Loading [MathJax]/extensions/tex2jax.js

1

24
6

文字

分享

1
24
6

左右腦的理性與感性是真的嗎?兩個腦半球到底是怎麼分工進擊的?──《打破大腦偽科學》

PanSci_96
・2018/09/19 ・3521字 ・閱讀時間約 7 分鐘 ・SR值 497 ・六年級

-----廣告,請繼續往下閱讀-----

頭殼裡的兩個腦半球

其實我們的頭顱裡真的有兩個腦半球。雖然這聽起來有點瘋狂,但是它們的確有不同的任務,至少某種程度上是分工的。

人類的神經系統幾乎都是成對分佈。圖/wikipedia

首先,我們必須了解,人類的神經系統幾乎都是成對分佈。(給無所不知型的讀者:只有負責管理睡眠及甦醒規律的松果體會單獨出現。)有一條長長的細溝將人的腦子分為兩個半球。要是你以為兩個腦半球是對稱的,那就錯了。

腦半球在人的一生中會不斷調整、適應環境,因而改變了某些位置的形狀。舉例來說,大部分人的語言中樞在左腦(96%的右撇子是如此),且左腦的語言區比對應的右腦語言區稍微大一點。有趣的是,我們腦半球控制的是身體對側,也就是由右腦半球控制左手臂。感官知覺的運作也是同理:左腦半球能感知右手的觸覺。由此可知神經系統的基本原則是:

所有的知覺及運動神經纖維在傳進腦部前會先交叉。這樣的安排應該有它的道理──只是還沒有人知道為什麼而已,連腦科學家也沒有答案。

當然囉,兩個腦半球也不是完全獨立運作的。坊間不少自我提升類書籍在教人們如何「將兩個腦半球連接得更好」,我可以跟你拍胸脯保證,兩個腦半球不但早就連在一起,而且還藉由胼胝體連接得很好。

-----廣告,請繼續往下閱讀-----
胼胝體(Corpus callosum)位於中央附近,顯示為淺灰色。圖/wikipedia

胼胝體位在腦中央,由厚厚的神經纖維束組成,負責左右大腦半球間的資訊傳輸。這裡的神經纖維分佈真的很密集:胼胝體只有拇指那麼大,但是包含了二點五億條神經纖維。這樣的數量足以讓兩個腦半球好好溝通了。

啊!兩個靈魂住在我腦子裡

如果把胼胝體切斷,分開左右腦半球,會發生什麼事?大家可能會猜想,那是個大災難吧。畢竟胼胝體不只能防止兩個腦半球脫落,也是腦內溝通不可或缺的角色。

某些情況下,比方說對於癲癇患者來說,阻斷胼胝體只是小問題而已。癲癇是某個腦區過度活動,進而擴及了大範圍的腦部區域。為了抑制過度放電的情形擴散得太嚴重,羅傑.斯佩里(Roger Sperry)和邁可.加桑尼加(Michael Gazzaniga)在 60 年代將這類病人的胼胝體切斷。結果發現,病人的腦功能並沒有受到太大的損傷,癲癇的情形也改善了。

研究「裂腦」(split-brain,也就是斷開來的腦半球)的運作方式是否有所不同,是很有趣的。斯佩里和加桑尼加經由一連串巧妙的實驗發現,左右腦半球竟然有某些功能是不一樣的。當主試者在右視野呈現一件物品時(例如橡皮鴨),左腦半球可以辨識出那是什麼物品;由於大部分的人語言中樞在左腦,所以病人也可以正確說出該物品的名稱(「這是一隻橡皮鴨!」)。如果把橡皮鴨放到左視野,影像則由右腦處理,但是因為右腦沒有語言中樞,病人便無法說出該物品的名稱。不過,由於右腦可以控制左手,所以病人可以用這隻手去觸碰橡皮鴨。

