Loading [MathJax]/jax/input/TeX/config.js

0

0
0

文字

分享

0
0
0

打開大腦運作的黑盒子:神經活動的即時影像是如何運作的?

活躍星系核_96
・2018/10/01 ・4079字 ・閱讀時間約 8 分鐘 ・SR值 519 ・六年級

今天要和大家聊另一個和光遺傳學並列前二名的神經科學重要技術──透視大法:神經細胞活動即時影像技術。也就是,讓科學家們能直接用眼睛看出神經細胞在避沙ㄇㄤˋ(=變什麼把戲、耍什麼心機),看出每個各懷鬼胎的人的大腦到底是怎麼運作。反正就是一眼看穿心思之術!

一眼看穿心思之術?無論如何不可能是跡部王國(茶)。圖/網路截圖

什麼?!可以看穿心思聽起來好嚇人啊!別急別急,科學距離真正讀心還遠著呢!不然歐巴馬就不需要還撥錢搞什麼 BRAIN Initiative 的偉大計劃啦。先來看個影片壓壓驚吧,影片裡面的一閃的就是神經細胞在傳送訊息的瞬間。是的,其實這個技術看穿的就是這樣一閃一閃的訊息傳遞。

為什麼看得到神經訊號很厲害?

Anyway,神經細胞活動即時影像技術讓原本是電訊號的動作電位變成視覺訊號,確實讓我們往了解大腦更接近了一大步。為什麼呢?

在此感謝烏賊大大對科學的貢獻。圖/Hans Hillewaert@wikimedia

神經訊號在細胞裡靠電訊號傳遞,因此以往要瞭解一個單獨的神經細胞對於外界刺激的反應(有沒有產生電位變化),我們只能插一個電極進到神經細胞裡(而且很難插,不得不用很大很大的烏賊巨大軸突細胞做實驗不然插不進去),用許多複雜的儀器,努力屏蔽所有的電磁雜訊,進行各種濾波才能量到。(非常艱難,相信我,蝦喵姊姊正是苦主本人。)

-----廣告,請繼續往下閱讀-----

後來,雖然發展到可以不用直接插進細胞只要插在附近也能量到(量測細胞外電位變化),但一根電極能量到的細胞數目畢竟還是很有限。如果要同時看到很多個神經細胞的反應,就必須一次插超多電極把大腦插成刺蝟才行。(而且電極還要夠小根呦!)

但光訊號就不一樣了。如果神經細胞產生反應我們能直接看到,那我們只要用夠好的鏡頭,就能同時偵測鏡頭內每一個神經細胞對於不同刺激的反應。

圖/publicdomainpictures

在以往還在用電極的年代(其實這個年代還沒有過去),科學家常常會有觀測上的偏差,往往只會秀出有頻繁變化的神經細胞,那些安靜內斂的內向者神經細胞容易被忽視(哭哭)[1]。太安靜、只有一兩次電位變化的神經細胞,量測時不太能確定真的是神經訊號或是雜訊,或者其實只是隔壁神經細胞有點燒聲(沙啞)的訊號。

新技術以影像呈現,可以直接看到每一個單獨的神經細胞亮或不亮,所以即使只發聲一兩次,仍然會被記錄下來。

-----廣告,請繼續往下閱讀-----
傳統電生理與神經影像的比較。圖/作者提供。

到這裡我們總結一下:光訊號很棒!(掌聲下)量測容易,且能同時記錄到很多神經細胞的訊號,也不會偏袒只記錄多話、頻繁產生訊號的神經細胞。

光訊號的缺點

圖/wikimedia

那光訊號有沒有缺點呢?其實也有。

缺點就是,光訊號雖然在空間解析度很好,在時間上的解析度卻沒有電訊號來得好。就是如果兩個以上電訊號發生在很相近的時間中,光訊號會變成一個訊號。所以當科學家看到神經細胞閃一次,很難知道到底神經細胞是產生一個動作電位,或是兩個甚至是多個。

如何從電訊號轉成光訊號?

