0

0
0

文字

分享

0
0
0

【GENE思書軒】我們如何閱讀《基因》這部關於生命的有字天書?

Gene Ng_96
・2018/08/25 ・5255字 ・閱讀時間約 10 分鐘 ・SR值 567 ・九年級

-----廣告,請繼續往下閱讀-----

為何選擇用「Gene」來當筆名?大一剛入學,要為 BBS 站取個帳號,當時我只是覺得一個英文名字剛好和生命科學的專有名詞一模一樣,十分有趣,完全沒有想到日後會和「Gene」的科學意涵結下不解之緣。

有些朋友不相信「Gene」真的是個英文名字,甚至聽我信誓旦旦地解說,還開玩笑說他們也想取名叫「Cell」、「DNA」或「Protein」。如此,我只能回說要不然乾脆叫「Genome」,這一來就比我大很多了。其實,「Gene」這名字來自古希臘文「γόνος」,意思是「生」(born),而這個名詞在遺傳學中,字源也是一模一樣的。

很不巧的,我博士班念的就是遺傳學,在美國加州大學戴維斯分校(UC Davis)當遺傳學實驗課的助教時,就有很多學生說我名字取得實在太妙了。然而事實上,我大學時期最討厭的必修課之一就是遺傳學,我導師說他大學時最不喜歡的必修課也是遺傳學,可是博士班念的是遺傳學,所以做人別太鐵齒,我當時心想這絕對不會發生在我身上,可是命運就是這麼愛捉弄人,決定念演化生物學當志業後,發現遺傳學真是最佳的工具,於是就步上了導師的後塵。

基因結構。圖/Bstlee [CC BY-SA 2.0] via wikipedia

簡單來說,遺傳學就是門研究基因的生命科學學門。

-----廣告,請繼續往下閱讀-----

顯微鏡底下,嘶嘶輕聲作響的麻醉台上的細小孔洞噴著二氧化碳,讓果蠅暫時沉睡,我們趁機輕輕地用羽毛或毛筆把帶有不同性狀的果蠅分群──那些博士班的果蠅遺傳學研究時刻,總能讓人一再讚歎孟德爾(Gregor J. Mendel,1822-1884)的先見之明。然而,不是在唸研究所拚學位、無升等壓力、不必拿科研計畫、沒有 KPI 考績要求下的修道院神父,是懷著什麼樣的心情和信念在為豌豆進行實驗的呢?

在念了遺傳學博士班後,三不五時就會在茶餘飯後接到親友的詢問,真是五花八門無奇不有,從單純好奇到試圖挑戰的都有,例如真的能夠用基因工程改造人類嗎?我們科學家為何要這麼變態地製造變種生物?如何生出更聰明健康的小孩?小孩的問題都是來自遺傳嗎?為什麼罕見遺傳疾病愈來愈多?

中譯本《萬病之王》書影。 圖/時報出版

普立茲獎得主、英國衛報新人獎得主、暢銷書《萬病之王:一部癌症的傳記,以及我們與它搏鬥的故事》(The Emperor of All Maladies: A Biography of Cancer)作者辛達塔.穆克吉(Siddhartha Mukherjee)在聽到一位癌症病人在接受了很長一段時間的治療後向他請求「我願意繼續治療,但我要知道我在對抗的是什麼。」於是他就寫了本癌症的傳記,也就是不可多得的好書《萬病之王》。

《萬病之王》更是一本充滿熱情的書,是一本癌症的傳記,也是人類與癌症搏鬥的生命故事。在為癌症作了傳記後,來寫這本《基因:人類最親密的歷史》(The Gene: An Intimate History),似乎就是順理成章、天經地義的,因為癌症不就是因為基因出了錯嗎?那麼基因為何會出錯呢?