-----廣告,請繼續往下閱讀-----
圖/PublicDomainPictures @Pixabay

這聽起來有點奇怪。不過,真正詭異的是接下來的實驗:裂腦病人的兩個腦半球陷入衝突。有個病人試圖用右手穿褲子,自己的左手卻不斷出手阻止。還有病人要用左手觸摸太太,右手卻出手制止。

這一連串的實驗指出,左右腦半球處理資訊的方式不同。就神經生物學的角度來看,這真是個迷人的發現;科普界更是趨之若鶩:左右腦半球大不同、感官感知沒問題卻無法唸出名稱的病人、下意識的行為相互衝突──好像我們的頭殼裡真的住了兩個靈魂一樣。

對那些似是而非的偽科學詮釋而言,這點正中下懷。乾脆直接把特定的人格特質歸咎於特定的腦半球不就好了?如果右腦比較擅長辨識整體的樣式和畫圖(事實上也沒錯),何不把創意活動全都包給「右腦」?結果就是:我們以為人類有一個擅長邏輯思考、能言善道,且大權在握的左腦,還有一個可憐的右腦,雖然懂得整體思考又有同理心,但是卻經常受到壓迫。

完全胡言的創意與邏輯分工

嚴謹的神經科學朝這個方向做了一些初步研究之後,很快就跟這種無稽之談劃清了界線。儘管想以現代的造影技術來觀察腦部活動並不容易(我想前幾章已經講得夠多了),不過功能性磁振造影術在此處卻十分管用。尤其是針對「右腦有創意,左腦懂邏輯分析」這個最受歡迎的迷思。完全是一派胡言!千萬別相信書籍上的這類主張,更別相信書中所承諾的,只要運用某些技巧就可以活化右腦,達到整體創意思考的效果。

-----廣告,請繼續往下閱讀-----
想像自己在跳古典華爾滋和想像自由發揮的舞蹈,兩者腦部活化的模式不同。圖/pixabay

神經科學家什麼都研究,當然也研究當一個人發揮創意、想像自己在房間裡即興翩翩起舞時的腦部活化模式。結果可讓人意外了:想像自己在跳古典華爾滋和想像自由發揮的舞蹈,兩者腦部活化的模式不同。

受試者顯示出不同的腦部活動:古典華爾滋的腦部活化範圍沒有自由起舞的大(參加維也納華爾滋舞盛會的人別擔心,雖然你的腦子在跳舞時沒什麼創意,但是可以比較專注於精確的動作,而且抗壓性較高)。除此之外,自由起舞時,兩個腦半球的參與程度不相上下。實驗室裡的創意測驗(除了自由舞蹈、還有要求受試者想出一塊磚頭的各種可能用途等)測的就是這類東西。

受試者的任務不同,活化的腦區也會有所變化:有時在右腦,有時在左腦,有時是統整情緒的地方(如杏仁核),有時是控制動作的區域(如小腦),端看被賦予的創意任務而定,例如,自由起舞當然會和語言測驗不同。事實上,科學家沒有發現任何腦區是所謂的創意中樞,左腦裡沒有,右腦也沒有。之前提過的前額葉皮質(在額頭部位),幾乎在執行每個任務時都會活化──但這也沒什麼好大驚小怪的,因為這個區域負責調節注意力。如果要用創意解決問題,人勢必得集中注意力。

左右腦迷思造成的誤會,在此原形畢露:是人們言過其實,把事情搞混了。雖然有幾個具體功能特別集中在某個腦半球,但這並不能拿來解釋所有的人格特質。沒錯,語言中樞大都在左腦,但是右腦也負責了語言的音律。兩邊腦半球彼此合作,共同完成整顆腦的功能。

-----廣告,請繼續往下閱讀-----

就連常被歸入左腦的數學思考能力,也是如此。某個腦區是所謂的「數學中樞」這種說法顯然根本不成立。藉由功能性磁振造影術,我們可以清楚看見,兩個腦半球合作得愈密切,數學問題解得愈好。如果只活化單側(大家信以為真的專司數理邏輯的左腦),並沒有辦法解決艱難的邏輯問題。所以啦,「藝術的右腦和數理的左腦」其實是無稽之談

