0

0
1

文字

分享

0
0
1

如果喪屍病毒大爆發,需要多少人接種疫苗才能達到「群體免疫」呢?

Jaffer Yang
・2019/01/30 ・3230字 ・閱讀時間約 6 分鐘 ・SR值 562 ・九年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

面臨喪屍大爆發,老梗電影劇情常見的對應之道無外乎兩種:其一是尋找安全的地方,躲避喪屍;其二是找出喪屍病毒來源,開發疫苗拯救全人類。

如果台灣爆發了喪屍病毒,這座四面環海的島嶼似乎無處可躲,疫苗看起來是唯一的救命稻草。那麼問題來了,如果出現了有效的疫苗,需要有多少人接種才有機會消滅可怕的喪屍病毒呢?

source:pixabay

求生必備!武器與免疫於喪屍的夥伴當然越多越好

影視劇裡喪屍的可怕之處,除了會失去理智、狂暴、極度攻擊性並且沒有疼痛感;更嚴重的是,一旦正常人被咬,就會立刻感染成為新的喪屍繼續傳染給下一個人。總是不會被咬的主角只能拿起槍炮武器,將喪屍群一個個爆頭來求得一絲生機,這時候若是有更多的同伴對病毒免疫、手上有武器,就越能保護手無寸鐵的弱勢個體。

相同的道理可以延伸在使用疫苗預防傳染病:當接種了疫苗、對傳染病有抵抗力的人越多,越能保護少部分沒有抵抗力的人。這在流行病學上稱之為群體免疫(herd immunity/ community immunity),表示在一群人當中,對某種傳染病具有免疫力的人數占了大部分,使得無免疫力的少部分個體被感染的風險也隨之降低、可受連帶保護。想像一下,沒武器的你正在逃命,有越多身邊的夥伴免疫於喪屍,當然比起他們隨時有可能受感染來得更為安全、生存率更高。

我的老天鵝!只有一個同伴怎麼打?圖/陰屍路@imdb

一傳十,十傳百:傳染病的傳染力怎麼計算?

因此防止喪屍病毒的傳播,除了將喪屍爆頭之外,還可以透過接種疫苗,讓人不會被傳染成新的喪屍,理論上就能逐漸控制喪屍病毒的傳播。但這裡重點來了,如果被喪屍咬到必然百分之百變成新的喪屍,除了消極的避免被咬,就必須全部的人類都打疫苗才能消滅喪屍病毒。

幸好,真實世界裡不同疾病的傳染力有高有低,而且也不太可能達到百分之百的接種率。根據疾病的傳染力,就能夠計算出達到群體免疫最低接種的人數門檻,推廣疫苗達到此門檻才是合情合理的可行辦法。為了計算出群體免疫門檻,在流行病學上有個專有名詞稱為「基本再生數(basic reproduction number, R0)」,是一種代表疾病傳染力的指標。當 R0 越大代表疾病傳染力越強,其定義簡單來說,是指一個感染者平均會傳染給幾個不具免疫力的健康者(沒有得過此病或沒有打過疫苗的情況)。

基本再生數可以用另一種比喻來設想,若是想要比較不同人傳播謠言的能力(簡稱八卦力),例如小明每次只會把謠言告訴身邊的 2 個人,而小強每次卻可以告訴身邊的 10 個人,顯而易見小明的八卦力等於 2,而小強的八卦力等於 10,小強傳播謠言的能力遠遠大於小明,要防堵小強傳播謠言的困難度也會比較高。

不同的人會有不同的八卦力,同理,不同的疾病也有著不一樣的 R0,如下表所示,其中麻疹病毒有著相當嚇人的傳染力,R0 高達 12–18。

不同的疾病有著不一樣的基本再生數,達到群體免疫所需的門檻也因此不同。source:參考文獻 [1–4]

傳染病百百種,群體免疫門檻各不同

看過表格後,眼尖的你應該已經發現,這些耳熟能詳的疾病其 R0 都大於 1,每名患者平均可以感染超過一個人,所以新增患者的個數將呈指數式增長,這也是病原能夠對全體人類造成毀滅性傳染的因素。因此,在數學邏輯上,只要能將 R0 降低到小於 1(R0 < 1),就有機會撲滅該疾病。

目前降低 R0 已知的辦法有三種:

  1. 增加人群間的距離:停止上班、上課或管制特定場所之出入,以減少人群彼此接觸。
  2. 治療或隔離患者:降低感染者的傳染力,以及減少傳染給別人的機率。
  3. 疫苗接種或抗病毒藥物預防性投藥:增加未感染者對該疾病的免疫力或抵抗性。

三個方案中最為治本、有效且經濟的辨法,就是疫苗接種了。人類歷史上就是藉由疫苗接種,成功撲滅了「天花病毒」這種可怕疾病,早在 1980 年世界衛生組織(WHO)就已宣布撲滅天花,1986 年所有國家更停止了天花的常規疫苗接種。

所以需要多少人接種疫苗才能達到群體免疫?其計算方法也是圍繞著 R0,其推算過程較複雜,讓我們直接跳到結果公式:

疫苗接種比例 = 1-1/R0

不同疾病的群體免疫門檻(即最低疫苗接種率)也列於上表,用不著我說,聰明如你應該已知道 R0 越大,群體免疫門檻值越高

所以說,到底要有多少人接種疫苗才有機會消滅喪屍病毒?

作者繪製;素材出處 @ flaticon

不喜歡公式夥伴們,讓我們以想像中的喪屍病毒舉例說明,可能比較容易理解。
每位和喪屍接觸的人都有可能感染喪屍病毒,不過這裡舉例設定的喪屍病毒比較弱一點:R0 = 2,代表一名喪屍出現後,平均會有 2 個人被感染。這裡我們假設每名喪屍在成為喪屍後到被爆頭前平均會接觸到 10 個人,最後會有 2 個人被感染,感染率就是 20%。但如果這 10 個人中已有 2 個人接種過喪屍病毒疫苗,則接觸到病毒能受感染的人只餘 8 個人(10-2 = 8),以接觸後的感染率計算,則每名喪屍只能感染 1.6 個人(20%×8),意即感染數就可以由 2 降為 1.6 人。

要撲滅疾病,就需要將感染數降低至等於或小於 1 人,我們可以得出運算式為 20%×(10-接種人數)= 1,此處接種人數的解答為  10 個人中至少要有 5 個人接種過疫苗,這意味著對抗這種(R0 = 2)喪屍病毒的有效群體免疫,必須要達到 50% 以上的疫苗接種率。

妥善利用疫苗對抗疾病,達成群體免疫的重要目標

不論今天面對的傳染病是否為喪屍病毒,疫苗的數學邏輯目標十分單純,只要達到「R0 < 1」,就能控制住傳染病。利用四則運算獲得解答後,接下來只要努力讓接種疫苗人數超過最低門檻,就能達到有效群體免疫。不過,真實世界當然不是數學題,還有變數層出不窮需要解決,例如:現階段的登革熱疫苗還有安全性疑慮,也尚未在台灣核准上市;腸病毒目前並沒有特效藥,而疫苗也還在研發階段。這也是為什麼面臨登革熱或腸病毒爆發,必須積極採取隔離或環境消毒措施。

一旦爆發沒有疫苗或藥物可以對付的傳染病時,人類能夠做的事情其實並不多,而這些慘痛的教訓並不遙遠。惡名昭彰的西班牙流感距今也不過 100 年(1918年),爆發當時全球三分之一人口受感染,造成約 5,000 萬人死亡;另一個記憶猶新的教訓,則是僅僅十幾年前(2002年)爆發的嚴重急性呼吸道症候群(severe acute respiratory syndrome, SARS)。

近幾年的喪屍影視劇裡,怕觀眾看膩了血肉橫飛的畫面,為了增加戲劇性及可看性,常常會再加油添醋引入「僵屍無腦但人心叵測」的劇情。可笑的是戲如人生,真實世界裡在面對傳染病這樣的「天災」時,若有疫苗能作為對抗的武器,我們應該要心懷感激並感到慶幸,盡力讓群體免疫得以實現。

然而,實際上目前世界各地有許多反對疫苗的流言蜚語,下篇文章我們接著談談,防疫工作遇到了哪些流言「人禍」?又該如何看待呢?