目前我們並不是直接看到動作電位,其實是看到鈣離子的變化。

-----廣告,請繼續往下閱讀-----

那看到鈣離子變化是怎麼做到的呢?科學家左手綠螢光蛋白(Green fluroscent protein, GFP),右手細胞內建的鈣離子接收器(鈣調蛋白,Calmodulin),兩手奮力一碰,啊──綠螢光鈣離子接收器

和其他會發光的鈣離子接收器統稱「基因內嵌鈣離子顯示器」(Genetically encoded calcium Indicator)[2]。

Uh!綠螢光鈣離子接收器。圖/wikipedia

從此,這種融合蛋白碰到很多鈣離子就會發出綠色螢光。而剛好細胞產生動作電位時,很多鈣離子會從細胞外流入細胞,流入的鈣離子正好碰到這種融合蛋白就會發出螢光啦!

因為這種融合蛋白並不是天生的,所以科學家就可以進一步決定到底要在什麼細胞裡面放這種融合蛋白。也就是可以只看到我們有興趣的那種神經細胞的變化。能直接把動作電位轉成光訊號的蛋白因為技術限制,發展得比較晚,目前正在發展改進之中。

-----廣告,請繼續往下閱讀-----

應用一 頭戴式迷你顯微鏡,找出輪班的位置細胞

我當初接觸到這個技術時,最讓我大開眼界的文章就是頭戴式小顯微鏡在自由活動的小鼠上的應用。鈣離子影像最早是用在體外的細胞樣本。之後應用在動物身上時,多半也需要固定動物在巨大的顯微鏡下方才能看到漂亮的影像。

以頭戴式迷你顯微鏡觀察位置細胞的示意圖。其中可以發現A和D細胞在小鼠經過A區域時產生螢光訊號。圖/作者提供。

雖然被固定在顯微鏡下方的小鼠也能跑球、喝水、也能用虛擬實境讓小鼠以為自己在空間中移動,但相對於能自由活動的小鼠還是有許多限制。而 Mark Schnitzer 組發展出僅有 1.9 克重的小顯微鏡(miniature integrated fluorescence microscope)[3],這個乘載重量在小鼠的負擔範圍內,讓小鼠即使戴著顯微鏡仍然能以接近自然形態的方式活動。

這個技術最大的突破是在自由活動的小鼠上同時觀測五百到一千顆神經細胞 45 天[4]。用電極量測細胞時,一來不容易確認不同時間點量到的是否仍為同一個細胞。其次,即使從電極位置和波形推斷為同細胞,能夠持續量測一個細胞維持一週兩週以上並不容易,更別提一個半月。

小鼠的空間記憶實驗--點表明在記錄動作電位的位置,顏色顯示的神經元發出的動作電位。圖/wikipedia

這些優勢,讓作者 Yaniv Ziv 等人發現位置細胞其實是會輪班執勤的[4]。位置細胞(place cells)是一群只在小鼠在特定空間時產生訊號的細胞。不同的細胞有它自己職守的位置(又稱場域,place field),當小鼠走到 A 細胞負責的位置時,A 細胞會產生訊號,其他的細胞則保持安靜;而當小鼠走到 B 細胞負責的位置,則換成 B 細胞產生訊號。

-----廣告,請繼續往下閱讀-----

每個細胞只在小鼠經過自己負責的位置時產生訊號。然而,長時間量測同一腦區,卻發現在特定區域產生訊號的細胞每天都會有些不同。

雖然每天小鼠走過特定區域都有特定的細胞產生訊號,但昨天負責 A 區域的是 A 細胞,今天卻換成了 A’ 細胞,而 A 細胞則非常安靜。(如下圖圖二)作者發現,雖然當 A 細胞有執勤的時候,A 一直都是負責 A 區域,但每天負責 A 區域的細胞不一定相同,而是會輪班。

位置細胞的輪班現象示意圖。一個位置細胞只會在小鼠經過一個特定位置有訊號,但第一天和第二天在相同區域有訊號的細胞不一定相同。圖/作者提供。

任兩天負責所有小鼠走過區域的位置細胞只有 15-25% 的重合,也就是有 75%-85% 的區域有別人頂替。(像是圖片中範例,第一天分別是 A、B、C 三個細胞負責 A、B、C 三區,但第二天只有 B 細胞固守崗位,A 和 C 區則改由 A’ 和 C’ 細胞負責。)這種位置細胞的輪班現象可能代表位置細胞不僅只記錄空間,也能記錄時間資訊。

應用二 光纖光度測定:訊號如何由腦區傳遞到另一個腦區?

