Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

我們只用了十分之一的腦袋嗎?不,從來都是百分百──《打破大腦偽科學》

PanSci_96
・2018/09/19 ・3736字 ・閱讀時間約 7 分鐘 ・SR值 498 ・六年級

-----廣告,請繼續往下閱讀-----

圖/《LUCY》電影視覺 via imdb

本章要談的是我最愛的腦迷思。如果要頒發「最受歡迎的腦迷思獎」的話,這則絕對是冠軍。你一定也聽說過我們只用了 10%的腦。換句話說,90%的腦閒置在那裡,等著我們去用。想像一下,我們可以一下子將腦功能提高十倍耶!

為了回饋花錢買這本書來看的讀者,我動手搜尋了一下這則謠言的來源。這個說法人盡皆知,想必有個科學根據吧。我瘋狂追查了好幾個月,終於確認:根本沒有可靠的科學來源或研究,也沒有半個像樣的科學家可以證實這個說法。我反而是在一堆心靈成長類書籍裡找到如何完全發揮腦子潛力,輕鬆克服 10%障礙的說法。

現在我們終於找到這個迷思如此根深柢固的原因了,原來是有人在到處散佈謠言!可惜腦完全沒有自衛能力,別人要怎麼搬弄是非都可以,不會受到處罰。再說,要驗算一個人到底用了多少腦容量,也沒有那麼簡單,需要全套的器材和科學操作技術。這些技術幾十年前根本還沒出現,一看就知道腦多麼適合當八卦謠言的題材。

而且,這個想法簡單又迷人。你一定聽過「潛意識」吧!──腦子裡發生的事你渾然不知。所以,我們只用了一小部分的腦工作不是很合理嗎?生活經驗似乎也跟這個說法很吻合:最近我很不幸地不小心看到傍晚的電視節目,當下我真的很希望連續劇裡的主角只用了 10%的腦……

-----廣告,請繼續往下閱讀-----

腦中的背景雜訊

腦科學怎麼看待這個說法呢?從本書的宗旨看來,你應該早就知道了吧:這簡直完全鬼扯!胡說八道!許多研究腦的工具都可以確認這個說法是錯的。

圖/wikipedia

讀本書時,你用到的注意力絕對超過 10%。有許多方法可以來觀察思考中的腦袋,所有的方法都顯示,腦無時無刻不在工作,絕對從來沒有偷懶的 90%

舉功能性磁振造影術(大腦掃描器)為例,我們都知道它靠測量腦部的血流狀況,來判定哪個腦區特別活躍。觀看這些電腦製作出來的血流模式圖時,可以看見某個地方是紅色的,其他地方則是灰灰暗暗的。你可能會以為這就是 90%定理的最佳證據。但是別忘了,其實這些圖是經過數位處理後,才看得到那些細微的血流差異,它們顯示的是「差異」

事實上,所有腦區都在工作,整顆腦的血流量分分秒秒都在變化,每個腦區(內含數以百萬計的神經細胞)的活化狀況一直都在變動。機器測量到的訊號非常複雜,得經過繁複的計算過程,才能辨識出這些測量到的訊號。因神經細胞網絡不停活動而產生的這些背景雜訊,並不侷限在某個區域。所有腦區都在活動,每一個對思考和感覺都很重要。

-----廣告,請繼續往下閱讀-----

腦電波:神經細胞的集合掌聲

圖/wikipedia

除了造影技術,前面所提過的腦波圖也可顯示出,腦子忙得有多麼不可思議。腦波圖不是像測量血流那樣,間接推測神經細胞是否正在活動。繪製腦波圖時,受試者得戴上一頂好笑的帽子,上面裝滿了電極,這些電極會記錄神經細胞發出脈衝時產生的電場。有趣的是,由於神經細胞擁有喜歡聚集在一起的兄弟性格,所以訊號並不是單獨,而是彼此約好同時發送(也就是同步)。這是一件很棒的事,因為這樣產生的電場較大,比較容易從外面測量到。

你一定常聽到人們說,腦電波可以「導電」。聽起來好像很危險。不過這說法並不完全正確。事實上,透過腦波圖,我們可以確定的只有電場變強變弱的過程。令人驚訝的是,這些電場(和震盪)一直都在。不管測量頭部的哪個部位,不管是哪個時間測量,不管當時受試者是在睡覺還是吃冰,神經細胞都是不斷地成群發出脈衝,同步產生電場。

不變的法則是,這些電場的震盪愈慢,注意力就愈低。深睡時,電場每秒變化三次;如果你集中精神專注學習(希望就是你閱讀這段文字的此刻),電場可能每秒變化七十次。但是電場從來不曾消失。所以說,神經細胞會隨時保持活躍,相約好一起傳出脈衝。有趣的是,沒有人知道為何如此,又或者這個同步的過程是如何協調出來的。