參考資料

  1. History and epidemiology of global smallpox eradication.
  2. Biggerstaff M, et al. BMC Infect Dis. 2014;14:480. Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: a systematic review of the literature.
  3. Wallinga J, et al. Am J Epidemiol. 2004;160:509-16. Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures.
  4. Althaus CL, et al. PLoS Curr. 2014 Sep 2;6. Estimating the Reproduction Number of Ebola Virus (EBOV) During the 2014 Outbreak in West Africa.
  5. Diekmann O, et al. J Math Biol. 1990;28:365-82. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations.
  6. 疾病管制局 98年,流感大流行疫情模擬介面建置
  7. Pennington H, et al. Bull World Health Organ. 2003;81:762-7. Smallpox and bioterrorism.
  8. WHO Factsheet. Smallpox.
  9. Quanta Magazine, How Math (and Vaccines) Keep You Safe From the Flu
  10. 衛生福利部疾病管制署–登革熱
  11. Gretchen Vogel. Science. Apr. 19, 2018. A new dengue vaccine should only be used in people who were previously infected, WHO says.
  12. 衛生福利部疾病管制署–腸病毒
  13. Short KR, et al. Front Cell Infect Microbiol. 2018;8:343. Back to the Future: Lessons Learned From the 1918 Influenza Pandemic.
  14. 衛生福利部疾病管制署–嚴重急性呼吸道症候群
文章難易度
Jaffer Yang
8 篇文章 ・ 1 位粉絲
畢業於成大微免所,現職醫學寫作。出於對醫學領域的興趣及工作經驗實務接觸,樂於將自己喜愛的科普知識,以淺白的文字讓更多人了解,曾著有《圖解醫療》一書。

0

1
0

文字

分享

0
1
0
被 Covid-19 感染後,病毒進入人體後去了哪裡?嗜好你哪一個細胞?——《從一個沒有名字的病開始》
商周出版_96
・2022/11/14 ・3757字 ・閱讀時間約 7 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

我們的生命被機緣所定義,即使是那些我們錯過的。
——《班傑明的奇幻旅程》

「有症狀的人,請戴口罩。」

這是長久以來,預防呼吸道感染的策略。我們一貫以呼吸道症狀,來辨識誰是那個可能散播病毒的「行動病毒複製機」。但隨著新冠病毒的出現,呼吸道症狀不再適用於辨識感染性與否;於是在疫情蔓延期間,防疫策略是無論有沒有症狀都得戴上口罩,甚至激進一點的作法,直接規定大眾關在家中、減少移動。

疫情蔓延期間,無論是否有症狀都得戴上口罩。圖/Pixabay

但是病毒真的這麼安分,就只待在呼吸道嗎?透過不同研究,我們可以一窺在 Omicron 出現前,新冠病毒在人體內到底「去了哪裡」。

最受新冠病毒青睞的人體細胞

新冠病毒透過棘蛋白與人類細胞表面的 ACE2 蛋白質受體結合。與特定細胞受體結合,是病毒「可能」入侵人體的第一個步驟。

那麼人體中哪些地方有最多 ACE2 呢?不管是口腔或鼻腔黏膜的上皮細胞,都有非常高量的 ACE2。

值得注意的是,與 SARS 病毒相比,新冠病毒棘蛋白與人體 ACE2 分子的親和力,增加了 10~20 倍[1]

也就是說,當你吸入含有病毒的空氣(機率較低),這些新冠病毒在路過上呼吸道之際,附著在上皮細胞的機率可能是 SARS 病毒的 10~20 倍,或者更有可能是透過你沾染病毒的手,觸摸鼻腔、口腔、眼睛的黏膜表皮(機率較高),而給了病毒機會感染上皮細胞。這足以解釋,為何新冠病毒最初感染階段,都是先在上呼吸道複製,且被感染的人甚至在沒有症狀的情況下,就具有傳播病毒的能力。這一點與 SARS 病毒非常不一樣,SARS 主要感染下呼吸道,且病人要在肺炎重症發病後 3~4 天才具有效感染性。

2020 年新冠疫情剛爆發時,穿梭在東亞各國的鑽石公主號遊輪[2],因為一位被感染的乘客在香港上了船,造成全遊輪被隔離在日本橫濱港。最終咽喉試子呈 PCR 陽性的有 712 人(占 19.2%),其中超過 50% 的人自始至終都沒有覺察到病毒的存在,這就是無症狀感染的比例。另外,約有 20% 的感染者出現下呼吸道肺炎症狀,以及 30% 屬於輕症的上呼吸道感染。整體來看,最大宗的感染者(80%)呈現輕微或無症狀。

而根據研究,24% 的確診者,眼睛結膜試子也會呈 PCR 陽性,陽性率約可維持五天左右。

現在就很清楚,為什麼防疫宣導一直告訴大家不要用手摸眼睛、嘴巴、鼻子,這是絕對有科學根據的。這些黏膜表皮,就是病毒入侵人體的要害,同時是人體系統受到影響的元凶,值得持續探討。

免疫機制控制病毒不亂竄

病毒在口腔或鼻腔黏膜上皮細胞的複製過程中,我們的身體也不是閒著沒事等病毒大軍進攻。當病毒嘗試與 ACE2 結合時,人體有足夠的時間,透過自身的先天性免疫反應對付病毒。

當免疫系統開始作用,我們可能會出現發燒、流鼻水、咳嗽等症狀。因為鼻腔與口腔是貫通的,病毒可以緩慢移到口咽、鼻咽、喉咽和整個上呼吸道,附著在黏膜上與 ACE2 結合進行複製。所以當我們使用快篩劑,無論是鼻咽或是唾液快篩,很容易從這些部位檢測到病毒。

鼻咽或是唾液快篩容易檢測到病毒。圖/Envato Elements

如果身體的先天免疫機制和肺部防禦能力夠強,透過上呼吸道局部的免疫反應,將病毒圍堵並控制,就可以預防病毒侵入下呼吸道和其他器官。病毒感染上呼吸道的表皮,並沒有影響到關鍵的人體功能(嬰幼兒除外,因為他們的呼吸通道較窄小,若有任何發炎腫脹,就可能造成呼吸困難的緊急狀況),因此新冠感染者多數呈現無症狀,或者可能只有輕微的上呼吸道症狀。最終新冠患者在完全無症狀或症狀輕微的情況下,有效地抵抗了病毒的入侵;大多數健康的年輕感染者都是這樣的情況。

但若是入侵的病毒量過高,或個人先天性的免疫力不足,病毒會在體內持續擴散。嚴重呼吸道感染症狀,甚至呼吸衰竭,可能發生在 1~3% 的人身上,而且經由解剖的結果已證實呼吸衰竭是最主要的死因。

德國解剖註冊中心在 2021 年10 月之前就已收集 1,129 名新冠疫歿者的解剖資料[3],認定 86% 的死因為新冠病毒感染,14% 為其他共病。研究發現,肺部的病變,以及病毒侵襲肺細胞,以至於大量發炎細胞浸潤,從而得出「嚴重發炎反應造成肺功能衰竭」是最主要的死因這個結論。

新冠病毒讓我們再度正視,肺臟這個重要器官,因其功能所需而座落在如此易受傷害的人體部位。台灣每年的十大死因,肺炎都有上榜,可見不論健康與否,一不小心,肺炎都可能成為終結生命的最後一根稻草。

病毒與你的「表面關係」可以很長久

我們已經知道新冠病毒嗜好人體的呼吸道,除此之外,它還有其他落腳處嗎?

回答這個問題之前,得先釐清一個重點:不同變異株喜歡去的人體部位不一樣。Delta 嗜好感染肺部,Omicron 的感染位置大多止於上呼吸道的咽喉部位。(參見第三章)

為什麼要知道病毒在我們體內去了哪裡?根據觀察,新冠確診者癒後可能出現各式與呼吸道功能無明顯關係的症狀,也就是現在俗稱的「長新冠」(Long Covid)。病毒學家因此懷疑,病毒是否透過不同機制持續存活在人體內,造成更深層的器官感染,才會導致多元症狀的長新冠出現。這是非常值得探討的問題。

事實證明,的確如此。

病毒透過不同機制持續存活在人體內。圖/Envato Elements

除了呼吸道的分泌物及口水(咽喉感染相關)等新冠診斷的主要檢體外,糞便也經常被檢測到病毒存在的跡象,頻繁到可以用下水道的病毒監測系統瞭解疫情的起伏,甚至可以監測變異株的多寡[4]

腸胃道:病毒長存的溫床

病毒不只頻繁出現在糞便中,還會長期存在某些人的腸胃道內。史丹佛大學團隊進行的長期研究[5],針對 113 名新冠輕症與中症的病人(重症已被排除),追蹤研究十個月,收集並分析他們糞便中是否仍有病毒 RNA。

結果發現,在確診後的第一週內,49.2% 的患者糞便中可檢測到新冠病毒 RNA; 四個月後仍有 12.7% 的人糞便中檢測得到病毒 RNA,但此時這些人的口咽試子的病毒 RNA 都已呈陰性,而在七個月後, 還有 3.8% 的人糞便中仍能檢測到病毒 RNA。仔細分析後,發現胃腸道症狀(腹痛、噁心、嘔吐)與病毒 RNA 是否持續存在於糞便中具有關聯性。

作者同時提醒,以上研究是在變異株 Omicron、Delta 出現之前進行的。不同變異株可能對呼吸道與胃腸道有不同嗜好或親和力,可能也會表現出清除率(每單位時間去除某種物質)的差異,這是病毒變異株固有的生物學特點,可能影響潛在疾病的特性。同時病毒如何存在於體內,也會受到自然感染生成的免疫反應,或疫苗接種引起的宿主免疫狀態的影響而有所差異。

病毒如何存在於體內會受疫苗接種引起的宿主免疫狀態而有所差異。圖/Envato Elements

另一項多中心的合作研究[6],長期追蹤 87 位新冠確診患者六個月,發現他們的 RBD 特異性記憶型 B 細胞數量維持不變(沒有減少),還出現單株抗體細胞有更新的現象,表達的抗體具有更多抗原差異,但病人血清對原始病毒株的中和抗體效價則持續下降。這表示六個月後,這些確診病人體內的 B 細胞仍持續對新冠病毒製造的分子作出反應,而這些病毒分子的來源就是腸胃道。研究指出,14 位確診者當中有一半可以在他們的小腸中檢測到新冠病毒 RNA,同時呈現陽性免疫反應。