即使是左右半球,仍是時時交流

腦部運作並不是老夫老妻各自考慮再討論,而是各個組成分子即時、持續地彼此交流。圖/pexels

偏好左腦或偏好右腦思考、將人分為「左腦型」及「右腦型」的說法,同樣也是瞎扯。有科學家研究了一千個人的腦部活動,發現很少有神經網絡會集中在單一個腦半球(如負責產生語言的布羅卡區)。大部分的實驗任務都需要兩個腦半球的不同腦區合力完成,而且有些腦區還相距甚遠。右腦型、左腦型和前腦型或後腦型一樣沒有意義。很顯然,腦子活動時並不是活化兩個「腦模組」,而是不同腦區之間的資訊交換──經過連接兩個腦半球的胼胝體。

有時候,也會有人拿「老夫老妻」來比喻左右腦半球的關係:隨著時間累積,左右腦就像幸福的夫婦,分工處理人生中的大小事。做決定時,一個比較衝動直接,另一個比較懂得邏輯分析,兩人彼此互補,共創所謂的「關係有機體」。這個有機體由兩種觀點組合而成,只要彼此間溝通順暢,就會構成一個天衣無縫的團隊。

然而,腦子的運作並非如此。儘管左右腦半球各有其專精的處理歷程(例如語言或空間方面),但只要胼胝體沒有被切除,它們就是整個網絡的一部分。所有資訊同時進入腦中,被分開處理,又隨時不斷整合,最終出現我們稱為「思想」的東西,並且產生行為。

-----廣告,請繼續往下閱讀-----

腦部運作並不是老夫老妻那種先各自考慮再討論的模式(或者床頭吵床尾和,但是還是各持己見),而是單一器官的各個組成分子即時、持續地彼此交流。

 

本文摘自泛科學九月選書《打破大腦偽科學:右腦不會比左腦更有創意,男生的方向感也不會比女生好》,如果出版,2018 年 8 月出版。

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

21
0

文字

分享

0
21
0
看世界有深度又會算數,小雞怎麼這麼聰明?——《雞冠天下》
左岸文化_96
・2020/06/25 ・2824字 ・閱讀時間約 5 分鐘 ・SR值 488 ・五年級

-----廣告,請繼續往下閱讀-----

  • 作者/安德魯・勞勒 (Andrew Lawler);譯者/吳建龍
  • 瓦洛帝嘉拉為義大利神經科學家,以雞為研究對象,透過實驗發現人類與雞有著許多共同特徵。

義大利的阿爾卑斯山麓有個城鎮叫羅韋雷托,瓦洛帝嘉拉的研究室就位於該城鎮一處 16 世紀的女修道院地窖內。會面時,瓦洛帝嘉拉身穿淺藍襯衫搭配絲質領帶,看起來衣冠楚楚。

他是在羅韋雷托出生的,當時第二次世界大戰剛結束十多年,義大利還很貧窮,牲畜是村民賴以為生的命脈。「沒有雞就沒有蛋」他說道,而沒有雞跟蛋往往意味著要挨餓。當他還小的時候,就對動物如何看待這個世界充滿好奇。

「沒有雞就沒有蛋」。此為示意圖,並非研究雞。圖/pixabay

自從 17 世紀法國哲學家笛卡爾斷言動物缺乏心靈、理性與靈魂以來,關於「動物具有類似於人類心智能力」的這個想法就一直存在爭議。他指出,動物可藉由聲音來表達憤怒、恐懼或是飢餓,但牠們不會說話,因而缺乏「內心獨白」(inner voice,又稱內心言語),而這正是人類思維的基礎。

-----廣告,請繼續往下閱讀-----

他的名言「我思故我在」,或許更適合改為「我說故我在」。動物也許能夠感受到疼痛或歡愉(「我不否認動物擁有感覺」,他寫道),但牠們缺乏更進一步的覺察或認知等人類具有的特質。自此,哲學家、科學家、宗教人士和動物保護人士便針對這一點爭辯不休。