-----廣告,請繼續往下閱讀-----

基因,科學史上最有力也最危險的觀念

然而,讀了《基因》,才深刻地瞭解到對穆克吉而言,追尋答案的動機沒那麼簡單。他出生在印度,他父母那一代最深沉的痛苦之一,是印巴分治後,被迫離鄉背井。然而禍不單行,穆克吉一家落腳的加爾各答(Kolkata),後來因印度教徒和穆斯林互相瘋狂屠殺,從印度最具活力的大城市,淪為一個三四流的破敗城市,迫使他們又要遠走他鄉。

對他們家族而言,傷痛還遠遠不僅於此。幾年前的冬天,穆克吉陪同父親回加爾各答到精神病院探望堂哥莫尼,這讓他回想到他的兩位叔伯拉結什和賈古皆可能患上了精神疾病,加上他父親也曾經兩度出現精神病的症狀,這難免讓他懷疑自己的家族是否帶有遺傳缺陷。如果真是如此,那為何他父親和姐妹會逃過一劫?他們的病有多少是天生的?又有多少是後天的?

基因》就是他為了追尋眾多問題的答案而寫的,這本書也同時是一本傳記,探討基因的誕生、發展、影響和未來。穆克吉更不忘提醒我們:基於對基因充分的認知,它是科學史上最有力也是最危險的觀念。

遺傳學家經過了長久的瞎子摸象,我們愈來愈清楚基因是什麼,到今天,我們已能在實驗室裡輕易操作基因。儘管中途對遺傳本質的妄想,產生了納粹優生學禍害千萬人的悲劇。

-----廣告,請繼續往下閱讀-----

生物其實就是一連串的資訊

孟德爾的發現理應為同一時代的達爾文(Charles R. Darwin,1809-1882)演化論錦上添花,但是,真正為達爾文演化論如虎添翼的「現代演化綜論」(Modern evolutionary synthesis),等到上世紀上半葉才逐步完成。達爾文的堂兄高爾頓(Sir Francis Galton,1822-1911)在對基因一無所知的情況下提出的優生學概念,反而大行其道,並間接導致了日後的種族迫害。時至今日,儘管納粹份子的各種「優生」作為已被世人同聲譴責,但人們仍止不住幻想基因存在「正常」的版本。

基因學發展後,優生學的發展隨之蔚為風潮,被許多種族主義統治者拿來作為鞏固政治的手段。但基因學追求的不應是打造完人,而是認識自己、幫助每個生命活得更好。圖為納粹德國的「亞利安純淨嬰兒」生產中心。 圖/Bundesarchiv [CC BY SA-3.0] via wikipedia
生物其實就是一連串的資訊構成,在孟德爾被三位歐洲科學家幾乎同時再發現後,科學家透過各種巧妙絕倫的實驗抽絲剝繭地找到,原來染色體上的 DNA 就是那個帶著資訊的穩定分子。然而 DNA 究竟擁有什麼樣的結構,使之能夠攜帶建構和運作生物體的重要資訊呢?華生(James D. Watson,1928-)和克里克(Francis H. C. Crick,1916-2004)發現 DNA 雙螺旋結構的過程,又是另一則膾炙人口的故事了。

聰明絕頂的英國生化學家桑格(Frederick Sanger,1918-2013),發明了定序的藝術和技藝不只一次,而是兩次,而且成果是兩次諾貝爾獎。他先發明了定序蛋白質胺基酸序列的方法,接著挑戰了 DNA 的定序法大獲成功。當定序成為事實,人類基因體計畫就是義務,DNA 定序讓我們能一步一腳印地拼湊出整個基因體的近乎全貌,不過更有野心、好鬥的克雷格.凡特(J. Craig Venter ,1946-)卻提出了散彈槍法來抄捷徑,挾私人企業的資金和政府資助的人類基因體計畫比拚,雙方較勁加上技術革新大幅加速了定序的速度。

人類基因體計畫徽標。本計畫耗費龐大野心也不小,至今已完成九成以上的基因定序,也帶動了其他物種基因定序技術發展。 圖/wikipedia

人類基因體計畫用了三千多位科學家的人力,花費了上百億美元(大概只夠在小布希政府入侵伊拉克初期燒半個月不到)在我大學畢業那年(2001年)獲得一份所謂的草圖,單單這張草圖就已是個劃時代的里程碑式成就。因為所費不貲,《基因》提到當初有不少科學家擔心如果不好好定序取得最佳品質的資料,以後都定序不到了怎麼辦?