另外一個應用光訊號的研究則是光纖光度測定(Fiber photometry):中腦腹側被蓋區(ventral tegmental area ,VTA))到伏隔核(nucleus accumbens,NAc)的投射與社交行為相關。

-----廣告,請繼續往下閱讀-----
以光纖光度測定法研究腹側背核投射到伏隔核的突觸在社交行為的訊號示意圖。作者讓腹側背核的神經細胞攜帶基因內嵌式鈣離子顯示器,但將光纖放在伏隔核觀察腹側背核神經細胞軸突端的訊號。圖/作者提供。

上面的技術讓我們能同時觀測到很多神經細胞的細胞本體的訊號,但要觀測細胞突觸上的電位變化,就是一件充滿挑戰的事。如果觀察到細胞突觸上的電位變化有影響解析上的困難,那要怎麼知道兩個腦區之間彼此是怎麼溝通的呢?Lisa Gunaydin 等人不直接觀察單一一個突觸,而是將所有從一個腦區投射到另一個腦區的所有突觸訊號搜集成一個訊號觀察。[5]

如此一來,就不需要解析一個突觸的微小訊號,而可以直接觀察一個較大的訊號。她們的做法是:

將所有腹側背蓋區(VTA)的多巴胺細胞都植入基因內嵌鈣離子顯示器(Genetically encoded calcium Indicator, GECI),將光纖放到 VTA 的下游區域伏隔核(NAc)去搜集所有從 VTA 的多巴胺細胞投射到 NAc 的突觸鈣離子訊號。此方法被稱為光纖光度測定(Fiber photometry)

利用這個方法,他們觀察到這些突觸在小鼠進行社交行為的時候,會有許多訊號產生。這個技術雖然不能解析單一細胞,卻能讓研究者以簡單的方式研究從一個腦區到另一個腦區的所有突觸的整體訊號和行為間的關係。

這個技術的優點在於能以簡單的操作(埋光纖畢竟比埋顯微鏡容易)、相對低的經費(光纖比顯微鏡便宜)、對小鼠行為的影響較小的情況下(光纖的重量比起迷你顯微鏡仍然輕上許多),研究動物行為和大腦活動的關聯。雖然犧牲了單一細胞的解析度,卻讓小鼠有更多行為的可能性,讓研究者能研究更自然也更多元行為下的神經訊號。

-----廣告,請繼續往下閱讀-----

註釋

  1. 動作電位是當神經或肌肉細胞內電位變化超過閾值時產生的超大電位變化,這種程度的電位變化產生後能迅速的向下傳遞,並透過釋放化學物質影響下游細胞。除了天生沒有動作電位的線蟲,動作電位大概就是研究非線蟲神經生物學家最在意的事。點我看植物的動作電位
  1. Scanziani, M., & Häusser, M. (2009). Electrophysiology in the age of light. Nature, 461(7266), 930-939.
  2. Kotlikoff, M. I. (2007). Genetically encoded Ca2+ indicators: using genetics and molecular design to understand complex physiology. The Journal of physiology578(1), 55-67.
  3. Ghosh, K. K., Burns, L. D., Cocker, E. D., Nimmerjahn, A., Ziv, Y., El Gamal, A., & Schnitzer, M. J. (2011). Miniaturized integration of a fluorescence microscope. Nature methods, 8(10), 871.
  4. Ziv, Y., Burns, L. D., Cocker, E. D., Hamel, E. O., Ghosh, K. K., Kitch, L. J., … & Schnitzer, M. J. (2013). Long-term dynamics of CA1 hippocampal place codes. Nature neuroscience, 16(3), 264.
  5. Gunaydin, L. A., Grosenick, L., Finkelstein, J. C., Kauvar, I. V., Fenno, L. E., Adhikari, A., … & Deisseroth, K. (2014). Natural neural projection dynamics underlying social behavior. Cell, 157(7), 1535-1551.
-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