圖/wikimedia

它和合唱團演唱美妙的歌曲的狀況不同,合唱團要靠指揮來協調歌唱者的聲波,才能讓原本的背景雜訊轉變成歌聲。然而,腦子裡沒有指揮。神經細胞也不需要指揮,因為它們除了規律地產生脈衝,什麼也不會。如果在培養皿裡培養神經細胞,不出幾個星期的時間,它們就會在沒有接收到任何指令的情況下,開始產生脈衝,完全自動自發。

-----廣告,請繼續往下閱讀-----

當有許多神經細胞並列於腦部時,它們就會開始同步。最好的比喻就是一大群人一起拍手,一開始有點亂,也就是「拍手雜訊」,一旦拍手持續得夠久,節奏就會愈來愈接近──整個過程是自發性、自動組織起來的。腦部的神經細胞也是這樣。即使我們並非有意識地在思考什麼,「神經脈衝的掌聲」(可以說是腦袋裡的背景雜訊)也一直都在持續進行當中。

沒有在節能的:大腦就是個燈火通明的宮殿

就算是剛從床舖起來的露西依舊能量滿滿?圖/imdb

想像一下,如果腦子無時無刻都在工作,所有的細胞也辛勤配合,那麼腦需要很多能量,也就不足為奇了。另一個迷思你一定聽過:休息狀態下,雖然重量只佔全身的 2%,腦部消耗的能量卻佔了全部的 20%。你一定不信,但是這卻是真的!畢竟不斷產生神經脈衝、釋出傳導物質是非常費力的事。其他的器官沒有這麼積極,偶而也會休息一下:

肌肉和腸道有事做的時候,才會需要更多養分。不過腦不一樣,它的能量消耗很穩定。不管是唸書,還是之後睡覺夢到書的內容,總血流量幾乎不會改變。

你可能會問,怎麼會這樣?腦袋為什麼不乾脆休息一下(至少一部分)?這是好幾百萬年天擇演化的結果。當然,腦子不是 90%無所事事,但為何又徹底背道而馳,選擇不斷消耗這麼多的能量呢?

圖/flickr

在自己家時,如果你是個節省能源的人,一定只會在你做事的房間裡點燈。如果你的家是有十個房間的兩層樓透天厝(我絕對樂見其成!),而你大部分的時間都待在廚房,那麼所有可用的電燈裡,你只用了 10%。一般人想像的腦部運作就是如此,妥善地分配能源,只在需要的地方開燈。

-----廣告,請繼續往下閱讀-----

事實完全相反。真要具象化來比喻腦部運作的話,腦並不是大房子,而是一座雄偉的宮殿,到處燈火通明,熠熠生輝。所有房間的燈都是亮著的,因為幾乎每個房間都有事情要做。總而言之,腦子的運作方式和我們習慣的職場世界,有著本質上的差異。

神經細胞和突觸越用才會越好用:整理鞋子原則

如果我們經常使用某件物品,因為磨損的緣故,它終有一天會壞掉。所以,為了讓它撐得久一點,用的時候要小心,也要不時維修。以鞋子為例,有些鞋子可能愈少穿愈好,如此一來,外觀和功能都可以更維持得更久。然而,腦完全不是這麼回事。

圖/goodfreephotos

「我姊姊有一整個倉庫的漂亮鞋子。假設五十雙好了,有些鞋她常穿,有些比較少穿。」

如果有一天要整理自己的鞋子收藏,就像管理我們腦神經細胞,她的第一個動作就是檢查哪些鞋最常穿,並且不時維修,例如換個鞋跟或鞋底。那些漂亮卻從來不穿的鞋會先被挑出來,然後在某個時候丟棄。畢竟鞋子就是要穿,才能發揮它的功能。如此一來,她的鞋子收藏會漸漸減少,比方說剩下十雙經常穿的鞋子。鞋架上的鞋子沒有一雙是多餘的。剛開始篩選鞋子的時候,這些鞋的使用率是 20%,最後則是達到百分之百。她的鞋會隨著她的所在地變化,鞋子的數量也會增增減減,這些都和環境有關。

-----廣告,請繼續往下閱讀-----
一如各種衣著的穿戴頻率會隨著環境改變:熱帶的泳裝總是多元;寒帶的大衣總是齊全,腦神經也會因使用狀況而「用進廢退」。 圖/Pixabay

當然,我不想把腦和我姊姊的鞋一視同仁,又製造出新的迷思來:不是喔,腦的主要任務並不是整理鞋子。不過這樣的比喻可能比較容易讓你了解腦部的運作模式。腦袋裡面沒有鞋子,而是神經細胞的連結、突觸;沒有人來負責揀選這些連結、把神經細胞丟出去(這點非常重要!),一切都是自發性的。基本原則和前面描述的整理鞋子的道理很像:

神經細胞和突觸必須使用,不然就會死亡。經常活化的突觸也會經常維修保養或擴建。如此一來,這些常用的細胞和突觸的裝備會愈來愈好。

 

本文摘自泛科學九月選書《打破大腦偽科學:右腦不會比左腦更有創意,男生的方向感也不會比女生好》,如果出版,2018 年 8 月出版。

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2407 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
1

文字

分享

0
1
1
運動員的大腦跟一般人不一樣?從腦科學看體力之外的奪冠秘笈
F 編_96
・2024/12/17 ・2098字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

是不是常聽人家講「運動天賦」?這種天賦到底是什麼?運動員哪裡跟我們不一樣?這個問題現在科學家或許可以給你一個答案。近年透過腦科學研究發現,運動員的大腦與普通人的大腦存在顯著差異,這些差異塑造了他們在比賽中的敏捷反應、精確動作及卓越判斷能力。

所以現在運動選手不只比體力,還要比腦力了嗎?這些差異具體差在哪裡?

快速反應:視覺處理能力

在團隊運動如足球或籃球中,快速處理視覺資訊並作出決策對勝負至關重要。一項 2013 年發表於《Scientific Reports》的研究發現,職業運動員比起業餘運動員或一般人更擅長處理動態視覺場景,例如追蹤快速移動的物體。這種能力能夠幫助運動員在瞬間解讀賽場上的複雜資訊,並迅速做出反應。

擁有快速的視覺處理能力,對團體運動來說至關重要。圖/envato

視覺處理能力的測試還可用於判斷運動員是否適合回歸賽場,例如在傷後復健階段,確保運動員在完全恢復判斷能力之前不會貿然上場。

-----廣告,請繼續往下閱讀-----

肌肉記憶:動作的自動化編程

對於體操選手或跳水運動員而言,肌肉記憶是完成複雜動作的關鍵。2023 年《Journal of Neuroscience》的一項研究表示,大腦如何通過訓練快速「壓縮」和「解壓縮」動作資訊,最終將動作序列整合成一個流暢的過程。這種訓練過程使運動員能夠無需刻意思考,便能完美執行複雜動作。

肌肉記憶的形成依賴於大腦皮層神經元的網絡活動,這種神經編程能力也同樣適用於訓練有素的音樂家或舞蹈家。

預測能力:球場上的決策利器

運動員擁有卓越的預測能力,例如棒球擊球手能根據投手的動作,快速判斷球的速度與方向。2022 年發表於《Cerebral Cortex》的研究發現,當擊球手預測投手的投球軌跡時,大腦左腹側顳葉皮質的神經元活動會根據預測結果而改變。

這種高效的預測能力源來於運動員在比賽中,學會透過關聯視覺線索與物體運動軌跡的技能。研究還發現,潛水選手等專業運動員的大腦中與動態運動解讀相關的區域,如上顳溝(STS),比普通人更厚,這也反映了運動訓練對大腦結構的塑造。

-----廣告,請繼續往下閱讀-----

平衡與空間感:身體控制的高峰

對體操選手來說,擁有非凡的平衡感與空間感知能力,兩者缺一不可,而這在科學上被稱為「本體感覺」(proprioception)。位於小腦的神經網絡讓運動員能迅速調整身體姿態,即使在空中失誤也能及時修正動作。

對體操選手來說,平衡感與空間感知能力非常重要。圖/envato

然而,當這套「安全網」失靈時,可能導致嚴重後果。如 2020 年東京奧運中,體操選手西蒙·拜爾斯(Simone Biles)因「扭轉失靈」而一度無法控制動作,凸顯了平衡能力在高風險運動中的重要性。

注意力與認知靈活性:多任務處理的關鍵

團隊運動要求運動員能快速在不同思維模式間切換,例如足球選手需在控球時預測對手動作並調整策略。2022 年《國際運動與運動心理學期刊》的一項研究顯示,運動員,特別是參與高強度間歇訓練的選手,擁有更強的認知靈活性和注意力分配能力。

研究也指出,這些能力的提升可能與長期訓練相關,但確切機制仍需進一步研究。

-----廣告,請繼續往下閱讀-----

抗衰老的秘密:運動對老年大腦的保護

這些運動訓練對大腦的影響,可不是只有相關區域的提升。運動對大腦健康的影響,可能會持續一生。一個典型例子是加拿大田徑選手奧爾加·科特爾科(Olga Kotelko),她在 95 歲時仍保持驚人的腦部健康,其白質結構完好程度甚至接近比她年輕三十多歲的普通人。科學家認為,持續的運動訓練可能是她保持記憶力與認知敏銳的原因之一。