-----廣告,請繼續往下閱讀-----

結果科學家們顯然多慮了。在 2007 和 2008 年間問市的次世代定序技術,把定序的成本極大幅度地降低,讓我在這幾年內為幾種鳥類的全基因體定的序列,早已超過了一個人類全基因體(鳥類基因體大約為人類的三分之一)。而且,這幾年定序成本下降的程度,遠比資訊科技產業著名的摩爾定律(也就是每兩年積體電路的成本打五折)快上許多。在這十幾廿年間,我們已經能夠價廉物美地為任何一個人的基因體序列作本有字天書。

有字天書的字義與文法,破解中

人類基因體計畫完成後,我們赫然發現人類其實只有兩萬多個基因,甚至比起一些「低等」生物還少。原來基因的多寡和生物體的複雜度不必然有正比關係。許許多多基因的生物功能和作用仍然是謎團,我們還在努力解讀出這本天書的字義和文法。但是我們也不必妄自菲薄,科學家經過長年基礎研究的努力,確實也了解不少,至少我們知道了,未來很有可能可以用某些基因來預測罹患疾病的機率和藥物的功效。

為了了解基因的功能,在實驗室裡做跨物種的基因轉殖和選殖,是家常便飯,這和其他地方無數個大學實驗室裡天天上演的戲碼一樣,已不足為奇,事實上科學家在上世紀七十年代就開始這麼做了。不過,在進行重組 DNA 實驗的初期,科學界內外都有很激烈的辯論,《基因》一書中即生動地重現了當時的爭議。事後證明基因選殖不僅是有學術研究價值,更能救命,胰島素就是第一個利用重組 DNA 的方法製造的藥物。然而眾人起初都沒料到的是:一旦涉及商業利益,就會有專利爭奪大戰,差一點連基因的序列本身都能用來申請專利。

當我們對操弄基因習以為常時,就有科學家想要為基因突變而罹患罕見遺傳疾病的人進行基因治療。不過很不幸的,首個基因治療案例在不嚴謹的規劃下釀成大禍,導致基因治療在不短的一段時間成了髒話。而轉基因作物(基因改造作物)也在環保人士不分青紅皂白的抹黑下,在很多國家都無法栽種。我們不可否認,有些販售轉基因作物種子的大企業不太良善,不過無差別地對待所有轉基因作物不是明智之舉。

-----廣告,請繼續往下閱讀-----
史上首位接受基因治療的人 Jesse Gelsinger。2000 年賓夕法尼亞大學的教授 James Wilson 公開嘗試了第一次人體基因治療:注射帶有基因編輯片段及工具的腺病毒(adenovirus)到 18 歲的 Gelsinger 的體內,希望能治療他的遺傳性肝臟疾病。但事與願違, Gelsinger 在注射後身體便開始產生強烈的免疫反應,並在最後因器官衰竭及腦死而過世。

CRISPR 機制為基因編輯創造了革命性貢獻

當我還是窮學生時,要進行轉基因或剔除基因實驗,過程其實是極為複雜的,而且常常不能隨意地修改基因體的序列。一直到幾年前,在細菌細胞內找到一種針對病毒的特殊免疫機制 CRISPR,富想像力的科學家靈機一動把它修改成好用的遺傳學工具,於是我們居然能夠對基因體進行近乎隨心所欲的編輯了!就像用 MS Word 來編輯文字一樣(當然實際過程還是頗複雜的)!這個基因體編輯工具太具革命性了,有興趣可參考《基因編輯大革命:CRISPR 如何改寫基因密碼、掌控演化、影響生命的未來》(A CRACK IN CREATION: Gene Editing and the Unthinkable Power to Control Evolution)。