雞所看見的世界,色彩繽紛

瓦洛帝嘉拉等神經科學家們著手收集動物知覺的相關確切資料,至今他們已經發現,雞在看待世界的深度和細節要比人類深入、豐富得多。

哺乳類最初是夜行性動物,以躲避像是喜歡在白天活動的恐龍等獵食者;鳥類則偏好陽光,因此擁有較為發達的彩色視覺。紅原雞有著鮮豔的紅、藍、綠羽色,但在這種鳥的眼中,牠們所看到的卻是眩目耀眼、擴展到紫外光譜的色彩組合,超出了人類肉眼的辨色力。

擁有鮮豔羽毛的紅原雞。圖/wikimedia

-----廣告,請繼續往下閱讀-----

雞的雙眼也有各自的用途,牠們可讓一隻眼睛盯著某個物體(比如:可能的食物)但同時讓另一隻眼留意獵食者的動靜。這就能說明為何雞的頭會出現奇怪的突然抽動了。

人們曾經認為雞的優異視覺是由於缺乏嗅覺所產生的感官補償,不過最近有支團隊對一群家雞進行研究,發現把大象和羚羊糞便放在牠們周圍時,牠們不為所動,但如果換成野狗跟老虎的糞便,牠們便會開始警戒並停止進食。

雞跟人類一樣較為依賴視覺而非嗅覺,可是牠們確實能夠嗅出危險的氣味。雞還能回想起人類和雞的面容,並依據先前的經驗對該個體做出反應。比方說,當一隻公雞看到心儀的母雞時,公雞體內的精子生產量便會突然增加。

科學家們曾對「雞隻具有精密複雜的溝通方式」這一觀點嗤之以鼻。「就算雞的世界有一套語法系統」認知心理學家大衛.普雷馬克在 1970 年代寫道「牠們也沒有什麼有趣的可說。」在那之後,有位德國語言學家得出這樣的結論,他認為所有的雞隻都有大約 30 種不同的聲音,可個別對應到特定的具體行為。例如,雞會用不同的叫聲來表達獵食者是從地面或是由空中襲來。

-----廣告,請繼續往下閱讀-----

小雞其實很聰明,看看雞的厲害!

瓦洛帝嘉拉之所以會以雞為研究對象,主要是因為牠們不貴,耐受性高,而且容易飼養。大部分的鳥類跟哺乳類一樣,得投入大量精力養育幼雛,但是雞在破殼之後,就具有高度自理能力,而且在外界環境影響其行為之前就能參與實驗。

在這個古老修道院地窖內的研究團隊是由七名博士生及多位碩士生所組成,他們穿著橘鞋及白色實驗衣,在狹窄但燈光明亮的走廊上忙進忙出,儘管如此,這裡還是有一股地牢的氣息。瓦洛帝嘉拉先帶我去一間昏暗溫暖的房間,裡面全是已受精的雞蛋,這些蛋不久就會成為實驗的對象。

實驗焦點是放在「子代銘印」,這是指剛孵出的小雞會讓自己依附到牠們所看見的第一個移動物體。

小雞破殼而出後,記下第一眼見到的銘印物。圖/pixabay

研究人員會把一些特定的物體拿給新生小雞看,比如紅色圓柱體,然後把小雞放在透明圍欄中,再設置兩片不透明的擋板,把該圓柱體藏在其中一片擋板後方。接著,遮蔽透明圍欄,一分鐘後,讓小雞自己去選擋板。小雞第一次嘗試就能找到那個銘印的物體,說明牠們具有相當好的記憶力。

-----廣告,請繼續往下閱讀-----

在另一個實驗裡,圓柱體會被擋板完全擋住,而一旁的擋板則有不同的高度或寬度,可以露出一部分的物體。在這實驗中,小雞每次都選了把圓柱體隱藏起來的擋板,這是瓦洛帝嘉拉稱為「某種直覺物理」的徵象。