運動不只是對身體的鍛鍊,對維持大腦健康也有影響。圖/envato

下一代的訓練策略:腦力與體力並重

隨著運動科學的不斷進步,科學家也開始呼籲教練更注重對年輕運動員的腦部訓練,例如提升記憶力與決策能力。西悉尼大學的運動科學家凱莉·斯蒂爾(Kylie Steel)指出,運動員的身體或許會訓練至極限,但在認知能力上仍擁有巨大的潛力提升。例如,足球訓練中可以鼓勵球員使用非慣用腳進行射門,以提升大腦靈活性,幫助他們在成年後更加出色地應對比賽挑戰。

近年研究讓我們重新認識了體育訓練對人體的深遠影響,運動改變的不僅是肌肉,還包括大腦。從視覺處理到肌肉記憶,再到抗衰老的腦部結構,透過運動與科學的結合,將為未來的運動員開啟全新可能性,也提醒我們,持續鍛煉不僅益於身體,也有助於大腦的健康。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
22 篇文章 ・ 0 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

1
2

文字

分享

0
1
2
從昏迷到死亡錯覺:摩托車事故後的科塔爾症候群——《大腦獵奇偵探社》
行路出版_96
・2024/08/24 ・3933字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

摩托車事故後的幻覺

一九八九年十月,二十八歲的股票經紀人,姑且稱之為威爾(Will),發生了嚴重的摩托車意外。他腦部受到重創,陷入昏迷,雖然幾天後恢復意識,但他在醫院裡住了好幾個月,治療腦傷以及其他損傷引起的感染。

到了隔年一月,威爾的復原情況非常良好,已經可準備出院。他的身上有些問題永遠好不了,例如右腿行動困難以及喪失部分視覺。但是最困擾他的問題發生在他的腦袋裡:他相當確定自己已經死了。威爾的母親為了幫助兒子早日康復,帶他去南非度假。但南非的炎熱讓威爾相信這個地方就是(真正的)地獄,因此更加確定自己必定是個死人。母親難以置信地問他是怎麼死的,他說了幾個可能的死因。有可能是血液感染(這是治療初期的風險),也有可能是他之前打黃熱病疫苗之後的併發症。此外他也提出自己可能死於愛滋病,雖然他沒有感染 HIV 病毒或愛滋病的任何跡象。

威爾康復出院,但堅信自己已經死亡。連他母親帶他去南非度假,都被他認為自己身在地獄。 圖/envato

有一種強烈的感覺纏上威爾,揮之不去─他覺得身旁所有東西都……這麼說好了……不是真的。車禍前熟悉的人和地方,他現在都不太認得,所以他愈發覺得自己住在一個奇怪又陌生的世界。連母親都不像真的母親。其實在南非度假的時候,威爾就曾這麼說過。他認為真正的母親在家裡睡覺,是她的靈魂陪伴他遊歷陰間。

喪失現實感:大腦如何捏造非理性的死亡解釋

四十六歲的茱莉亞(Julia)有嚴重的雙相情緒障礙症(bipolar disorder),入院時她相信自己的大腦和內臟都已消失。她覺得她早已不存在,只剩下一副空殼般的軀體。她的「自我」消失了,所以她(無論從哪個意義上看來都)是個死人。她不敢泡澡也不敢淋浴,因為怕自己空空如也的身體會滑進排水孔流走。

-----廣告,請繼續往下閱讀-----

三十五歲的凱文(Kevin)憂鬱的情況愈來愈嚴重,幾個月之後,腦海中的念頭漸漸演變成妄想。一開始,他懷疑家人正在密謀要對付他。接著,他認為自己已經死了,也已經下地獄,只是身體仍在人間。現在這副身體是空殼,裡面一滴血液也沒有。為了證明自己的想法沒錯,他從岳母家的廚房裡拿了一把刀,反覆戳刺手臂。他的家人明智地叫了救護車,將他送進醫院。

科塔爾症候群患者的大腦顯然有問題。發病之前,通常發生過嚴重的神經系統事故(中風、腫瘤、腦傷等等),或出現精神疾病(憂鬱症、雙相情緒障礙症、思覺失調症等等)。不過這些情況導致科塔爾症候群仍屬少見,神經科學家尚未找到明確原因,可以解釋科塔爾症候群患者的大腦為何如此與眾不同。再加上每個患者的症狀都不太一樣,判斷起來更加困難。話雖如此,有些共同症狀或許能提供蛛絲馬跡,幫助我們了解這種症候群。

科塔爾症候群的患者經常說,他們身處的世界莫名其妙變得很陌生。多數人看到自己曾邂逅多次的人事物時,大腦都能點燃辨認的火花,但這件事不會發生在科塔爾症候群的患者身上。舉例來說,患者可能認得母親的臉,但就是莫名的感到陌生。她似乎缺乏某種無形──但重要的─個人特質,所以患者即使看到這個生命中最重要的人,卻無法產生預期中的的情感反應。