CRISPR 的作用模式:小型導引 RNA(small-guiding RNA, sgRNA)辨認特定的 DNA 序列後,結合的 CRISPR associated protein 9(Cas9)蛋白會裁切在 DNA正反兩股的Protospacer adjacent motif(PAM)NGG 上游各 3 個核苷酸的位置,形成鈍端的雙股斷。圖/科技政策觀點

遺傳學家原本就知道對許多數量性狀而言,環境有著不同程度的影響。更複雜的是,環境對我們基因的影響還會體現在表觀遺傳學上。有些基因的資訊會像電腦儲存檔案時一樣,不太需要用到的檔案會被壓縮起來,也有些像讀教科書劃重點一樣,重要的或常需要用到的基因,會被劃上標記。很多時候,這些壓縮或標記就能讓兩個基因體完全一模一樣的人出現很不同的表現性,果真是「你的基因不是你的基因」。表觀遺傳學方興未艾,有興趣可參考《表觀遺傳大革命:現代生物學如何改寫我們認知的基因、遺傳與疾病》(The Epigenetics Revolution: How modern biology is rewriting our understanding of genetics, disease and inheritance)。

就因為基因是一個既複雜又危險的觀念,人類在探索的過程中走了不少叉路,以為基因決定了一切,或者以為後天決定了一切。前車之鑒就是前蘇聯生物學家李森科(Trofim Lysenko,Трохим Денисович Лисенко,1898-1976),他完全否定了孟德爾遺傳學,自以為是地以為單單後天的刺激就能隨心所欲地改變作物的性狀,還殘酷肅清了幾乎所有遺傳學家,造成前蘇聯大饑荒。

後基因體時代,學習如何解讀和編寫自己

穆克吉透過這些遺傳學史來讓我們對基因進行批判性思考,認識基因的複雜與多樣。《基因》這本好書值得所有關心人類的朋友來讀,對生命科學相關領域的朋友更是如此。雖說穆克吉畢竟是醫學院教授,對人類的關心大過其他物種,因此幾乎未曾提到對基因在農牧業上也有翻天覆地的影響,但,瑕不掩瑜。

-----廣告,請繼續往下閱讀-----

基因確實造就了我們個別之間的差異,卻非我們身分的決定性因素,我們還有很多有關基因的知識要學,現在知道的可能連皮毛都算不上。在後基因體時代,我們正在學著如何解讀和編寫我們自己。

延伸閱讀:

 

 

泛科學八月選書《基因:人類最親密的歷史》,時報出版。

-----廣告,請繼續往下閱讀-----
文章難易度
Gene Ng_96
295 篇文章 ・ 32 位粉絲
來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手Readmoo部落格【GENE思書軒】關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋

0

2
0

文字

分享

0
2
0
從「衛生紙」開始的環保行動:一起愛地球,從 i 開始
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/03 ・1592字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

你是否也曾在抽衛生紙的瞬間,心頭閃過「這會不會讓更多森林消失」的擔憂?當最後一張衛生紙用完,內心的愧疚感也油然而生……但先別急著責怪自己,事實上,使用木製品和紙張也能很永續!只要我們選對來源、支持永續木材,你的每一個購物決策,都能將對地球的影響降到最低。

二氧化碳是「植物的食物」:碳的循環旅程

樹木的主食是水與二氧化碳,它們從空氣中吸收二氧化碳,並利用這些碳元素形成枝葉與樹幹。最終這些樹木會被砍伐,切成木材或搗成紙漿,用於各種紙張與木製品的製造。

木製品在到達其使用年限後,無論是被燃燒還是自然分解,都會重新釋放出二氧化碳。不過在碳循環中,這些釋出的二氧化碳,來自於原本被樹木「吸收」的那些二氧化碳,因此並不會增加大氣中的碳總量。

只要我們持續種植新樹,碳循環就能不斷延續,二氧化碳在不同型態間流轉,而不會大量增加溫室氣體在大氣中的總量。因為具備循環再生的特性,讓木材成為相對環保的資源。

但,為了木製品而砍伐森林,真的沒問題嗎?當然會有問題!