病毒不只長存於腸胃,而且還是活跳跳的病毒。另一項研究[7]提供了充分證據。該研究追蹤免疫功能下降的病患,在確診一年之後,還可以從他們的盲腸組織細胞及乳房細胞直接培養出活病毒。研究者的結論是,免疫功能低下的患者,同時經歷了長新冠症狀和持續的病毒複製。整體而言,這些研究結果以及新興的長新冠研究,提高了胃腸道做為病毒長期藏匿之處,且可以長期影響症狀的可能性。

最後我們要問,除了上述提及的部位,還有其他人類的分泌物可以檢測到病毒嗎?我們必須釐清病毒會在哪些分泌物出現,以便在執行防疫措施時,可依重點需求區分輕重緩急的必備資訊,否則防疫很容易落入草木皆兵,造成不必要的恐慌與浪費資源。

* 本文內容所引用的文獻均發表在 Omicron 出現之前。基於 Omicron 與其他變異株在細胞嗜性的差異,本文部分內容不適用於 Omicron 感染。

——本文摘自《從一個沒有名字的病開始》,2022 年 11 月,商周出版,未經同意請勿轉載。

參考資料

  1. Wrapp et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020 Mar 13;367(6483):-1263.
  2. Sakurai et al. Natural History of Asymptomatic SARS-CoV-2 Infection. N Engl J Med. 2020 Aug 27;383(9):885-886.
  3. von Stillfried et al., First report from the German COVID-19 autopsy registry. Lancet Reg Health Eur. 2022 Feb 18;15:100330.
  4. Amman, et al. Viral variant-resolved wastewater surveillance of SARS-CoV-2 at national scale. Nat Biotechnol (2022). https://doi.org/10.1038/s41587-022-01387-y
  5. Natarajan, et al. Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA suggest prolonged gastrointestinal infection. Med (N Y). 2022 Jun 10;3(6):371-387.e9.
  6. Gaebler, et al. Evolution of antibody immunity to SARS-CoV-2. Nature. 2021 Mar;591(7851):639-644.
  7. RNAhttps://www.researchsquare.com/article/rs-1379777/v2
商周出版_96
101 篇文章 ・ 344 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商業出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

1

100
3

文字

分享

1
100
3
【闢謠科普兩不誤】「mRNA 疫苗爭議浮現,MIT:自然免疫系統失靈」這篇文到底有多少錯?下篇:文章內容有哪些資訊有誤或需要補充?文獻海洋在這裡!
Jamie Lin_96
・2022/09/18 ・13083字 ・閱讀時間約 27 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

在這篇文章中我會針對該科技新報文章所提及的內容進行闢謠科普,關於關於其引用的研究的闢謠科普詳見本文上篇:【闢謠科普兩不誤】「mRNA 疫苗爭議浮現,MIT:自然免疫系統失靈」這篇文到底有多少錯?上篇:破解有疑慮的引用文獻及判斷文獻可信度小技巧分享

筆者目前研究領域跟工作狀態:免疫學博士候選人,預計於 2023 年 2 月正式取得博士學位,研究主題為愛滋疫苗與功能性抗體,具備在生物安全等級三級實驗室工作的資格與能力,最近在發表地獄中載浮載沉。

針對原始文章內錯誤的句子我會寫出是哪部分錯誤,並逐一科普,各段文字來自原始文章截圖;而跟那兩篇引用文獻有關的句子我用紅色底線標注,考量到文獻品質不佳在本篇中不多加討論(詳情請見本系列文上篇),在這篇中我也會分享一些跟疫苗副作用相關的發表,[]內的數字代表下方引用文獻reference列表對應到哪些學術發表,這篇文章很長,推薦抱持著輕鬆的心情慢慢看。

原文第一段。圖/科技新報
錯誤點:
  • 疫苗研發量產需要時間,跟不上病毒突變速度是正常的;已有完成臨床試驗的疫苗的病毒如HBV其實也還持續在開發效果更好的疫苗,總有天選之人打了疫苗沒效,有些疫苗則是要根據施打者過往病史來做選擇。
  • 疫苗的功效不只有防止感染,能降低感染後重症率、住院率、死亡率等也算是疫苗的功效。
  • 現在流行的病毒株跟當初開發疫苗時的病毒株差異極大,整體效果下降非常正常,並不是因為疫苗讓免疫系統變爛,而是病毒變厲害。
  • 號稱麻省理工的研究偏向文獻綜述,把一堆文獻抓在一起加上一些分析錯誤的數據,通篇沒有文獻或正確數據可以佐證其論點
  • 該荷蘭研究數據量與分析方式有疑慮,不應用其下定論

疫苗為什麼會跟不上病毒變種速度?為什麼疫苗防止感染能力變差?

要回答這些問題答案必須分為兩個面向:

1.哪些因素會影響病毒出現新變種的速度

  • 病毒本身特性[1–3]
  • 感染人數人口密度[4]
  • 受感染者的免疫狀態[5–7]
  • 病毒突變後增強的能力[8][9]

新冠病毒的突變速度不是全部病毒中最快的,但也不慢,再加上其能夠在物品表面上存活時間長又有無症狀之帶原者[1][10],使其能快速傳播讓總感染人數上升,在人口密度較高的國家/區域確診病例數上升更為顯著,感染人數越多病毒傳遞越遠,在這過程中出現新變種的可能性就會跟著上升[4]

而病毒不會只感染特定族群,有些免疫力低下或是一些因為疾病免疫系統受到影響的人也會被感染,跟免疫力健全者相比這些人的免疫系統難以清除病毒[5–7],之前在南非就有一個案例是一位 HIV 感染的 22 歲女性持續被 beta 病毒株感染 9 個月,接受 HIV 治療約兩個月並從 covid 感染恢復後,其研究團隊發現該女子身上的病毒株已有超過 20 個新突變[6]

隨著病毒不斷傳播、突變、傳播、突變,目前主流病毒株 Omicron 家族其實具有比過往病毒株更好的免疫逃避性,能夠躲過免疫系統與感染/疫苗誘導出的抗體的追殺[8][9],同時也因為其免疫原性低,儘管確診後也無法產生足量有效的抗體對抗反覆感染,而病毒的免疫逃避性變好也代表可以逃過疫苗誘導出的抗體,疫苗保護力隨之下降[8][9]][11][12]

上述因素層層疊加,使我們三不五時就會聽到有新變種的消息,同樣這些因素也影響了疫苗開發與效果。

2.疫苗開發與臨床試驗流程

疫苗開發到進入臨床試驗跑完整個流程其實非常曠日費時,近幾年順利通過三期臨床實驗的伊波拉疫苗(有獲歐盟批准)從研發到走完臨床實驗到正式上市也已經過了 20 多年[13][14]

臨床試驗相關細節與名詞解釋在科學月刊 2018 年 7 月的文章 — 臨床試驗「盲不盲」與台灣藥物臨床試驗資訊網中有詳細解釋[15][16],而臨床試驗相關資訊可以在 ClinicalTrials.gov 上查詢,那是一個國際級臨床實驗資訊的資料庫[17],但這邊需要特別解釋一個臨床實驗的特性:臨床實驗一定會有報告如期中報告等,絕對會提交給監督審核的機構,但其報告是否向大眾公開、最後是否整理發表至期刊上等則不一定!所以如果一般大眾查不到某臨床實驗的公開的報告跟發表是在合理範圍內,其臨床試驗過程中的數據並沒有強制一定要公開,而最後失敗與否則會公開。

我自己的研究範圍就包含愛滋病疫苗,從過往已經宣告失敗的臨床試驗中找出失敗原因去改進或是檢測正在進行中的臨床試驗效果如何都在我的工作範圍之內,我們在做研究分析的同時病毒仍在外造成疫情,研究人員這端能做的主要是設計並篩選出可能成為疫苗候選的成分,通過細胞、動物實驗等去分析毒性、效力及可能可以用在人類身上的劑量,這些主要是在臨床前階段就會完成。

進入到第一階段臨床試驗時除了檢測疫苗在人類身上的安全性之外,我們也會測試不同疫苗濃度及施打方式等會不會效果更好,這時候會分非常多組,每組大概 10 幾人且有安慰劑組,將檢體寄送給不同專業的研究機構進行分析後最終會知道哪個配方跟施打方式是這些中最好的,如果安全性過關且在實驗室的實驗中有看到初步效果,在監督機關審核通過許可後會進到第二期臨床試驗,招募更多志願者並進一步分析疫苗有效性跟是否有潛在的不良反應(每個人身體狀況不同所以施打者越多就有機會觀察到更多不良反應),如果在此時發現效果不好、有過多嚴重不良反應等負面結果臨床試驗就會終止於此難以繼續進入第三期。

新藥研發的整個過程大致分為 4 大項。圖/科學月刊

許多臨床實驗都有非常長的追蹤期,一年三年五年七年不等,但誰都沒預料到 Covid-19 疫情的爆發,倘若針對突然爆發的全球性疫情的疫苗仍要有原先那樣長得追蹤期,對全球民眾健康所帶來的傷害會超出預期,但儘管因為特殊狀況縮短 Covid-19 臨床試驗時間,開發出來也需要極佳的運氣與一定的時間,要生產足夠的疫苗同樣需要時間,這些都不是馬上完成的。