患者也可能會有疏離感,彷彿自己是這世界的旁觀者,而不是參與者。術語叫做人格解離(depersonalization)。此外,周遭的一切都散發超現實的氣氛,讓患者相信自己生活在擬真的夢境裡─這是一種叫做喪失現實感(derealization,亦稱失實症)的症狀。科塔爾症候群患者體驗到的陌生感、人格解離、喪失現實感,都會嚴重扭曲他們眼中的現實世界。不難想像這會讓大腦難以負荷。

-----廣告,請繼續往下閱讀-----

大腦碰到如此矛盾的情況會拚命尋找原因。對大腦來說,能夠合理解釋各種生活事件是非常重要的。若找不到合理的解釋,世界很快就會變成無法預測、無法理解,最終變得無法忍受。因此為了清楚解釋所經歷的事情,大腦會無所不用其極。如果在經驗裡出現大腦難以合理解釋的元素,它會退而求其次:自己捏造合理的答案。

每個人的大腦都會這麼做,而且隨時隨地都在做,只是我們察覺不到。例如有研究發現,我們每天做的決定不計其數─從什麼時間吃點心,到要跟誰出去約會──但我們做這些決定時總是不假思索。我們好像大部分的時間都處於自動駕駛模式。可是每當有人問我們為什麼做這樣的決定時,大腦幾乎總能想出好答案來合理化我們的選擇。但有時候,它想出來的答案完全不合理。

有一項研究讓男女受試者看兩名女性的照片,請他們選出比較好看的那位。受試者做出決定之後,研究人員隨即將照片放在他們面前,要他們解釋為什麼選這個人。但受試者不知道的是,研究人員會偷偷調換照片(占比約二十%),要受試者解釋自己為什麼挑中這個(他們明明沒挑中的)人。大多數受試者都沒有識破研究人員的詭計。他們通常不會質疑照片上的人不是自己選的那個,而是當場想出合理的答案,說明為什麼覺得眼前照片上的人比較好看,例如「她看起來很辣」,或是「我覺得她比較有個性」(兩張照片差異甚大,所以受試者不是單純的認錯人)。

這種非刻意的捏造叫做虛談(confabulation),大腦做這件事的頻率比你以為的更高。虛談的原因可能有百百種,但這似乎是大腦遇到自己無法明確解釋的事件時,會使用的策略。神經科學家相信,科塔爾症候群患者的大腦也做了類似的事情。從這個角度來說,科塔爾症候群的起點,是前面提過的幾種狀況(例如創傷、腫瘤等等)導致大腦功能異常。

-----廣告,請繼續往下閱讀-----

大腦合理性檢查機制失靈

大腦功能異常導致現實感喪失與人格解離,進而使患者覺得周遭的一切很陌生,欠缺他們預期中的「真實感」。於是患者的大腦努力理解這樣的經驗,瘋狂尋找合理的解釋。基於不明原因,科塔爾症候群患者容易把注意力轉向內在,認為如果外在經驗不對勁,毛病可能出在自己身上。

結果基於某些更加不明的原因,大腦找到的解釋是他們已經死了、正在腐爛、被邪靈附體,或其他稀奇古怪的、與存在有關的原因。這一連串環環相扣的假設聽起來有點誇張。畢竟,喪失現實感這樣的症狀沒那麼少見;很多人(某些估計高達七十五%)會有類似的─但非常短暫的─喪失現實感的經驗。但有這種經驗的人,幾乎都不會認為自己已經死了。

顯然,科塔爾症候群患者的大腦裡還發生了別的事情。神經科學家相信,或許是重要的合理性檢查機制(plausibility-checking mechanism)沒有發揮作用。大腦偶爾會錯誤解讀生活裡發生的事,但我們通常不會想出一個明顯不合理的解釋。

或許是因為大腦錯誤解讀現實,讓科塔爾症患者對現實理解出現錯覺。 圖/envato

大腦似乎有一套用來評估邏輯的機制,確保我們的邏輯可以通過合理性的檢驗。在多數有過喪失現實感或人格解離等症狀的人身上,這套合理性檢查機制能使他們立刻否決「我感覺到自己脫離現實,是因為我已經死了」的想法;大腦認為這個提議很荒唐,很可能再也不會想起它。但是在科塔爾症候群的患者身上,這套合理性檢查機制顯然壞掉了。大腦將脫離現實的感覺歸因於他們已經死了,這個想法不知為何保留了下來,而大腦也認為這個解釋站得住腳。於是在其他人眼中絕對是妄想的念頭,成了他們深信不移的答案。

-----廣告,請繼續往下閱讀-----

醫生在為科塔爾症候群患者(以及後面會介紹的另外幾種行為古怪的精神障礙患者)尋找腦部損傷時,經常發現腦傷位於右腦。神經科學家因此假設合理性檢查機制位於右腦。大腦分為兩半,叫做大腦半球(cerebral hemispheres)。左腦半球和右腦半球的劃分簡單有力,因為有一道裂縫將大腦一分為二。乍看之下,左右兩邊一模一樣,但受過訓練的神經科學家用肉眼就能看出兩者並非完全對稱。透過顯微鏡觀察,差異更加顯著。因此左腦與右腦的功能有差異或許不足為奇。