14
12

文字

分享

0
14
12
為什麼大腦如此耗能?——淺談神經元的基本構造和功能
Heidi_96
・2022/04/13 ・4565字 ・閱讀時間約 9 分鐘

身為人體總司令,大腦每單位重量所消耗的能量,約為其他器官的 8 至 10 倍[1]。所以,即使大腦只佔據人體總重量的 2%,仍然得消耗人體高達 20% 的總能量才能保持運作,就連休息和睡覺時,消耗的能量也絲毫不減。

為什麼大腦這麼輕,卻得消耗如此多的能量呢?

以往,科學家認為這和「腦電活動」有關,也就是腦內神經元運作時,所產生的電活動。神經元是神經系統負責傳遞訊息的基本單位。這些細胞形狀細長,結構可分為三個部分:細胞本體、樹突(dendrite)和軸突(axon)。樹突看起來就像樹枝,有很多專一性受體,可以接收來自上一個神經元的神經傳導物質。

神經元形狀細長,結構可分為三個部分:細胞本體、樹突和軸突。圖/國家實驗研究院

靜止膜電位:穩定的休息狀態

在樹突沒有收到化學訊號的狀態下,神經元的靜止膜電位(resting membrane potential)約為 -70 mV;也就是說,在休息狀態時,神經元內的電壓相較於細胞外低了 70 mV。造成電位差的關鍵在於細胞膜外的正離子(鈉離子,Na+)比較多,膜內的正離子(鉀離子,K+)比較少。

可是,物質不都是從高濃度往低濃度的地方移動嗎?為什麼還可以維持在 -70 mV 呢?

第一,是透過主動運輸。這種運輸方式必須消耗能量才能進行,而負責這項任務的就是細胞膜上的「鈉鉀幫浦」(Na+/K+-ATPase)。鈉鉀幫浦所消耗的能量是三磷酸腺苷,也稱作 ATP,是細胞的「能量貨幣」,專門儲存和提供能量。幫浦每消耗 1 個 ATP,就可以將 3 個鈉送出細胞,再將 2 個鉀送入細胞。只要幫浦不斷運作,就能維持恆定的離子濃度差,使得細胞外有較多鈉離子,而細胞內則有較多鉀離子。

-----廣告,請繼續往下閱讀-----
ATP(C10H16N5O13P3)是細胞的「能量貨幣」,專門儲存和提供能量。圖/Wikipedia

第二,是透過被動運輸。這種運輸方式不需要消耗任何能量,只要有濃度差異,離子就可以經由通道蛋白,從高濃度處擴散到低濃度處。然而,細胞膜上的鉀離子通道蛋白數量較多,約為鈉離子通道蛋白的 50 倍,所以鉀離子可以輕鬆離開細胞,鈉離子卻難以回到細胞,使得細胞內部正離子數量較少。

那麼,收到化學訊號時,神經元的膜電位會怎麼變化呢?

動作電位:活躍的工作狀態

剛剛提到神經元的靜止膜電位約為 -70 mV,細胞膜內帶負電、膜外帶正電,這種兩極化的電荷環境,稱為「極化」(polarization)。當神經傳導物質和樹突上的受體結合,受體就會根據接收到的訊號種類,調整離子通道的通透性。

在極化階段,鈉離子通道(紫)和鉀離子通道(橘黃)皆未開啟,只有鈉鉀幫浦(藍綠)持續進行主動運輸。圖/Wikipedia

比方說,若是收到興奮性的訊號(專有名詞是「興奮性突觸後電位」;EPSP),就會增加細胞膜對鈉離子的通透性,使鈉離子流入細胞內。因為鈉離子帶有正電,原本維持在 -70 mV 的膜電位就會上升。若是膜電位高於 -55 mV 的閾值,軸突前端的軸丘(axon hillock)就會立即反應,產生動作電位(action potential),以電訊號的形式打開附近所有鈉離子通道,使得鈉離子大量湧入細胞,形成「去極化」(depolarization)。

