ICT)產業的協助,而醫師本身相關知識的訓練也需與時俱進。對醫院端而言,建議患者做基因檢測是因為出現症狀,希望找到原因,但是如何解釋以及病歷上如何註解,則是另一項重要議題。

從人性觀點來看,在技術更迭演進的同時,對於受測者及其家人的心理支持及社會資源是否相應產生?回到了解病因的初衷,在知道自己體內可能有遺傳疾病的基因變異時,家庭成員之間的情感衝擊如何解決、是否有對應的治療方式等,都是值得深思的議題,也是目前遺傳諮詢門診中會詳細解說的部分。科技的初衷是為了讓人類的生活變得更好,因此,基因檢測如何搭配專業的遺傳諮詢系統,以及法規如何在科學發展與個資保護之間取得平衡,將是下一個基因時代的挑戰。

更多內容,請見「科技魅癮」:https://charmingscitech.pse.is/3q66cw

文章難易度
科技魅癮_96
15 篇文章 ・ 12 位粉絲
《科技魅癮》的前身為1973年初登場的《科學發展》月刊,每期都精選1個國際關注的科技議題,邀請1位國內資深學者擔任客座編輯,並訪談多位來自相關領域的科研菁英,探討該領域在臺灣及全球的研發現況及未來發展,盼可藉此增進國內研發能量。 擋不住的魅力,戒不了的讀癮,盡在《科技魅癮》