雞還會做加減運算。

小雞也會計算數量?圖/giphy

研究者讓一隻小雞看一個一樣的圓柱體,然後放在一片擋板後方,之後又把幾個相同的圓柱體放在另一片擋板後面,這隻小雞會走向藏比較多個圓柱體的那片擋板。如果研究者把一個圓柱體從一片擋板移到另一片的後方去,使第二片擋板後面有比較多的圓柱體,這時雞就會走到第二片擋板。

另一項實驗中,六個相同的容器沿著圓弧線放置,每個容器跟小雞都是等距的,但其中只有一個容器裡面有放飼料,之後就讓小雞去找出有飼料的容器。接下來把有飼料的容器跟其他容器調換位置後,小雞仍然能夠選對容器。

-----廣告,請繼續往下閱讀-----

瓦洛帝嘉拉和研究同仁最近還發現,雞的大腦左右葉各不相同,這點長久以來一直被認為是人類獨具的屬性。我們大腦的左半球掌控著語言,這是讓笛卡爾深信人類之所以有別於其他生物的工具,而右半球則讓我們在周遭人物和環境中可以定位自己。

雞的大腦左右葉也各不相同?圖/giphy

研究人員把發育中的雞胚胎左眼遮住,再讓右眼朝向蛋殼。在接近孵化的最後三天,將胚胎右眼暴露在光源下,從而削弱這隻雞的視覺處理能力。當牠孵化後,讓牠面向混著榖物的小圓石,此時正常發育的雛雞左腦能夠辨別哪些是榖物哪些是石子,但被動過手腳的小雞則無法分辨這兩種物體。

雞可以用左右大腦半球執行不同的任務,此外,瓦洛帝嘉拉認為,牠們還能分辨出有生命和無生命的物體。另一個實驗中,研究者讓小雞看隨機排列的光點,以及模擬母雞、貓或其他動物走動的光點。無一例外地,小雞總是偏愛模仿動物運動的光點,即便光點排列跟母雞的形象不同也無妨。

正常的人類嬰兒在兩天大時也能做出這種區別,但許多自閉症兒童和青少年卻沒辦法。瓦洛帝嘉拉的團隊正在研究這種自閉症的症狀是否跟理解生物動作的本能有關。藉由確切找出哪些基因在小雞認知生物動作的過程中實際參與運作,他希望這可以讓我們了解自閉症患者中可能出問題的機制,從而踏出治療自閉症的第一步。

-----廣告,請繼續往下閱讀-----

——本文摘自《雞冠天下:一部自然史,雞如何壯闊世界,和人類共創文明》,2020 年 3 月,左岸文化

-----廣告,請繼續往下閱讀-----
左岸文化_96
39 篇文章 ・ 11 位粉絲
左岸的出版旨趣側重歷史(文明史、政治史、戰爭史、人物史、物質史、醫療史、科學史)、政治時事(中國因素及其周邊,以及左岸專長的獨裁者)、社會學與人類學田野(大賣場、國會、工廠、清潔隊、農漁村、部落、精神病院,哪裡都可以去)、科學普通讀物(數學和演化生物學在這裡,心理諮商和精神分析也在這裡)。

0

1
1

文字

分享

0
1
1
不管鞋子是什麼顏色,你既不是右腦人,也不是左腦人
Aaron H._96
・2019/05/11 ・1569字 ・閱讀時間約 3 分鐘 ・SR值 520 ・七年級

-----廣告,請繼續往下閱讀-----

在你決定打開臉書,宣告你看到的是粉紅/白,或是灰/綠色之前,想讓你知道:不管你看到甚麼顏色,這都跟你是左腦人或右腦人無關。

不管看到灰/綠或是粉紅/白,都不能證明你是右腦人或左腦人。

什麼?不是都說左腦掌管理性與邏輯,右腦掌管感性與創意嗎?