-----廣告,請繼續往下閱讀-----
從吸碳到固碳的循環

砍對樹,很重要

實際上,有不少木材來自於樹木豐富的熱帶雨林。然而,熱帶雨林是無數動植物的棲息地,它們承載著地球豐富的生物多樣性。當這些森林被非法砍伐,不僅生態系統遭到破壞,還有一個嚴重的問題–黃碳,也就是那些大量儲存在落葉與土壤有機質中的碳,會因為上方森林的消失重新將碳釋放進大氣之中。這些原本是森林的土地,將從固碳變成排碳大戶。

不論是黃碳問題,還是要確保雨林珍貴的生物多樣性不被影響,經營得當的人工永續林,能將對環境的影響降到最低,是紙漿和木材的理想來源。永續林的經營者通常需要注重環境保護與生態管理,確保砍下每顆樹木後,都有新的樹木接續成長。木材反覆在同一片土地上生成,因此不用再砍伐更多的原始林。在這樣的循環經營下,我們才能不必冒著破壞原始林的風險,繼續享用木製品。

人工永續林的經營者需要注重環境保護與生態管理,確保砍下每顆樹木後,都有新的樹木接續成長。

如何確保你手中的紙張來自永續林?

如果你擔心自己無意中購買了對環境不友善的商品,而不敢下手,只要認明FSC(森林管理委員會)認證與 PEFC(森林認證制度)認證標章,就能確保紙漿來源不是來自原始林。並且從森林到工廠、再到產品,流程都能被追蹤,為你把關每一張紙的生產過程合乎永續。

只要認明 FSC(森林管理委員會)認證與 PEFC(森林認證制度)認證標章,就能確保紙漿來源不是來自原始林。

家樂福「從 i 開始」:環境友善購物新選擇

不僅是紙張,家樂福自有品牌的產品都已經通過了環保認證,幫助消費者在日常生活中輕鬆實踐環保。選擇 FSC 與 PEFC 標章只是第一步,你還可以在購物時認明家樂福的「從 i 開始」價格牌,這代表商品在生產過程中已經符合多項國際認證永續發展標準。

-----廣告,請繼續往下閱讀-----

「從 i 開始」涵蓋十大環保行動,從營養飲食、無添加物、有機產品,到生態農業、動物福利、永續漁業、減少塑料與森林保育,讓你每一項購物選擇都能與環境保護密切相關。無論是買菜、買肉,還是日常生活用品,都能透過簡單的選擇,為地球盡一份力。

選擇 FSC 與 PEFC 標章只是第一步,你還可以在購物時認明家樂福的「從 i 開始」價格牌
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
212 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
0

文字

分享

0
2
0
從遺傳學角度剖析:女性能在體育場上超越男性嗎?——《運動基因》
行路出版_96
・2024/08/10 ・3712字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

科學期刊的預言:女性能追趕甚至超越男性?

我在 2002 年還在讀大四時,第一次看到兩位 UCLA 生理學家的論文〈不用多久女性就會跑得比男性快?〉,當時我覺得這個標題很荒謬。在那之前我花了五個賽季,進行 800 公尺中距離跑步訓練,成績已經超越世界女子紀錄。而且我還不是自己接力隊上跑最快的。

但那篇論文發表在《自然》(Nature)期刊上,這是世上極具聲望的科學期刊,所以一定有些道理。大眾就是這麼認為的。《美國新聞與世界報導》雜誌在 1996 年亞特蘭大奧運之前,對一千個美國人做了調查,結果其中有三分之二認為,「終有一天頂尖女運動員會勝過頂尖男運動員」。