-----廣告,請繼續往下閱讀-----
在去極化階段,鈉鉀幫浦(藍綠)暫停運作,鈉離子通道(紫)開啟,使得鈉離子進入細胞,提升膜電位。圖/Wikipedia

動作電位啟動後,膜電位通常可以衝高到 40 mV。為了平衡細胞膜內過多的正電荷,鈉離子通道便會關閉,而鉀離子通道會同步打開,讓細胞內的鉀離子流出細胞,使得膜電位再次回到帶負電的狀態,稱為「再極化」(repolarization)。

可是,因為鉀離子通道關閉速度較為緩慢,所以當膜電位回復到 -70 mV 時,鉀離子仍不斷流出細胞,造成電位低於靜止膜電位的「過極化」(hyperpolarization)現象。此時,鈉鉀幫浦就會主動消耗 ATP,重複將 3 個鈉離子送出細胞,再將 2 個鉀離子送回細胞的循環,讓膜電位和離子濃度都順利回到最初的極化狀態。

在過極化階段,鈉離子通道(紫)關閉,鉀離子通道(橘黃)開啟,使得鉀離子流出細胞,降低膜電位。圖/Wikipedia

以上四階段(極化、去極化、再極化、過極化)就是一個完整的動作電位!

另一方面,若是樹突上的受體收到抑制性的訊號(專有名詞是「抑制性突觸後電位」;IPSP),就會增加對鉀離子的通透性,使鉀離子流出細胞外,造成原本帶負電的狀態更加極端,無法達到閾值,便不會產生動作電位。

要注意的是,動作電位通常不是根據單一訊號刺激而產生,畢竟神經元隨時都在接收各種不同的訊號,但無論如何,只要加起來的電位變化強度超過閾值,就可以產生動作電位,反之則不會引起任何神經傳導反應。這就是動作電位的「全有全無律」(all-or-none law)。

-----廣告,請繼續往下閱讀-----
若是膜電位高於 -55 mV 的閾值,軸丘就會立即反應,產生動作電位。圖/A-Level Biology

動作電位如何傳導電訊號?

軸丘產生動作電位後,並不會反傳回細胞本體,而是傳給隔壁的軸突。軸突是一條細長的神經纖維,只要最前端產生動作電位,就可以引發後續一連串的反應。整個過程類似大隊接力,而且不會往回傳,因為當訊號傳送到下一個位置時,前一個發生動作電位的地方處於再極化狀態,鈉離子通道沒有開放,所以無法同時進行去極化。如此一來,就能確保電訊號單向傳導。

當電訊號抵達軸突末端的突觸(synapse)時,會刺激突觸小泡(synaptic vesicle)釋放神經傳導物質,以化學刺激的形式將訊息傳遞出去。下一個神經元的樹突接收到訊號後,就會根據訊號類型,開啟鈉離子通道(引發去極化,產生動作電位)或鉀離子通道(引發過極化,不產生動作電位)。綜上所述,神經系統就是透過神經元不斷重複這樣的循環來傳遞訊息。

動作電位四階段:(1)極化、(2)達到閾值、(3)去極化、(4)再極化、(5)過極化。圖/國家實驗研究院

最新研究發現大腦耗能的關鍵

現在,我們大致知道了神經元如何以電訊號和化學訊號傳導訊息。(如果你沒有看懂,那也沒關係,總之這整個過程都需要燃燒大量 ATP!)科學家以往都認為大腦之所以這麼耗能,就是因為神經元隨時都在消耗 ATP,而且這些神經元的數量多達 860 億個[2]。可是,過去幾十年的臨床研究發現,在植物人和重度昏迷患者腦內,神經元產生的電活動極少,大腦消耗的能量卻沒有明顯下降。

如果不是電活動,那究竟是什麼消耗了這麼多能量?