在疫情爆發之初有不少人提倡透過感染獲得群體免疫這個論點,這也使不少質疑為何要施打疫苗甚至選擇讓自己被感染。但其實已有免疫學領域大佬明確指出:傳統群體免疫的觀念可能不適用於 COVID-19 [18] 。下方的簡報是我針對該發表做簡單的科普,有興趣可以看一看。

最初群體免疫這個術語是從獸醫界開始使用[18],非常多學者想要知道那在人類流行病上同樣的理論是否適用,但在 20 世紀初期許多學者便已得知因爲疾病差異、免疫力持續時間、人口流動、所接受醫療資源差異等,人類想要單純通過感染獲得針對 Covid-19 的群體免疫基本上是不可能,需要透過適當公衛手段與有效的預防措施來控制感染數,爭取研發更有效的疫苗的時間等多管齊下才可能達成[19]

看完上述資訊後讓我們回到:疫苗為什麼會跟不上病毒變種速度?為什麼疫苗防止感染能力變差?這兩個問題上,答案便會好懂些:

  • 疫苗開發與產量都需要時間,但感染數量居高不下給病毒有出現新變種的機會,等疫苗上市時病毒已經突變無數次有新變種,自然追不上。
  • 病毒的免疫逃避性逃過疫苗誘導出的抗體,疫苗保護力隨之下降。

控制疫情還是需要以適當公衛手段與有效的預防措施來控制感染數,爭取研發更有效的疫苗的時間並讓能夠施打的族群施打,多管齊下才可能達成。

原文第二段。圖/科技新報
錯誤點:
  • 是先天性免疫“系統”,而非先天免疫細胞,他們成員很多
  • 先天性免疫系統不會活化後就變成適應性免疫系統,先天性免疫系統中的細胞不會活化後就變成適應性免疫系統的細胞(樹突細胞另提),吞噬細胞再怎麼被刺激也不會瞬間變身變成B細胞
  • T細胞與B細胞會不會產生記憶性、產生的記憶性多久跟病原體/抗原有關,不一定會在接受病原體/抗原刺激後出現。

人體的免疫系統分為先天性免疫系統與適應性免疫系統[20][21],而這兩者的區別為

先天性免疫系統:

  • 非特異性反應,會對所有病源有反應
  • 一接觸到病原馬上開始動工
  • 不是所有先天性免疫系統的成員都有記憶性
  • 包含發炎反應、補體系統與部分白血球(如吞噬細胞),部分成員會協助活化適應性免疫系統

適應性免疫系統:

  • 對特定病原與抗原起反應
  • 需要一點時間才會有強烈反應
  • 有記憶性(會記得敵人一段時間)
  • 淋巴球,T 細胞與 B 細胞屬於這裡!

先天免疫系統不會因為接觸到病原體就變成適應性免疫系統他們同時存在有時互相幫忙,並以不同的機制保護人體

而常常聽到人提到的 B 細胞與 T 細胞他們的保護身體的機制簡單來說是

B 細胞:

  • 認識抗原(可能來自病原體或是疫苗)後大量製造能夠識別目標物的抗體
  • 有些抗體如中和性抗體需要特殊的B細胞製造且成熟時間長

T 細胞:

  • 識別受感染的細胞
  • 協助 B 細胞更好的認識病原體的抗原
  • 引導能夠清除的T細胞過來
  • 清除受感染的細胞
  • 殺死癌細胞[22]
抗體與 Fc 受體以及其可能誘導出的免疫反應。圖/參考資料 23

抗體、補體、抗體加上 T 細胞等組合產生多種機制,都是免疫中的一環缺一不可[23],但這些機轉中也有可能對身體造成危害的如抗體依賴增強作用Antibody-dependent enhancement (ADE),ADE能讓感染變嚴重[23][58]。倘若疫苗誘導出來的抗體做臨床前試驗或是第一期臨床試驗時發現有ADE,那該疫苗不會進到後續臨床試驗;而要觀察上市後的疫苗有沒有ADE可以從重症率死亡率是否激增來判斷,目前真實世界數據尚未看到Covid-19疫苗有ADE的問題,但有分析其可能機轉 [58][59],而在細胞實驗中感染Covid後部分誘導出的抗體有觀察到ADE [60]

在癌症治療方面T細胞十分重要,其機轉非常複雜且需要不同細胞因子與受體協同合作[22]。B細胞與T細胞被活化後有些後代成員可能會成為具有免疫記憶的記憶B細胞與記憶T細胞等,未來如果碰到類似的抗原時可以有所反應,而能夠有多長的記憶時間則要看病源體/抗原特性來定,但這些被活化的免疫細胞不一定都能在未來提供有效的免疫反應。

在今年八月底發布於 medRxiv 上一篇尚未經通行審查但內容十分嚴謹(高機率已經投稿期刊正在進行審核)的論文指出:Covid 確診者(兩個月內)體內針對病毒抗原的特異性 B 細胞會使疫苗施打效果變差 [24],一分析確診者與未確診者施打 CoronaVac 疫苗後的免疫反應之研究指出過去有確診過的人施打疫苗後產生的中和抗體廣度較未確診者窄[25],這些研究其實揭示了因感染活化的免疫細胞甚至是記憶性免疫細胞並非在未來能成為我們對抗病源的好幫手,可能會成為讓疫苗效果變差的壞人[26]

今年六月刊登於頂級期刊 Nature 的一篇發表更是指出 Covid 病毒進化非常多並且能夠抑制針對自己的免疫反應,這有利於反覆感染外,過往感染所產生的免疫銘印(immune imprinting)對未來再次面對不同 covid 病毒時的免疫反應產生負面影響,讓你的免疫系統(尤其是 T 細胞)對於新變種的抵抗力大幅下降[12],但在沒確診只有施打疫苗的族群上,尚未看到上述這些負面影響。

原文第三段與第四段。圖/科技新報
錯誤點:
  • 訊號傳遞的關鍵不是只有干擾素,細胞激素非常重要
  • 細胞被感染後不一會分泌干擾素,要先識別出來是敵人
  • 三種類型的干擾素都很重要不分軒輊,在癌症治療的運用上不是只有第一型,第三型也有。
  • 那篇號稱MIT但不是MIT的發表中沒有研究數據可以證實他所說的mRNA疫苗會破壞第一型干擾素的訊號傳遞。

能夠刺激觸發免疫系統活動的關鍵除了抗原外,宿主所產生的各種細胞激素(cytokine),其中包含文中所提到的干擾素(Interferon),能給予免疫系統進行各種不同的免疫反應[27][28],而 Covid-19 確診導致的細胞激素風暴(cytokine storm)同樣有細胞激素跟干擾素的參與[29]

下方圖片中的內容是一篇探討 Covid 確診後的細胞激素風暴相關路徑與參與的細胞激素、干擾素成員圖,非常精美可以當作參考,或是看一看漂亮的圖表心情好。

細胞激素風暴的機轉與參與成員其實非常繁雜。圖/參考資料 29

細胞激素參與身體中非常多的功能如:細胞訊息傳遞與調節免疫功能等,細胞激素家族非常龐大,而文中所提及的干擾素也是成員之一[27]。干擾素能夠影響病毒複製進而保護細胞不被感染與調節刺激一些免疫細胞,但病毒也不是毫無招架的餘地,有些病毒其實有拮抗干擾素的能力[28][30]。此外感染後的發燒、疼痛、發炎等症狀並非單純由干擾素引起,細胞激素也扮演了非常重要的角色[28]

而干擾素分成三型,功能不完全相同但都很重要:

  • 第一型:具影響病毒複製等功能,其成員有些被運用在治療肝炎,有些被用在治療多發性硬化症。[27][31]
  • 第二型:誘導刺激免疫反應。[32]
  • 第三型:較晚發現的成員,可能能夠影響病毒與真菌的感染。[33][34]

干擾素的確有跟其他療法如化療等一起運用在癌症治療上[35],其機轉與在治療上的運用也一直有在深入研究[36][37]

原文第五段。圖/科技新報
錯誤點:
  • 是細胞激素加上干擾素與其他被啟動的免疫機轉引起Covid-19確診後的最初症狀,不能說是由干擾素引起的
  • 免疫觀念是流動的,疫苗也不是只有預防感染的功能,降低住院率、死亡率、重症率、緩解症狀等都是疫苗會具有的功能,更別提還有治療性疫苗這個類別
  • 畫紅線的科學家表示的內容是錯的,疫苗接種對身體健康狀態有所要求,能接種疫苗者本身身體健康有一定水準,體內的免疫系統能夠清除病毒,打疫苗是讓免疫系統受到訓練後能更好的清除病毒,而施打疫苗後症狀輕微不代表身體沒抵抗
  • 就現有研究來說(免疫系統正常的成人)不論接種疫苗與否,病毒在人體停留的時間沒有統計上的顯著差異
  • 免疫系統功能低下者(如化療患者、愛滋病患者、特殊疾病患者等)被病毒感染後病毒可能揮之不去,但如果換作是普通人不論有沒有打疫苗免疫系統都有能力清除病毒,但能不能活到病毒被清除完又是另一回事。

Covid-19 確診後的症狀並非單純由干擾素引起,細胞激素也扮演了非常重要的角色[28],而疫苗功能其實不單純只有預防感染,減輕症狀與預防重症等也算是疫苗的功能[18]

據目前現有研究來看,確診 Omicron 的人施打疫苗者與未施打疫苗者其實病毒量沒有太大的差距[38][39],但施打疫苗者可能因為體內的抗體與有記憶性的免疫細胞辨識出敵人並開始清除病毒所以症狀出現的較早(可見下方引用推文中的圖片)。

倘若是身體健康的成年人,施打疫苗者確診後體內病毒不會停留更長的時間[39],免疫系統會有能力將病毒清除;但倘若為免疫功能低下的人,如:特殊疾病患者、化療病人、愛滋病患等,比起健康的成年人他們體內的免疫系統較虛弱難以將病毒清除且確診後演化為重症的可能性較高,所以我們必須要小心不要讓他們被感染[5–7]

而在這篇文章刊出不久候我收到一封信,信中說“ 如果長時間不清除疾病,可能會導致嚴重的疾病 ” 這段話可以用澳大利亞2022/06/11到2022/08/27的12週的感染新冠而住院(非加護病房)的確診案例數據去作佐證,之後我又收到一封信說我選用的數據錯誤,他給的數據只有New South Wales,不是澳洲全國。其實這兩封信中都犯了非常常見的數據分析錯誤,這樣的資訊也是假消息的愛用品,該如何破解呢?