1996 年亞特蘭大奧運前,一千位美國人中有三分之二認為,「終有一天頂尖女運動員會勝過頂尖男運動員」。 圖/envato

《自然》期刊上那篇論文的作者,把男子組和女子組從 200 公尺短跑到馬拉松各項賽事歷年的世界紀錄畫成圖表,發現女子組紀錄進步得遠比男子組急速。他們用外推法從曲線的趨勢推斷未來,確定到 21 世紀前半葉,女性就會在各個賽跑項目擊敗男性。兩名作者寫道:「正因進步速度的差異實在非常大,而使(兩者)差距逐漸縮小。」

2004 年,趁著雅典奧運成為新聞焦點之際,《自然》又特別刊出一篇同類型的文章〈2156 年奧運會場上的重要衝刺?〉(Momentous Sprint at the 2156 Olympics?)──標題所指的,正是女子選手會在 100 公尺短跑比賽中,勝過男子選手的預計時間。

-----廣告,請繼續往下閱讀-----

2005 年,三名運動科學家在《英國運動醫學期刊》發表了一篇論文,省去問號開門見山在標題宣稱:〈女性終將做到〉(Women Will Do It in the Long Run.)。

難道男性主導世界紀錄的情況,始終是歧視女性、把女性排除於競技場外的結果?

20 世紀上半葉,文化規範與偽科學嚴重限制了女性參與運動競技的機會。在 1928 年阿姆斯特丹奧運期間,有媒體(捏造)報導指稱,女性選手在 800 公尺賽跑後筋疲力竭地躺在地上,這讓一些醫生和體育記者十分反感,使得他們認為這個比賽項目會危害女性健康。《紐約時報》上有篇文章就寫:「這種距離太消耗女性的體力了。」〔1〕那幾屆奧運之後,在接下來的三十二年間,距離超過 200 公尺的所有女子項目,都突然遭禁,直到 2008 年奧運,男女運動員的徑賽項目才終於完全相同。但《自然》期刊上的那幾篇論文指出,隨著女性參賽人數增多,看起來她們的運動成績到最後可能會與男性並駕齊驅,甚至比男性更好。

運動能力的基因密碼:性別差異的生物學根源

我去拜訪約克大學的運動心理學家喬.貝克時,我們談論到運動表現的男女差異,尤其是投擲項目的差異。在科學實驗裡證實過的所有性別差異中,投擲項目一直名列前茅。用統計學術語來說的話,男女運動員的平均投擲速度相差了三個標準差,大約是男女身高差距的兩倍。這代表如果你從街上拉一千個男子,其中 997 人擲球的力氣會比普通女性大。

-----廣告,請繼續往下閱讀-----

不過貝克提到,這種情形可能是反映女性缺乏訓練。他的太太是打棒球長大的,輕輕鬆鬆就能贏過他。他打趣說:「她會發出一束雷射光。」那麼這是生物學上的差異嗎?

男性和女性的 DNA 差異極小,僅限於在女性身上為X或男性為Y的那單一染色體。姊弟或兄妹從完全相同的來源取得基因,透過重組母親和父親的 DNA,確保兄弟姊妹絕對不會相近到變成複製人。

性別分化過程大部分要歸結到 Y 染色體上的「SRY 基因」,它的全名是「Y 染色體性別決定區基因」。若要說有「運動能力基因」,那就非 SRY 基因莫屬了。人類生物學的安排,就是讓同樣的雙親能夠同時生育出男性的兒子和女性的女兒,即使傳遞的是相同的基因。SRY 基因是一把 DNA 萬能鑰匙,會選擇性地啟動發育成男性的基因。

我們在生命初期都是女性──每個人類胚胎在形成的前六週都是女性。由於哺乳動物的胎兒會接觸到來自母親的大量雌激素,因此預設性別為女性是比較合算的。在男性身上,SRY 基因到第六週時會暗示睪丸及萊氏細胞(Leydig cell)該準備形成了;萊氏細胞是睪丸內負責合成睪固酮的細胞。睪固酮在一個月之內會不斷湧出,啟動特定基因,關閉其他基因,兩性投擲差距不用多久就會出現。