事實上,左右腦理論從未被神經科學界證實,近來也有許多研究證明了左右腦的運作,根本就不存在這樣明確的分界。左右腦理論可以說是完全過時且沒有科學實證的理論。

-----廣告,請繼續往下閱讀-----

左右腦理論的起源

左右腦理論最早可以追溯到大約 1953 年左右,與諾貝爾獎得主羅傑·斯佩里醫師(Roger W. Sperry)的研究有關。我們現在已知人類的大腦有左右大腦半球之外,中間還有相互連結的胼胝體,作為左右大腦溝通的橋樑。但在羅傑·斯佩里醫師的時代,左右大腦半球相互溝通的機制還非常神秘。

現在我們已經知道人類大腦有左右大腦半球之分,中間有胼胝體(紅色)作為連結兩者的溝通橋樑。 圖/Corpus callosum. Image by Life Science Databases (LSDB) / CC BY-SA 2.1 JP

當時羅傑·斯佩里醫師相當著迷於 一種叫做「眼間信號轉移」的現象。這個現象會先請受試者將一隻眼睛遮起來,用單眼學會某個新的動作,然後再切換到另外一隻眼睛,受試者一樣能夠立刻學會這個動作。羅傑·斯佩里醫師試著將貓的胼胝體切斷後,並對調了貓的左右視神經,嘗試將貓的眼睛遮起來後,教會貓咪分辨三角形與方形。羅傑·斯佩里醫師發現隨著遮住的眼睛不同,左眼和右眼似乎可以學會完全不同的技能(例如:在一堆三角形中辨識方形,而另外一隻眼睛可以學會在一堆方形中辨識三角形,彼此互不干擾)。

另外羅傑·斯佩里醫師也在這個著名的「裂腦實驗」中,發現切斷胼胝體,也許能夠協助治療癲癇患者。癲癇患者大發作的時候,腦部錯誤的放電,會四處發散,透過胼胝體的傳導,影響另一個大腦半球。羅傑·斯佩里醫師認為,如果提前將患者的胼胝體切斷,自然能阻止電波的傳遞,將電波影響的範圍縮小,控制病情。事後羅傑·斯佩里醫師與他的團隊也做了許多接受裂腦手術的自願者,在語言、運動、感覺等各方面的試驗,徹底改變了人們對於大腦與行為的理解,也因此獲得諾貝爾獎。

-----廣告,請繼續往下閱讀-----

雖然這些接受裂腦手術的患者,癲癇的狀況獲得控制,但隨之而來,也產生許多其他的問題。由於缺乏了胼胝體,左右腦無法相互協調。常常會出現「右手在扣釦子,左手在解扣子」的情形。病人的運動、語言等功能更受到無可復原的改變,生活品質大受影響。

而裂腦實驗的結果,也從大腦的不同區域可能有不同功能,到被誤解為「左腦處理語言,右腦處理藝術」,形成左右腦理論,甚至是各種心理測驗等,被瘋狂地在商業、心理、教育等領域過份誇張地渲染,被錯誤地推導成各種未經證實的理論。

  • 以語言為例,左右大腦處理語言的區域分布極為複雜,並非完全由左大腦主管。

人類多半時間都是全腦人

近年來,由於影像科技的發展,科學家已經可以透過 fMRI或腦波等工具去探索大腦的功能。結果發現,不僅是語言功能、運動功能甚至是更複雜的創意發想能力、藝術天分等等,幾乎都是左右大腦共同相互協作的結果。無論是在神經科學、心理學或是解剖學等領域,都沒有證據支持左右優勢半腦的說法。沒有誰是完全的左腦人或右腦人,人類多半時間都是「全腦人」。

至於有些人會看到特定顏色組合,有些人甚至可以再這樣的顏色組合中切換,很多時候是眼睛接受顏色、亮度的差異,是因為每個人感知顏色的能力不同、大腦受到周邊環境影響,解釋視覺訊號的結果不同,也跟左右腦的運用沒有關係。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----