筆者收到的信件。圖/作者
錯誤點:
  • 數據分析錯誤,分母取錯
  • 要討論像是疫苗會不會影響確診率這樣的現象或假說不能只用一個地區的數據,這不是在討論不同地區因為醫療資源、人口密度等帶來的影響或案例報告。先撇開最後統計結果不提,這樣要 “只用一個地區的數據來應證一個可能會發生在全世界各地的假設” 的行為恰恰就是學術領域中會被人詬病甚至退稿的 “挑數據說故事”
  1. 時間:數據是2022年6~8月的數據,已能獲得充沛疫苗資源的國家來說該國國民絕大多數都有接種疫苗,澳洲公布的數據來看16歲以上的澳洲人98%有接種一劑疫苗,兩劑為96.3%,三劑為71.7%,而New South Wales的人口數根據Population Australia這個網站上顯示在2022年6月底可能會達到 826萬人,而該地區16歲以上居民97%有接種一劑疫苗,兩劑為95.4%,三劑為69.6%(數據來源
澳洲全國疫苗接種狀態。圖/Australian Government Department of Health and Aged Care
New South Wales疫苗接種狀態。圖/NSW Health

2. 分母要選對:在做如該信提到的感染機率比較時,我們必須要有施打疫苗者跟有施打疫苗者比,沒施打疫苗者跟沒施打疫苗者比,為什麼?因為你要比的是施打疫苗者跟沒施打疫苗者各自的感染機率,而以澳洲數據來看16歲以上施打至少一劑疫苗者有98%(20,209,451人,換而言之沒施打疫苗者大約是2%(412,428人);而在New South Wales16歲以上施打至少一劑疫苗者有97%(約8,017,050人),未施打疫苗者大約3%(大約247,950人)如果沒選對分母,算出來的數據會大錯特錯。

3. 小心分子裡有詐:做數據分析前我們必須要看數據有沒有妥善處理,儘管現在資訊較為發達,還是有可能有些數據會被標記或應該表記為unknown,因為其實際狀況如何以現有資訊來說未知,舉例來說

  • 疫苗施打紀錄存疑需要額外查證
  • 有在其他地方打過疫苗但沒有證明文件
  • 在該系統中沒有出現有施打疫苗紀錄(可能其他地方有)等等

這些都會影響數據處理方式跟最終數據計算方式,這些unknown數據必須標示好並另外處理,不能跟其他數據混為一談更不能直接裁切掉忽視不理,更不能說為了讓數據量夠多我剔除unknown後多用幾週數據讓樣本數夠大,這已經能算惡意扭曲數據。

對於專業人士來說unknown這樣的數據的確是棘手,但相較於一般大眾我們有更多的權限去調取資料與做進一步數據清理分析,倘若真的處理不來我們也會如實告知,許多資訊因為涉及病人隱私絕對不會對外公開,所以問我們怎麼處理分類清理這些數據也沒用,更別提根據分析數據不同我們會用不同的統計方式,不是一般的加減乘除就可以理得清。

此外,在信中我有收到對方用來參考做計算的數據來源,而這張表一看問題就很大連拿來算的價值都沒有,爲什麼呢?

筆者收到的信件中所附的數據圖表。圖/作者

一位相關領域的博士去看原始數據後作出以下點評:

“ Unknown這群不管有沒有打疫苗也不能不理,而且光是8/20號的數據中unknown居然佔了27%(173/638住院數)的統計數,然後說當然不能分析? 他在開什麼玩笑? unknown只有幾種情形:

  • 沒打
  • 有打,沒有證明
  • 打了不是澳洲認為OK的疫苗(台灣人最愛講高端不能出國)
  • 有打的證明但不被認證

不把這些數據好好分類就直接當missing data處理,甚至在他提供的聯結中直接裁切不說明,就是惡意的扭曲數據的意義!”

對我來說他所用的數據還有另一個問題:年齡層資訊去哪了?病人是否有其他疾病呢?

讓我們再繼續使用2022年8月20日New South Wales的數據,住院者數量上升的年齡段集中在60歲以上的族群,詳情請見下圖:

2022年8月20日New South Wales的數據。圖/NSW Health

人類的免疫系統隨著年齡增長會有所影響,儘管都是16歲以上成年人,25歲的年輕人跟90歲的老人狀況不一樣,這就是為何在其他疫苗效力分析的文獻中會以10歲為一個年齡層區分開來分析,甚至連性別、種族等都是我們要考慮的因素,還要再考慮到施打了什麼疫苗;倘若取樣方式、思維邏輯錯誤,再怎麼計算最終結果也是錯的。

而且…儘管沒有權限去獲取所有數據細節,澳洲其實有數據庫已把寄件者想要知道的資訊算好了,New South Wales的數據與分析結果可點擊超連結查詢,在CovidBaseAU的網站上還有其他州與澳洲整體的數據相關分析可以查閱。

總而言之言而總之:

數據資訊充足沒有惡意處理、病人資訊明確並且數據量夠並且挑選適當的統計方式才可以進行數據分析,不是隨便加減乘除就會馬上得到真理

  • (選配)複習一下國中與高中數學在機率統計方面的內容:可能對於有些人來說國高中所學的內容有點模糊了,所以在看到數據時做分析時會搞混應該用哪些數據當分子,哪些數據當分母,可以稍微複習一下。

而在原始文章中那個號稱MIT但根本不是MIT的發表在數據統計上犯的一個極大錯誤也是分母選擇錯誤,如果要算該疫苗的不良事件比例分母應該為“總施打人數”,而不是拿別的疫苗的施打人數來做加減乘除;同理在計算施打疫苗後的突破性感染比例其母數應該是施打疫苗者的人數,而沒施打疫苗者的感染比例則應適用沒有施打疫苗者的人數,別搞混嘍!

原文第六段。圖/科技新報

錯誤點:

  • Covid-19 mRNA疫苗減弱適應性免疫反應方面沒看到有扎實實驗數據的發表,原文提到的根本不是MIT發表的發表也沒有相關數據可以佐證。
  • B細胞在癌症治療中如何發揮功用還在研究中,而且B細胞能分泌的抗體種類很多,不是只有中和病原體的功能。

在本文撰寫的當下我以 google scholar 與 pubmed 查關鍵字 covid-19、mRNA vaccine、T cell、B cell 看到的主要是探討疫苗如何誘導 T 細胞與 B 細胞免疫反應,而細胞受損方面文獻主要在討論 covid 透過哪些路徑感染免疫細胞,確診對於免疫系統的影響(如 T 細胞多樣性降低,B 細胞失調等)等[40 – 44]

在癌症治療方面 T 細胞的確有其一席之地,與不同細胞激素與細胞協調清除癌細胞[22][45][46],而近幾年的研究顯示 B 細胞與癌症治療與預後評估有所關聯,相關機制仍在研究[47][48]

原文第七段。圖/科技新報

錯誤點:

  • 先天免疫與適應性免疫缺一不可
  • 被誘導出來的適應性免疫不一定有益
  • 該荷蘭研究數據量與分析方式有疑慮,不應用其下定論

參與先天性免疫與適應性免疫的成員眾多且都很重要[27][28],但不一定所有機轉誘導出來的免疫反應都是你的好朋友[12][26]。而該荷蘭研究是否真的有顯著差異能夠證明疫苗施打後真的會影響 IFN-α 以其文章中的數據來看仍有疑慮,詳細討論在上篇中在此不多贅述。

原文第八段。圖/科技新報

錯誤點:

  • 中和性抗體不會在一次疫苗接種後幾週就出來
  • 有實際數據的研究與論文綜述指出疫苗可效刺激誘導T細胞而非活性下降

中和性抗體需要不短的成熟期,不可能在疫苗接種後幾週內產生[49][50],除非你已經是接種超過一劑疫苗,接著在第二或是第三劑疫苗施打後幾週內產生中和性抗體那可能還說得過去。而 mRNA 疫苗可以有效刺激與誘導 T 細胞與 B 細胞已在過往實驗中獲得證實[51],對於其導致心肌炎、心包炎與過敏等的可能機制也有不少研究團隊分析討論[52][53],並針對其安全性與哪些族群可能施打有較高的風險有所研究[52–54]

mRNA 疫苗研究多年但實際大量運用在人體上也是第一次[55][56],比起其他傳統疫苗技術來說他有一定的優點如可以快速製備,同樣也有缺點如存放難度高、目前已知副作用不少以及缺乏傳統疫苗臨床試驗的長期追蹤,這些都是需要更多研究與更多時間才能知道答案。

整體來說「mRNA 疫苗爭議浮現,MIT:自然免疫系統失靈」文中部分內容正確,但更多的是似是而非跟描述方式不當,而構成這篇文章的兩篇引用文獻品質不佳甚至拿來當主打點的發表早已有國外文章分析其內容有多少問題[57],有興趣的人可以在 Reference 中找到連結查看。

引用文獻有誤、關於免疫學敘述有誤且偏頗,這是我對於「mRNA 疫苗爭議浮現,MIT:自然免疫系統失靈」這篇文章的評價;而針對該文的兩篇闢謠文 Reference 超過 60 個,遠超過原始文章中的引用文獻的數量,從此也可以看出要澄清假消息需要付出的心力有多驚人。

結語

會將這系列文拆成上下篇主要是因為「mRNA 疫苗爭議浮現,MIT:自然免疫系統失靈」是基於兩篇引用文獻再加上其他資料寫出來的,如果不將有標紅色底線的兩篇引用文獻相關內容先做闢謠科普這篇文章會很混亂很長。

沒有任何技術是完美的,隨著技術的發展、更多的研究與臨床觀察我們才能找到更適合的改進方向,進而讓不論是疫苗研發技術還是藥物療法開發等變得越來越好。但這世界上不會有任何事情是大家都接受的,總有攻擊的聲浪甚至有虛假資訊流竄,有些人儘管有高學歷,但那絕對不代表他們說的寫的是正確的,多的是這樣的人散播似是而非的資訊。

這系列文章的最後我想感謝在寫文章的過程中提供不同專業建議與見解的博士們(為了寫這篇文章我詢問了好幾位相關專業的博士),還有願意看到這行話的讀者,願這兩篇文章能夠讓沒有相關背景的大眾對於疫情相關的資訊判讀有些幫助,祝一切安好。