去(2021)年底發布在《Science Advances》期刊的一篇研究公布了答案。研究團隊來自威爾康奈爾醫學院(Weill Cornell Medicine),第一作者是提姆.萊恩(Timothy Ryan)教授,他專攻生物化學和結構生物學。近年來,他的團隊深入研究神經元的突觸,試圖找出大腦耗能的原因。有鑑於老鼠的大腦結構和神經迴路都近似人腦,團隊決定透過實驗鼠進行研究。

-----廣告,請繼續往下閱讀-----
萊恩教授的團隊深入研究突觸,試圖找出大腦耗能的原因。圖/The Rockefeller University

首先,團隊使用毒素,讓實驗鼠的神經元停止運作,阻斷電訊號,卻發現突觸仍然持續消耗能量。為了進一步釐清原因,團隊將焦點轉移到專門儲存、釋放神經傳導物質的突觸小泡,讓小泡表面各種不同功能的幫浦失去活性,使得突觸無法釋放相對應的化學訊號。

與此同時,團隊利用螢光顯微鏡觀察突觸。經過比對後,發現正在偷偷燃燒 ATP 的是一種稱為「氫離子幫浦」(proton pump)的通道蛋白,其運作形式類似鈉鉀幫浦。研究結果顯示,即使神經元處在休息狀態,突觸小泡內的氫離子幫浦仍然得持續工作,將不同的神經傳導物質送進小泡待命,以備不時之需。可是,作為交換,幫浦會帶走小泡內部的氫離子(H+)。

如果進入小泡的化學物質是甘氨酸、麩胺酸或 GABA,幫浦就會帶走 1 個氫;如果是血清素、多巴胺、組織胺、乙醯膽鹼或正腎上腺素,幫浦則會帶走 2 個氫[3]。有時候,就算沒有任何化學物質進入小泡,幫浦還是會偷偷帶走氫離子,造成小泡內部的氫離子濃度下降。為了維持穩定的離子濃度,突觸小泡必須不斷製造氫離子才能滿足需求,而這樣的過程佔據了 44% 的突觸能量消耗。

研究團隊使用巴佛洛霉素(bafilomycin)抑制氫離子幫浦,發現實驗鼠的突觸能量消耗剩下 56%(圖 E 紅色長條),代表氫離子幫浦的作用佔據了 44% 的突觸能量消耗。圖/Science Advances

萊恩教授表示,雖然每次流失的氫離子數量不多,也就一兩個,但是神經元數量非常多,「即使沒有任何電活動,整體能量消耗依然非常可觀。」目前還不清楚大腦為什麼會有這種機制,很可能是為了預先儲存神經傳導物質,因應突如其來的電訊號,「就像是高速空轉的賽車引擎,雖然會浪費額外的燃料,卻能以更快的速度起步。」

-----廣告,請繼續往下閱讀-----

萊恩和他的團隊認為這份研究成果非常可貴,能讓人類對於大腦有更透徹的瞭解,也希望將來能用於治療帕金森氏症(Parkinson’s disease)這類神經退化性疾病。他表示帕金森氏症患者的大腦可能沒有足夠的能量合成 ATP,「這就像是讓一輛油管破裂的賽車高速空轉,很容易釀成大禍。」

註解

  1. Pulido, C., & Ryan, T. A. (2021). Synaptic vesicle pools are a major hidden resting metabolic burden of nerve terminals. Science Advances, 7(49). https://doi.org/10.1126/sciadv.abi9027 
  2. Azevedo, F.A., Carvalho, L.R., Grinberg, L.T., Farfel, J.M., Ferretti, R.E., Leite, R.E., Filho, W.J., Lent, R. and Herculano-Houzel, S. (2009). Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. Journal of Comparative Neurology, 513(5), 532-541. https://doi.org/10.1002/cne.21974 
  3. Synaptic vesicle – Wikipedia
-----廣告,請繼續往下閱讀-----
Heidi_96
7 篇文章 ・ 13 位粉絲
PanSci 編輯部角落生物|外語系畢業,潛心於翻譯與教學,試圖淡化語言與知識的隔閡。