長期以來,一直有人拿這些差異做文章,用錯誤的方式來解讀左腦和右腦的不同,以偏概全又過於誇大。例如斬釘截鐵地說,有些人較常使用右腦,也就是「右腦人」,所以擅長創意思考,「左腦人」則比較有邏輯。這是大家耳熟能詳的觀念,但神經科學家認為這只是迷思。實際上,我們使用大腦時不會特別偏左或偏右,而是完整使用兩個半腦。不過有些功能(例如語言的某些能力)會比較依賴某一個大腦半球。所以科塔爾症候群與右腦損傷有關的假設,並非全然不可能。

但科塔爾症候群(可能也包括合理性檢查機制)與右腦的關聯性依然只是假設,只不過許多(但不是所有)神經科學家深入研究過的科塔爾症候群案例,都支持這項觀察結果。無論合理性檢查機制確切位於何處,但在推演患者如何發展出科塔爾症候群的通用模型中,這個假設的機制扮演著重要角色。首先,大腦功能異常造成疏離症狀,例如喪失現實感與人格解離。大腦出於習慣,會先試著為眼前的情況找答案。問題是,仔細檢查並淘汰不合理答案的能力也受損了,於是大腦只好捏造稀奇古怪的答案,告訴自己身體已經死了(或是邪靈附體、正在腐爛等等),而且不會因為這個答案不合理而淘汰它。

有人認為,這種階段性的妄想形成過程也適用於另一些妄想症。這些妄想症的症狀也很古怪,不亞於科塔爾症候群。

-----廣告,請繼續往下閱讀-----

——本文摘自《大腦獵奇偵探社:狼人、截肢癖、多重人格到集體中邪,100個讓你洞察人性的不思議腦科學案例》,2024 年 7 月,行路出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

行路出版_96
21 篇文章 ・ 8 位粉絲
行路為「讀書共和國」出版集團旗下新創的出版社,出版知識類且富科普或哲普內涵的書籍,科學類中尤其將長期耕耘「心理學+腦科學」領域重要、具時代意義,足以當教材的出版品。 行路臉書專頁:https://www.facebook.com/WalkPublishing

0

5
1

文字

分享

0
5
1
在連接體迷宮尋找生命意義——專訪 2023 Taiwan 顯微攝影競賽銀獎得主劉柏亨
顯微觀點_96
・2024/04/29 ・4856字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

擴張顯微術、免疫螢光標記搭配雷射共軛焦顯微鏡,果蠅腦部緻密的多巴胺神經網路展開在我們眼前。初看猶如璀璨星雲,接近端詳就能發現神經束繁複清晰,聯繫著綻放光芒的神經元,猶如從太空站觀看的都會夜景。

這張精彩的作品「Wiring the Brain」,是以果蠅大腦探索連接體學,尋找腦部運作奧秘的路線圖之一,由清華大學腦科學中心的博士生劉柏亨拍攝。獲得 2023 Taiwan 顯微攝影競賽銀獎,不僅是劉柏亨在追求科學真相途中的額外收穫,也是他對自己多元興趣的重要實踐。

從材料工程到腦神經 追求變化的躍動旅程

大學時主修材料科學的劉柏亨,從「自修復材料」開始,研究興趣逐漸從工程領域轉向仿生(Bio-inspired)科技。他的碩士班題目是以生物晶片模仿心臟,作為藥物篩選平台。對他自己和指導教授都是嶄新的題目。

-----廣告,請繼續往下閱讀-----
清大腦科學中心是劉柏亨建立神經生物學知識與系統性思考的地方
清大腦科學中心是劉柏亨建立神經生物學知識與系統性思考模式的殿堂,也是每天磨練科學技藝的工作坊。 攝影:楊雅棠

「我是個很好動的人,因此選擇了一個全天都在活動的器官。」

——劉柏亨說,當時雖有學長研究細胞遷移,但對他來說還不夠「動感」,因此選擇團隊中沒有先例的心臟作為研發目標。

以仿生材料模擬心臟的過程中,劉柏亨意識到,「我對細胞、組織的基本原理還不夠了解,容易以工程師的觀念模擬心臟特性,有時會違反真實、整體的生理學。」他因此萌生了建立生醫知識基礎的求知慾。

劉柏亨想要挑戰更複雜的器官,進入江安世院士領導的清華大學腦科學研究中心攻讀博士,將短期具體研究目標放在「腦神經的影像化」,長期的探索方向則是「系統性地理解『生命現象』」。

電子顯微鏡下的果蠅
電子顯微鏡下的果蠅。果蠅的基因與人類同源性高,遺傳工程易於操作,並能呈現複雜多樣的行為,是研究腦科學的關鍵模式生物。Courtesy of Wellcome Collection.