參考資料

  1. Amoutzias GD, Nikolaidis M, Tryfonopoulou E, Chlichlia K, Markoulatos P, Oliver SG. The remarkable evolutionary plasticity of coronaviruses by mutation and recombination: insights for the COVID-19 pandemic and the future evolutionary paths of SARS-CoV-2. Viruses. 2022 Jan 2;14(1):78.
  2. Schwarzendahl, F.J., Grauer, J., Liebchen, B. and Löwen, H., 2022. Mutation induced infection waves in diseases like COVID-19. Scientific Reports12(1), pp.1–11.
  3. Pathan, R.K., Biswas, M. and Khandaker, M.U., 2020. Time series prediction of COVID-19 by mutation rate analysis using recurrent neural network-based LSTM model. Chaos, Solitons & Fractals138, p.110018.
  4. Sharif, N. and Dey, S.K., 2021. Impact of population density and weather on COVID-19 pandemic and SARS-CoV-2 mutation frequency in Bangladesh. Epidemiology & Infection149.
  5. Mishra, M., Zahra, A., Chauhan, L.V., Thakkar, R., Ng, J., Joshi, S., Spitzer, E.D., Marcos, L.A., Lipkin, W.I. and Mishra, N., 2022. A Short Series of Case Reports of COVID-19 in Immunocompromised Patients. Viruses14(5), p.934.
  6. Maponga, T.G., Jeffries, M., Tegally, H., Sutherland, A.D., Wilkinson, E., Lessells, R., Msomi, N., van Zyl, G., de Oliveira, T. and Preiser, W., 2022. Persistent SARS-CoV-2 infection with accumulation of mutations in a patient with poorly controlled HIV infection. Available at SSRN 4014499.
  7. Hoffman, S.A., Costales, C., Sahoo, M.K., Palanisamy, S., Yamamoto, F., Huang, C., Verghese, M., Solis, D.A., Sibai, M., Subramanian, A. and Tompkins, L.S., 2021. SARS-CoV-2 neutralization resistance mutations in patient with HIV/AIDS, California, USA. Emerging Infectious Diseases27(10), p.2720.
  8. Focosi, D., Maggi, F., Franchini, M., McConnell, S. and Casadevall, A., 2021. Analysis of immune escape variants from antibody-based therapeutics against COVID-19: a systematic review. International journal of molecular sciences23(1), p.29.
  9. Nel, A.E. and Miller, J.F., 2021. Nano-enabled COVID-19 vaccines: meeting the challenges of durable antibody plus cellular immunity and immune escape. ACS nano15(4), pp.5793–5818.
  10. Riddell, S., Goldie, S., Hill, A., Eagles, D. and Drew, T.W., 2020. The effect of temperature on persistence of SARS-CoV-2 on common surfaces. Virology journal17(1), pp.1–7.
  11. Pulliam, J.R., van Schalkwyk, C., Govender, N., von Gottberg, A., Cohen, C., Groome, M.J., Dushoff, J., Mlisana, K. and Moultrie, H., 2022. Increased risk of SARS-CoV-2 reinfection associated with emergence of Omicron in South Africa. Science376(6593), p.eabn4947.
  12. Reynolds, C.J., Pade, C., Gibbons, J.M., Otter, A.D., Lin, K.M., Muñoz Sandoval, D., Pieper, F.P., Butler, D.K., Liu, S., Joy, G. and Forooghi, N., 2022. Immune boosting by B. 1.1. 529 (Omicron) depends on previous SARS-CoV-2 exposure. Science377(6603), p.eabq1841.
  13. https://www.jnj.com/johnson-johnson-announces-european-commission-approval-for-janssens-preventive-ebola-vaccine
  14. https://www.statnews.com/2020/01/07/inside-story-scientists-produced-world-first-ebola-vaccine/
  15. http://scimonth.blogspot.com/2018/07/blog-post_19.html
  16. https://www1.cde.org.tw/ct_taiwan/notes.html
  17. https://clinicaltrials.gov/
  18. Morens, D.M., Folkers, G.K. and Fauci, A.S., 2022. The concept of classical herd immunity may not apply to COVID-19. The Journal of Infectious Diseases.
  19. Eichhorn, Adolph. Contagious abortion of cattle. №790. US Department of Agriculture, 1917.
  20. Smith, A., 2000. Oxford dictionary of biochemistry and molecular biology: Revised Edition. Oxford University Press.
  21. Alberts, B., 2017. Molecular biology of the cell. WW Norton & Company.
  22. Waldman, A.D., Fritz, J.M. and Lenardo, M.J., 2020. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nature Reviews Immunology20(11), pp.651–668.
  23. Lin, L.Y., Carapito, R., Su, B. and Moog, C., 2022. Fc receptors and the diversity of antibody responses to HIV infection and vaccination. Genes & Immunity, pp.1–8.
  24. https://www.medrxiv.org/content/10.1101/2022.08.30.22279344v1
  25. Zhu, Y., Lu, Y., Tang, L., Zhou, C., Liang, R., Cui, M., Xu, Y., Zheng, Z., Cheng, Z. and Hong, P., 2022. Finite neutralisation breadth of omicron after repeated vaccination. The Lancet Microbe.
  26. Suryawanshi, R. and Ott, M., 2022. SARS-CoV-2 hybrid immunity: silver bullet or silver lining?. Nature Reviews Immunology, pp.1–2.
  27. Janeway, C.A., Travers, P., Walport, M. and Capra, D.J., 2001. Immunobiology (p. 600). UK: Garland Science: Taylor & Francis Group.
  28. De Andrea, M., Ravera, R., Gioia, D., Gariglio, M. and Landolfo, S., 2002. The interferon system: an overview. European Journal of Paediatric Neurology6, pp.A41-A46.
  29. Fajgenbaum, D.C. and June, C.H., 2020. Cytokine storm. New England Journal of Medicine383(23), pp.2255–2273.
  30. Elrefaey, A.M., Hollinghurst, P., Reitmayer, C.M., Alphey, L. and Maringer, K., 2021. Innate immune antagonism of mosquito-borne flaviviruses in humans and mosquitoes. Viruses13(11), p.2116.
  31. Ntita, M., Inoue, S.I., Jian, J.Y., Bayarsaikhan, G., Kimura, K., Kimura, D., Miyakoda, M., Nozaki, E., Sakurai, T., Fernandez-Ruiz, D. and Heath, W.R., 2022. Type I interferon production elicits differential CD4+ T-cell responses in mice infected with Plasmodium berghei ANKA and P. chabaudi. International Immunology34(1), pp.21–33.
  32. Kidd, P., 2003. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Alternative medicine review8(3), pp.223–246.
  33. Espinosa, V., Dutta, O., McElrath, C., Du, P., Chang, Y.J., Cicciarelli, B., Pitler, A., Whitehead, I., Obar, J.J., Durbin, J.E. and Kotenko, S.V., 2017. Type III interferon is a critical regulator of innate antifungal immunity. Science immunology2(16), p.eaan5357.
  34. Hermant, P. and Michiels, T., 2014. Interferon-λ in the context of viral infections: production, response and therapeutic implications. Journal of innate immunity6(5), pp.563–574.
  35. Goldstein, D. and Laszlo, J., 1988. The role of interferon in cancer therapy: a current perspective. CA: a cancer journal for clinicians38(5), pp.258–277.
  36. Zaidi, M.R., 2019. The interferon-gamma paradox in cancer. Journal of Interferon & Cytokine Research39(1), pp.30–38.
  37. Dunn, G.P., Ikeda, H., Bruce, A.T., Koebel, C., Uppaluri, R., Bui, J., Chan, R., Diamond, M., Michael White, J., Sheehan, K.C. and Schreiber, R.D., 2005. Interferon-γ and cancer immunoediting. Immunologic research32(1), pp.231–245.
  38. Regev-Yochay, G., Gonen, T., Gilboa, M., Mandelboim, M., Indenbaum, V., Amit, S., Meltzer, L., Asraf, K., Cohen, C., Fluss, R. and Biber, A., 2022. Efficacy of a fourth dose of COVID-19 mRNA vaccine against omicron. New England Journal of Medicine386(14), pp.1377–1380.
  39. Boucau, J., Marino, C., Regan, J., Uddin, R., Choudhary, M.C., Flynn, J.P., Chen, G., Stuckwisch, A.M., Mathews, J., Liew, M.Y. and Singh, A., 2022. Duration of Shedding of Culturable Virus in SARS-CoV-2 Omicron (BA. 1) Infection. New England Journal of Medicine387(3), pp.275–277.
  40. Junqueira, C., Crespo, Â., Ranjbar, S., de Lacerda, L.B., Lewandrowski, M., Ingber, J., Parry, B., Ravid, S., Clark, S., Schrimpf, M.R. and Ho, F., 2022. FcγR-mediated SARS-CoV-2 infection of monocytes activates inflammation. Nature, pp.1–9.
  41. Pontelli, M.C., Castro, I.A., Martins, R.B., La Serra, L., Veras, F.P., Nascimento, D.C., Silva, C.M., Cardoso, R.S., Rosales, R., Gomes, R. and Lima, T.M., 2022. SARS-CoV-2 productively infects primary human immune system cells in vitro and in COVID-19 patients. Journal of molecular cell biology14(4), p.mjac021.
  42. Joseph, M., Wu, Y., Dannebaum, R., Rubelt, F., Zlatareva, I., Lorenc, A., Du, Z.G., Davies, D., Kyle-Cezar, F., Das, A. and Gee, S., 2022. Global patterns of antigen receptor repertoire disruption across adaptive immune compartments in COVID-19. Proceedings of the National Academy of Sciences119(34), p.e2201541119.
  43. André, S., Picard, M., Cezar, R., Roux-Dalvai, F., Alleaume-Butaux, A., Soundaramourty, C., Cruz, A.S., Mendes-Frias, A., Gotti, C., Leclercq, M. and Nicolas, A., 2022. T cell apoptosis characterizes severe Covid-19 disease. Cell Death & Differentiation, pp.1–14.
  44. Woodruff, M.C., Ramonell, R.P., Haddad, N.S. et al. Dysregulated naïve B cells and de novo autoreactivity in severe COVID-19. Nature (2022). https://doi.org/10.1038/s41586-022-05273-0
  45. Feng, S. and De Carvalho, D.D., 2022. Clinical advances in targeting epigenetics for cancer therapy. The FEBS Journal289(5), pp.1214–1239.
  46. Abrantes, R., Duarte, H.O., Gomes, C., Wälchli, S. and Reis, C.A., 2022. CAR‐Ts: new perspectives in cancer therapy. FEBS letters596(4), pp.403–416.
  47. Petitprez, F., de Reyniès, A., Keung, E.Z., Chen, T.W.W., Sun, C.M., Calderaro, J., Jeng, Y.M., Hsiao, L.P., Lacroix, L., Bougoüin, A. and Moreira, M., 2020. B cells are associated with survival and immunotherapy response in sarcoma. Nature577(7791), pp.556–560.
  48. Helmink, B.A., Reddy, S.M., Gao, J., Zhang, S., Basar, R., Thakur, R., Yizhak, K., Sade-Feldman, M., Blando, J., Han, G. and Gopalakrishnan, V., 2020. B cells and tertiary lymphoid structures promote immunotherapy response. Nature577(7791), pp.549–555.
  49. Moore, P.L., Williamson, C. and Morris, L., 2015. Virological features associated with the development of broadly neutralizing antibodies to HIV-1. Trends in microbiology23(4), pp.204–211.
  50. Gray, E.S., Madiga, M.C., Hermanus, T., Moore, P.L., Wibmer, C.K., Tumba, N.L., Werner, L., Mlisana, K., Sibeko, S., Williamson, C. and Abdool Karim, S.S., 2011. The neutralization breadth of HIV-1 develops incrementally over four years and is associated with CD4+ T cell decline and high viral load during acute infection. Journal of virology85(10), pp.4828–4840.
  51. Hogan, M.J. and Pardi, N., 2022. mRNA Vaccines in the COVID-19 Pandemic and Beyond. Annual Review of Medicine73, pp.17–39.
  52. Heymans, S. and Cooper, L.T., 2021. Myocarditis after COVID-19 mRNA vaccination: clinical observations and potential mechanisms. Nature Reviews Cardiology, pp.1–3.
  53. Risma, K.A., Edwards, K.M., Hummell, D.S., Little, F.F., Norton, A.E., Stallings, A., Wood, R.A. and Milner, J.D., 2021. Potential mechanisms of anaphylaxis to COVID-19 mRNA vaccines. Journal of Allergy and Clinical Immunology147(6), pp.2075–2082.
  54. Anand, P. and Stahel, V.P., 2021. The safety of Covid-19 mRNA vaccines: A review. Patient safety in surgery15(1), pp.1–9.
  55. Park, K.S., Sun, X., Aikins, M.E. and Moon, J.J., 2021. Non-viral COVID-19 vaccine delivery systems. Advanced drug delivery reviews169, pp.137–151.
  56. Heiser, A., Coleman, D., Dannull, J., Yancey, D., Maurice, M.A., Lallas, C.D., Dahm, P., Niedzwiecki, D., Gilboa, E. and Vieweg, J., 2002. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. The Journal of clinical investigation, 109(3), pp.409–417.
  57. https://www.respectfulinsolence.com/2022/05/02/scientific-review-articles-as-disinformation/
  58. Halstead, S.B. and Katzelnick, L., 2020. COVID-19 vaccines: should we fear ADE?. The Journal of infectious diseases, 222(12), pp.1946–1950.
  59. Li, M., Wang, H., Tian, L., Pang, Z., Yang, Q., Huang, T., Fan, J., Song, L., Tong, Y. and Fan, H., 2022. COVID-19 vaccine development: milestones, lessons and prospects. Signal transduction and targeted therapy, 7(1), pp.1–32.
  60. Maemura, T., Kuroda, M., Armbrust, T., Yamayoshi, S., Halfmann, P.J. and Kawaoka, Y., 2021. Antibody-dependent enhancement of SARS-CoV-2 infection is mediated by the IgG receptors FcγRIIA and FcγRIIIA but does not contribute to aberrant cytokine production by macrophages. MBio, 12(5), pp.e01987–21.
所有討論 1
Jamie Lin_96
2 篇文章 ・ 2 位粉絲
正在論文與發表地獄中載浮載沈的免疫學博士後選人 熱愛攝影、做手工藝且永遠管不住好動的手,不是在寫論文、部落格文章就是在推特上筆戰科普

0

7
2

文字

分享

0
7
2
【闢謠科普兩不誤】「mRNA 疫苗爭議浮現,MIT:自然免疫系統失靈」這篇文到底有多少錯?上篇:破解有疑慮的引用文獻及判斷文獻可信度小技巧分享
Jamie Lin_96
・2022/09/17 ・4028字 ・閱讀時間約 8 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

單純只說這篇文章內容錯誤無法說服人,就讓我們一起從有狀況的引用文獻到問題百出的文章內容逐一拆解科普過去吧!

因為內容眾多所以這篇文將會拆成上下兩篇,上篇為引用文獻出了什麼包以及若非專業人士我們怎麼快速判斷發表是否可信?下篇為整篇文章內容有哪些觀點有誤與有哪些相關可信賴發表值得看。

分析這篇文章引用的文獻,破解有問題的引用文獻跟判斷文獻可信度小技巧。圖/科技新報

筆者目前研究領域跟工作狀態:免疫學博士候選人,預計於 2023 年 2 月正式取得博士學位,研究主題為愛滋疫苗與功能性抗體,具備在生物安全等級三級實驗室工作的資格與能力,最近在發表地獄中載浮載沉。

在細緻拆解這篇文章的內容前,我想先來聊聊這篇文章引用的兩篇發表到底問題在哪裡?為什麼我會說有狀況?