0

1
2

文字

分享

0
1
2
身體受傷會發炎,但你知道心智也有可能會發炎嗎?——《終結憂鬱症》
PanSci_96
・2020/04/28 ・2697字 ・閱讀時間約 5 分鐘 ・SR值 523 ・七年級

-----廣告,請繼續往下閱讀-----

  • 作者/艾德華.布爾摩 (Edward Bullmore);譯者/高子梅
  • 編按:本書不同於傳統生理、心理二元論觀點,而從免疫學的角度切入、結合神經科學,重新思考憂鬱症與身體發炎的關聯。文中的 P 太太為類風濕性關節炎患者,也被作者診斷有憂鬱症的症狀。

我曾經簡單地以為,心智在發炎可能類似身體的發炎。從羅馬時期以來,我們就知道身體發炎時會紅腫。所以,我以前把發炎的心智想像成腫脹、憤怒、滿溢、激切、不受控制、潛藏著危險。用精神醫學的用語來說,大概就是躁症。

不過我現在的想像完全相反:那不會是一個易怒和極具威脅的傢伙,而是一個陰鬱和沉悶的人。像 P 太太,她雙手因發炎的關節而腫脹變形,心裡暗自納悶自己的情緒怎麼這麼低落,精神不濟。現在,她在我眼中就是典型的心智在發炎,不是比喻,而是運作上就是如此。

心智的發炎不像身體發炎那樣的「狂暴」,更多是陰鬱、沉悶。圖/GIPHY

發炎常出現在憂鬱之前?

把「心智在發炎」從隱喻轉化為實際狀況,首先我們要有十足的證據顯示發炎和憂鬱症的強烈關聯。承認兩者之間有關就是好的開始(這種關聯有時候就在眼前,卻被視而不見)。不過關鍵問題是因果。

一個後二元論的全新思維要能穩固扎根,就需要從科學上證明發炎不只跟憂鬱症有關,而是會直接造成憂鬱症。看看各事件發生時間的先後,可以幫助我們理出因果關係,前因一定先於後果。如果發炎是憂鬱症狀的前因,那麼我們希望有證據顯示發炎出現在憂鬱症之前。最近有研究提出了這方面的證據。

-----廣告,請繼續往下閱讀-----

舉個例子,2014 年,一項研究發現,布里斯托(Bristol)和英格蘭西南部 15000 名孩童中,九歲時沒有憂鬱症但有輕微發炎的孩童,在十年後滿 18 歲時極有可能罹患憂鬱症。這只是其中一個例子。目前已有數十項人類研究和數百項動物研究顯示,發炎出現在憂鬱症或憂鬱行為之前。

想確認發炎與憂鬱的關係,有先後順序還不夠。

但光是順序的先後,並不足以讓大家正視發炎是憂鬱症的前因。科學家和醫師會質疑發炎是如何引發憂鬱症的:究竟是什麼樣的生物機轉,一步一步從血液的細胞激素,到大腦出現變化,進而引發憂鬱的心情。

動物實驗中,也觀察到老鼠被注射致病菌後,也會有類似人類憂鬱症的症狀。圖/GIPHY

關於這些問題,最近的動物和人體實驗也提出了有力的證據。實驗結果顯示,如果一隻老鼠被注射致病菌,行為上就會變得有點像是我在看過牙醫後的樣子。牠會退縮,不願與其它動物互動,活動力降低,睡眠和進食周期受到干擾。簡而言之,在動物身上,感染確實會引發一種被稱為疾病行為(sickness behaviour)的症候群,有點類似人類的憂鬱症。

事實上,要觀察到這種疾病行為,你甚至不必先讓老鼠遭受感染,只要在牠身上注射細胞激素就可以,這也證明了並非是細菌本身造成疾病行為,而是對感染的免疫反應造成的。發炎會在動物身上直接引發類似憂鬱症的行為,這一點無庸置疑。

-----廣告,請繼續往下閱讀-----

此外,我們現在也很清楚發炎會如何影響老鼠的大腦。我們知道神經細胞若是暴露在細胞激素下,死亡機率會升高,而且不太會再生。我們也知道神經細胞若是發炎,它們之間的連結(稱為突觸[synapses])在資訊學習上就會比較無力。而且發炎會降低血清素的供給,而血清素是神經細胞之間的傳導物質。

所以至少從動物實驗中,我們可以直接連結發炎與大腦神經細胞運作方式的改變,來解釋看似憂鬱症的疾病行為。

發炎的生理機制真的會讓人產生憂鬱嗎?