-----廣告,請繼續往下閱讀-----

男孩還在子宮時,就開始發育出比較長的前臂,這使得他們日後投擲時會做出更有力的揮臂動作。儘管男孩和女孩在投擲技能方面的差異,不如成年男性和女性之間那麼顯著,但這種差異在兩歲幼童身上已經很明顯了。

性別分化過程大部分要歸結到 Y 染色體上的「SRY 基因」,會選擇性地啟動發育成男性的基因。 圖/envato

文化與訓練的影響:投擲項目中的性別差距

為了確定孩童之間的投擲差距有多少與文化有關,北德州大學和西澳大學的科學家組成團隊,共同測試美國孩童與澳洲原住民孩童的投擲技能。澳洲原住民沒有發展出農業,仍過著狩獵採集生活,他們教導女孩丟擲戰鬥及狩獵用武器,就像教導男孩一樣。這項研究確實發現,美國男孩和女孩在投擲技能上的差異,比澳洲原住民男孩和女孩之間的差異顯著許多。不過儘管女孩因為較早發育長得較高較壯,男孩仍比女孩擲得更遠。

普遍來說,男孩不僅比女孩更善於投擲,視覺追蹤攔截飛行物的能力往往也出色許多;87% 的男孩在目標鎖定能力的測試上,表現得比一般女孩好。另外,導致差異的部分原因,至少看起來是因為在子宮的時期接觸到了睪固酮。由於先天性腎上腺增生症,而在子宮裡接觸到高濃度睪固酮的女孩,上述項目的表現會像男孩一樣,而不像女孩;患有這種遺傳疾病的胎兒,腎上腺會過度分泌男性荷爾蒙。

受過良好投擲訓練的女性,能輕易勝過未受訓練的男性,但受過良好訓練的男性,表現會大幅超越受過良好訓練的女性。男子奧運標槍選手擲出的距離,比女子奧運選手遠大約三成,儘管女子組使用的標槍比較輕。此外,女性投出的最快棒球球速的金氏世界紀錄是 65 mph(相當於時速 105 公里),表現不錯的高中男生的球速經常比這還要快,有些男子職業球員可以投出超過 100 mph(相當於時速 160 公里)的球速。

-----廣告,請繼續往下閱讀-----

在跑步方面,從 100 公尺到 1 萬公尺,經驗法則是把菁英級表現差距定在 11%。從短跑到超級馬拉松,不管任何距離的賽跑,男子組的前十名都比女子組的前十名快大約 11%。〔2〕在職業等級,那就是個鴻溝。女子組的 100 公尺世界紀錄,跟 2012 年奧運男子組的參賽資格還差了四分之一秒;而在一萬公尺長跑,女子組的世界紀錄成績,與達到奧運參賽資格最低標準的男選手相比落後了一圈。

不論距離,男子組前十名的跑步速度普遍比女子組快約 11%。圖/enavato

投擲項目與純爆發力型運動項目的差距更大。在跳遠方面,女子選手落後男子 19%。差距最小的是長距離游泳競賽;在 800 公尺自由式比賽中,排名前面的女子選手,與排名前面的男子選手差距不到 6%。

預言女性運動員將超越男性的那幾篇論文暗示,從 1950 年代到 1980 年代,女性表現的進展遵循一條會持續下去的穩定軌跡,但在現實中是有一段短暫爆發,隨後趨於平穩──這是女子運動員,而非男子運動員進入的平穩期。儘管到 1980 年代,女性在 100 公尺到 1 英里各項賽跑的最快速度,都開始趨於穩定,但男子運動員仍繼續緩慢進步,雖然只進步一點點。

數字很明確。菁英女子選手並未趕上菁英男子選手,也沒有保持住狀況,男性運動員則在非常慢地進步。生物學上的差距在擴大。但為什麼原本就有差距存在?