無畏複雜 以系統視野理解生命

劉柏亨說明,上一階段的生命科學著重精準分析特定分子的功能,逐步研究細胞生理的單一面向。但人體不只由數種分子或細胞組成,而是上兆個細胞形成群體、互相影響,才展現出人類個體的生命表現。

系統生物學(Systems Biology)觀念,整合地理解人類生命,是劉柏亨著迷的目標。他說,因為分子與細胞生物學研究充分累積,現今的生醫知識基礎與技術成熟,已形成科學家投入系統生物學的良好時機。

-----廣告,請繼續往下閱讀-----

其中最吸引他的,是呈現腦神經系統的「連接體(Connectome)」及探究其整體運作的「連接體學(Connectomics)」。

連接體學是探究精神官能症狀、神經性疼痛、認知退化等腦部相關疾病的最新路徑。解碼線蟲、果蠅等模式生物較為簡單的神經連接體,將能推動對人類腦部運作方式的理解,也是神經生物學與醫學的關鍵方向。

系統生物學重視聯繫與整合的思維,不僅是劉柏亨追求知識的途徑,也延伸了他對生物學專業與社會的觀點。

這位接連跨足不同領域的博士生說,擷取腦神經影像的程序從前端的生物材料製備,到後端影像系統的工程科技都不可或缺,不是一個人的專業能力能夠包辦。

-----廣告,請繼續往下閱讀-----

他因此體悟,每張顯微影像都結合多種專業,而生物學的每一步進展也是不同領域科學家努力的整體成果,並非一個天才在單一領域獨力鑽研而成。

「許多不同的神經細胞彼此透過突觸聯繫彼此,建構出有神奇功能的腦。就像是人與人建立連結,建構社群與社會。」

——劉柏亨在頒獎典禮現場如此介紹自己獲獎的顯微影像。
果蠅腦連接體
果蠅幼蟲腦連接體的全腦圖譜,終於在 2023 年上旬由霍華.休斯醫學研究所、約翰.霍普金斯大學與劍橋大學的團隊合作完成。加入線蟲、海鞘幼蟲(Ciona intestinalis larva)、沙蠶幼蟲(Platynereis dumerilii larva)等生物的行列,達到突觸等級的完全連接體地圖。 Courtesy of Science

工程師的生物學 如調酒般逐步改良

這張螢光染色的果蠅腦神經多巴胺網路圖,輸出到超過人腦的截面積,依然清楚呈現星羅棋布的迴路與神經元。跨越繞射極限的清晰成像,要歸功於擴張顯微術(Expansion Microscopy)與劉柏亨逐步改良工法的耐心。

劉柏亨解釋,擴張顯微術中「分解」步驟對螢光訊號最為關鍵。蛋白酶能夠有效分解(digest)樣本的蛋白質骨架,讓樣本順利擴張,但是會犧牲不少螢光蛋白與解析度。

替代方法是以藥物促使蛋白質變性(denature)降低張力,維持螢光訊號強度,但是樣本擴張過程會有較多阻撓,導致結構變形。劉柏亨說,

-----廣告,請繼續往下閱讀-----

「結構變形,就不是原本要追求的東西,訊號再強也沒有用。」

劉柏亨與擴張後只有灰塵大小的果蠅腦樣本。
劉柏亨與擴張後依然只有灰塵大小的果蠅腦樣本。 攝影:楊雅棠

他笑稱自己「『像個工程師』地追求實驗最佳化,把兩種分解途徑混成雞尾酒,每一杯都稍微調整改良。」他調和兩種分解概念,嘗試不同藥劑濃度、工序、實驗溫度;或以生物素化(Biotinylation, 在樣本擴張前使用), 鍵擊化學(Click Chemistry, 在樣本擴張後使用)放大螢光訊號。

經過了近四十份的樣本製作與拍攝,終於得到滿意的影像。他敘述製作過程的語氣輕快,其實每一次擴張顯微術的製備與拍攝,都是漫長嚴謹的科學工作。

每一組樣本(大約十顆果蠅腦)的免疫螢光染色工期大約一週,擴張過程耗時三至四天;以轉盤式共軛焦顯微鏡拍攝單顆擴張的果蠅腦樣本,則需要 18 小時左右;接著要花上一整天,等待軟體拼接壓縮上萬張圖片。

獲獎的「Wiring the Brain」就是超過 10 萬張顯微照片的拼接疊合而成,包含將原本立體的影像透過專用軟體壓縮成平面。劉柏亨譬喻,「打開全新的 iPhone15 Pro,按住快門連拍直到記憶體滿載罷工,就是一張果蠅連接體影像需要的容量。」