第一篇引用文獻的四大問題

這篇文章引用兩篇發表,第一篇是 2021 年 5 月 6 日發布在 medRxiv 上的 The BNT162b2 mRNA vaccine against SARS-CoV-2 reprograms both adaptive and innate immune responses,研究團隊在荷蘭,也是該文中所提的荷蘭研究。

引用的文獻之一。圖/medrxiv
  • 文獻引用與解讀錯誤
  • 可能該發表從實驗假設到結論都有問題
  • 數據分析與解讀方式可能有問題(其實在審核過程中,研究團隊是有可能需要針對評審質疑的方向加做實驗來證實假設論點為真,進而說服評審)
  • 可能會誤導非該領域的讀者

因為疫情很多研究團隊會將發表先放上 medRxiv 與 bioRxiv,其實不少很扎實的研究之後都投稿上了正式期刊,倘若有投稿上會顯示在 Rxiv 的連結上。

這篇研究到我寫文的當下尚未正式投稿刊登,該研究總樣本數為 16 人其實不多之外,支持該發表論點的主要是這兩張圖,因為研究團隊說疫苗接種後的 IFN-α 濃度有顯著差異。

除了樣本數不高外,對於顯著差異的判斷也隨著時間改變而有所不同。圖/Figure 1H, 1I

但真的有顯著差異嗎?我看完數據後表示存疑。

樣本數少之外可以看到只有一兩個點較高,其他點分佈都非常平均,這樣的狀態下其統計的顯著差異可能來自那一兩個極端值,而非兩組真實有差;如果我是評審我會詢問該團隊移除最高值後期數據是否仍有顯著差異並請他們將 Y 軸改成 log10 scale 來看分佈,如果重新分析製圖後真有顯著差異我才可能會覺得這篇發表的實驗結果可以支持論點。

第二篇引用文獻號稱 MIT 研究是真的假的?

第二篇研究為 2022 年 4 月 15 日刊出在 Food and Chemical Toxicology 的 Innate immune suppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, and MicroRNAs,在文中被稱為是 MIT 研究也是「MIT:自然免疫系統失靈」的由來,但這篇文章真的是 MIT 研究且可信嗎?

在文中被稱為是 MIT 研究也是「MIT:自然免疫系統失靈」的由來,但這篇文章真的是 MIT 研究且可信嗎?圖/Food and Chemical Toxicology 

這篇真的很長,拉到最下方的作者貢獻(Author contributions)區可以看到這段話:S.S., G.N and A.K. all contributed substantially to the writing of the original draft. P.M. participated in the process of editorial revisions. 意思是作者序上的前三位作者負責寫這篇文章的草稿,而最後一位作者是通訊作者並且負責整篇文章的投稿與問題回覆

如果對於貢獻、通訊作者、問題回覆等名詞看得一頭霧水,可以參考我之前寫針對期刊投稿與貢獻的科普文,裡面對這些名詞都有簡單定義解釋。

簡單來說這篇發表誰是老大跟屬於哪個機構?答案是這篇研究的通訊作者 Peter A. McCullough,他是一位心臟科醫生並且有許多反疫苗言論[1][2][3],且該發表應歸屬於 Truth for Health Foundation 的研究(在其機構 mission 上寫他們提供以信仰為基礎的療法),完全不能說是MIT的研究,而寫文章的前三位作者分別背景為:

  • Stephanie Seneff:背景為計算機科學,近年研究興趣與生物較為相關的為現代疾病(如:阿茲海默、自閉症、心血管疾病等)與藥物數據庫的分析,以及營養缺乏和環境毒素對人類健康的影響。其生物相關發表不少有所爭議並被專家批評缺乏證據、推論不正確等[4][5]。(Wikipedia link
  • Greg Nigh:工作為自然療法醫療人員與針灸師。
  • Anthony M. Kyriakopoulos:希臘研究員,最近幾年主要研究牛磺酸。

上述三位作者加上通訊作者全部沒有免疫學背景甚至不是相關研究人員

而更有趣的是該篇發表的主要編輯為 Dr. Jose Luis Domingo,他主要研究方向為環境與食品污染對人類健康的影響,但他的研究其實不少備受批評外,他曾經在 Food and Chemical Toxicology 期刊上徵稿[6],希望有人能夠投稿關於 Covid-19 疫苗對人體有害的稿件,之後便有了這篇號稱「MIT 研究」的發表,但國外也早已有文章批評其是披著科學文獻皮的虛假訊息[7]

講完該發表作者群與編輯的背景與事蹟後,讓我們看一看這篇文章發表在哪個期刊:Food and Chemical Toxicology 食品與化學毒理學期刊;而正統疫苗相關發表會去什麼期刊:生物學、免疫學等相關期刊。每個期刊代表的研究領域不同外,同時也代表該期刊的評審背景,你不可能在食品相關期刊找到免疫學專業的評審,反之亦然。倘若這篇疫苗有害論的發表整體論點清晰佐證明確,那早就應該可以上免疫學相關期刊,不用跑去食品期刊湊熱鬧

可能有人會問:作者與編輯有狀況不代表內文有狀況啊?

這篇發表我很認真的看完了,簡單來說有兩個致命問題:

  • 引用很多文獻,但是完全沒有任何文獻可以支持他們的論點
  • 數據分析方式錯誤,如果要算該疫苗的不良事件比例分母應該為“總施打人數”,而不是拿別的疫苗的施打人數來做加減乘除

通篇錯誤滿滿,完全可以當作科學寫作與生物統計學的負面教材。

所引用的兩篇文章各有不同的疑慮

「mRNA 疫苗爭議浮現,MIT:自然免疫系統失靈」這篇文章引用的兩篇發表

  • 第一篇沒有經過同行審查,對我來說數據分析結果存疑,需要進一步的分析與更多專業人士審查後我才會相信
  • 第二篇內把所屬機構寫錯外,作者群與編輯無免疫學背景且內文錯誤滿滿

光就其引用文獻的品質其實就可以直接判斷該文章不合格根本連看都不需要看,而在下篇文章我會深入拆解文章內容並針對其寫到的資訊做科普。

快速檢閱發表是否可信的小技巧

我常常被人問:Jamie,我沒有免疫學背景,那我該怎麼判斷這篇文章可不可以信任呢?

這裡我想分享幾個簡單的判斷方式:

  • 看作者所屬機構跟學歷背景:大多數的研究人員都會有紀錄學歷、發表、工作機構的頁面如:Google scholar, research gate, ORCID ID 等,而在期刊發表中我們會放上我們所屬機構,如果作者是在該領域相關機構工作學歷也相關,那可信度會高一些。
  • 查詢作者與編輯風評:如果發現大量負面評價,那可以不用看。
  • 看一看實驗 N 值、圖表、XY 軸與單位:每個研究會招募到多少人或是使用多少動物不一定,但通常越多越好,我自己會找有設置可以參考的對照組的發表,如果是跟人有關的最少要有 30 人但案例報告除外,動物實驗方面一組至少要 5 隻起跳,再來我會看該發表圖表的 XY 軸與使用的單位,再來看圖片中數據的分佈,如果發現說有顯著差異但數據分佈很集中只有一兩個數值極高或極低,那我會存疑當作並沒有顯著差異。
  • 看發表內容跟期刊主題是否一致:大部分的期刊都有自己的主題,就像我做愛滋病疫苗研究我可能會投往 AIDS, Frontiers, Genes & Immunity, Cell report 等期刊,但我不會說要去投毒物學期刊,這與我的研究方向完全不符合!如果發表內容跟期刊主題不一致還刊出來,那要不期刊很爛要不後面問題很大,不論哪個都是個警訊。
  • 盡量看有同行審查(peer-reviewed)的期刊發表:有些很優的發表因為疫情需要資訊快速交換所以會先放在未經同行審查的資料庫中之後正式投稿到期刊上,但這對於非相關專業的人來說很難判斷,在此我建議找有同行審查的期刊發表來看,但同樣需注意發表內容跟期刊主題是否一至。
簡單的判斷文章的可信度可以從作者所屬機構跟學歷背景、風評等多種面相來參考。圖/pixabay

疫情開始後其實有非常多關於 Covid-19 相關的垃圾發表,標題跟內文不符或是通篇錯誤,儘管我是相關專業有時候我也覺得很煩躁,但這些技巧是我需要大量查找 paper 時一定會使用的的快速分辨技巧,僅供參考。

【闢謠科普兩不誤】 — 「mRNA 疫苗爭議浮現,MIT:自然免疫系統失靈」這篇文到底有多少錯?上篇:破解有問題的引用文獻跟判斷文獻可信度小技巧分享 到此結束,下篇正在努力撰寫中,如果有任何疑問歡迎留言發問!

參考資料

  1. US cardiologist makes false claims about Covid-19 vaccination.
  2. The COVID-19 “Vaccine Holocaust”: The latest antivaccine messaging.
  3. Vaccines are a safer alternative for acquiring immunity compared to natural infection and COVID-19 survivors benefit from getting vaccinated, contrary to claims by Peter McCullough.
  4. Mesnage, R. and Antoniou, M.N., 2017. Facts and fallacies in the debate on glyphosate toxicity. Frontiers in public health5, p.316.
  5. Not Even Wrong: Seneff And Samsel Debunked By The Seralini Crew.
  6. Call for Papers on potential toxic effects of COVID-19 vaccines.
  7. Scientific review articles as disinformation.
Jamie Lin_96
2 篇文章 ・ 2 位粉絲
正在論文與發表地獄中載浮載沈的免疫學博士後選人 熱愛攝影、做手工藝且永遠管不住好動的手,不是在寫論文、部落格文章就是在推特上筆戰科普