修但幾勒!我們並不能以實驗之名把危險的細菌注射進人體內。圖/GIPHY

但要在人體內複製類似的連結,就不太容易了。畢竟我們不能以實驗之名把危險的細菌注射進人體內,也不能把細胞激素(或任何其它物質)直接注射進健康人士的大腦裡,所以不可能觀察發炎會對活生生的人類神經細胞造成什麼影響。

-----廣告,請繼續往下閱讀-----

另外,要一次觀察一個細胞很難。絕大部分的人類神經細胞(大概有一千億個)都緊密地集中在大腦裡,受到頭骨的嚴密保護,與外在世界完全隔離。要想「看到」一個活人頭殼裡的運作,唯一方法只能靠磁振造影這樣的大腦掃描技術。

最近的 fMRI 研究已經開始證明,人體發炎對大腦和心情有直接的因果關係。

舉例來說,健康的年輕人在接受傷寒疫苗的注射後,就會跟實驗室的老鼠被注射細菌後一樣,免疫系統出現反應,血液裡的細胞激素會倏地升高。這些受試者出現輕微憂鬱,他們大腦內某些區域活躍了起來,而這些區域就我們所知跟情感表現有關。

所以精神免疫學已經成熟到能以新的角度和合理的說法,來幫忙解答我為什麼看完牙醫後會變得憂鬱。我不需要搬出機器裡的鬼魂。我可以理所當然地主張,是我接受的根管手術造成細胞激素上升,穿透血腦屏障,傳遞發炎訊號,讓大腦神經細胞的情緒處理網絡起了變化,進而導致憂鬱症發作,害我老是揮之不去死亡的陰影。

發炎這種免疫反應,為何會引發憂鬱呢?

這套反二元論的說法,在每一個步驟上都有可靠的實驗證據,不過還是不夠完整。畢竟在現有的證據基礎上,仍有一些缺口和異常,雖然這種情況對任何一門發展迅速的科學領域來說都在所難免。然而,就算我們已經可以回答「如何引發」,我們還是很想問「為何引發」。

發炎反應引發的憂鬱會不會是想讓我們好好在床上休息呢?圖/GIPHY

-----廣告,請繼續往下閱讀-----

在科學上,唯一可以接受的答案就是演化。為什麼發炎會引發憂鬱症?只能說這是物競天擇的結果。一定是因為唯有對感染或任何發炎出現憂鬱反應,才有利於我們的生存(或者至少在以前是有利於我們的生存)。我們一定是繼承了這種自好幾代以前就物競天擇下來的基因,能讓我們在發炎的當下因憂鬱反應而受惠。

以我來說,我可以合理推測,我遺傳了曾經幫助先人熬過感染的基因,所以在看過牙醫後,短暫地感到憂鬱。這樣的基因遺傳很可能有助我從根管治療的輕微創傷復原,一方面積極地殺死任何致病菌,另一方面指揮我待在床上,保留體力。

當然,不管是神經免疫學還是精神免疫學這類 A 加 B 式的新領域,重點並不是要找到我不喜歡看牙醫的理由,而是說,一旦我們可以繪出一條從身體經由免疫系統通到大腦和心理的路徑,一旦我們以後二元論的概念來闡明發炎的心智,就能找到全新的方法來對付精神問題。

image description

-----廣告,請繼續往下閱讀-----

——本書摘自《終結憂鬱症:憂鬱症治療大突破》,2020 年 2 月,如果出版社

-----廣告,請繼續往下閱讀-----