-----廣告,請繼續往下閱讀-----

繁密的連接體影像,不僅讓劉柏亨在連接體學的迷宮中前進,也能滿足他對美感與藝術的追求。在實驗室外也是攝影愛好者的劉柏亨,本學期正在修習清大科技藝術研究所曹存慧老師的生物藝術課程。

藝術家的生物學實驗室:向外延伸感官 向內反思存在

劉柏亨興奮地分享,他正與組員規劃虛擬展覽「藝術家的生物學實驗室」,模擬一個身懷生物科技的藝術家,會如何規劃他的實驗室。

腦機介面、組織再生、基因工程,是三個劉柏亨想要優先呈現的技術。

從編輯 DNA,改變蛋白質,最後型態出現差異,基因工程是現代生物技術的基礎。組織再生可以展現生物體修復能力與生醫工程的可能性。腦機介面則是最直接觸及心智能力、感官範疇,也結合最多精密工程技術的領域。

-----廣告,請繼續往下閱讀-----

「這個藝術家本身帶有基因或感官的缺陷,試圖用生物科技延伸他的感官。參觀者能體驗生物科技延伸感官、改變身體的能力,並從中反思我們作為個體存在於環境中,與環境互動的關係。」

——劉柏亨解釋藝術計畫的初衷,一如對顯微技術的投入。
劉柏亨善於以日常生活譬喻科學知識。圖為20203顯微攝影競賽作品展覽現場
劉柏亨善於以日常生活譬喻科學知識。圖為 2023顯微攝影競賽作品展覽現場。攝影:林任遠

與藝術學院同學合作的過程中,劉柏亨發現組員們對生物學的知識足夠,較為不同的是,藝術領域的組員對於色彩組合或實驗操作,常常比科學領域的學生更加直覺,帶來浪漫的不確定性及意外的創造性。這種風格能與劉柏亨的藝術追求產生共鳴,但是科學研究必須要求精確,在浪漫與精確之間拿捏,也是他練習的目標。

另一方面,藝術學院的組員也常引導劉柏亨設計出更簡潔的生物學科普展示;或是透過討論,讓他想傳達的科學概念更具體明確。

使新奇成為日常元素 顯微鏡是好奇心泉源

從攝影、腦神經到生物藝術,劉柏亨喜歡讓心智保持活躍與好奇。他形容自己,「每天我都需要新的刺激,我喜歡讓學習新事物成為生活的常態。」他對顯微技術的投入,也是由碩士班期間的好奇心開啟。

當時的實驗室備有共軛焦顯微鏡,劉柏亨並不負責保養,也不須理解光路,但是好奇心驅使他向前來校正的工程師陳正義學習。劉柏亨說「正義哥算是我的顯微技術啟蒙老師,只要他出現在實驗室,我就會站在旁邊追問。」

-----廣告,請繼續往下閱讀-----

現在劉柏亨遇到超越既有能力的顯微技術問題,不僅會和團隊成員討論,也會向其他實驗室的技術人員,甚至教授求教。參與不同團隊合作架設光學系統的過程,讓他深入了解雷射共軛焦顯微技術的原理,並體驗以精密工程逐步實現理論。

劉柏亨認為,顯微技術不僅是延伸感官的工具,更提供理解周遭世界的全新方式。隨著理解方式改變,好奇心與探索的內在動力會源源不絕地湧出。

「顯微鏡其實是激起好奇心的動力引擎。」

——劉柏亨認為從日常生活進入微觀世界,最重要的回饋是對人內在的激勵,不只是外在的觀察。

從機器管家出發 追問生命的意義

對自己的研究目標轉換,劉柏亨說「心臟的細胞運作起來具有高協同性,像是訓練有素的樂儀隊。但腦神經的運作瞬息萬變,隨時變化,更像是社會中的人際連結。」儘管像是越級打怪,他仍想探索更複雜的生命系統。

說到自己對生物學的內在動機,劉柏亨回憶,「我一直記得電影《機器管家》(Bicentennial Man,1999 年上映)。透過機械工程組合無機的零件,可以模擬一個真實的人類,與人建立感情。其中一定需要對生命原理的了解,非常神秘。」

對複雜生命現象進行整合研究,進而建立精密的仿生系統,這個系統不僅可能成為藥品篩選、器官再生平台,在更遠的未來可能成為人的延伸,甚至模仿人的整體生命表現。

機器管家
《機器管家》以晶片使機器得到情感能力的技術令人神往,同時也不斷促使觀眾反思「人」與「生命」的定義。 Courtesy of Wikipedia

這個猶如科幻小說楔子的目標,由劉柏亨敏銳的好奇心與多元的科學技藝積累堆砌而成。他說,

「在理解、實現這個系統的過程中,我會掌握生命的意義。」

查看原始文章

-----廣告,請繼續往下閱讀-----

討論功能關閉中。