-----廣告,請繼續往下閱讀-----

註釋

  1.  各報上氣不接下氣地報導 800 公尺女子選手紛紛倒在跑道上。正如運動雜誌《跑步時代》(Running Times)2012 年的一篇文章指出的,實情是只有一個女子選手在終點線倒下,其餘三名都打破了先前的世界紀錄。據稱人在現場的《紐約郵報》記者寫道,「11 位淒慘的女性」當中有 5 人沒有跑完,5 人在跑過終點線後倒下。《跑步時代》報導說,參賽的女運動員只有 9 個,而且全部跑完。
  2. 過去普遍認為,隨著比賽距離拉長,女子賽跑選手會超越男子選手。這是克里斯多福.麥杜格(Christopher McDougall)在《天生就會跑》這本很吸引人的書裡談到的主題,但不完全正確。成績非常優秀的跑者之間的 11% 差距,在最長距離和最短距離同樣穩固存在。儘管如此,南非生理學家卻發現,當一男一女的馬拉松完賽時間不相上下,那個男士在距離短於馬拉松的比賽中通常會贏過那個女士,但如果競賽距離加長到 64 公里,女士就會跑贏。他們報告說,這是因為男性通常比較高又比較重,比賽距離越長,這就會變成很大的缺點。然而在世界頂尖超馬選手當中,男女體型差異比一般群體中的差異小,而 11% 的成績差距,也存在於超級長距離的最優秀男女選手之間。

——本文摘自 大衛・艾普斯坦(David Epstein)運動基因:頂尖運動表現背後的科學》,2020 年 12 月,行路出版,未經同意請勿轉載

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

行路出版_96
21 篇文章 ・ 8 位粉絲
行路為「讀書共和國」出版集團旗下新創的出版社,出版知識類且富科普或哲普內涵的書籍,科學類中尤其將長期耕耘「心理學+腦科學」領域重要、具時代意義,足以當教材的出版品。 行路臉書專頁:https://www.facebook.com/WalkPublishing

1

20
0

文字

分享

1
20
0
不抽菸也會得肺癌?PM2.5 如何「叫醒」沉睡的癌細胞?
PanSci_96
・2024/06/25 ・4403字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

不好意思,你很可能會得這種癌症。其實,我也是。

它就是台灣十大癌症榜首,肺癌。

現在,根據 2023 年 11 月衛福部發布的最新統計數字,肺癌一年的新增病人數已經超越大腸直腸癌,成為台灣每年癌症發生人數之最,堪稱臺灣人的「國民病」。

可怕的是,肺癌在癌症之中有三個之最:死亡率最高、發現時已經是晚期的比例最高、醫藥費也最高。現在再加上發生人數最高,堪稱從癌症四冠王。

-----廣告,請繼續往下閱讀-----

你說肺癌是抽菸的人的事?錯!台灣抽菸人口比例在全球排名 30,比日本、韓國、中國和多數歐洲國家都還低!顯然抽菸並不是肺癌的唯一主因!那難道是二手菸?還是空污惹的禍?還是台灣人的基因天生脆弱?我們到底要怎麼做才能遠離肺癌?

臺灣人的肺癌特別在哪?癌症和基因有關嗎?

根據衛福部國健署的說法,肺癌人數的增加,其實與 2022 年 7 月開始推動肺癌篩檢的政策有關。

隨著篩檢量的上升,近年內肺癌的確診人數預期還會再往上。

原來是因為篩檢量啊,那就不用擔心了。但換個角度想,這才是肺癌最可怕的地方,它可能已經存在在很多人身體裡,而我們卻沒能發現它。肺癌早期幾乎沒有症狀,高達 50% 的患者發現時已經是第 4 期。屆時不只肺部遍布腫瘤,癌細胞可能還轉移到大腦、骨頭等器官,讓治療變得加倍困難。

-----廣告,請繼續往下閱讀-----

對付肺癌,最關鍵點是愈早發現愈好。按照國健署統計,如果第 1 期就發現,5 年存活率可達九成以上,第 2 期發現降為六成,第 3 期存活率大約三成,一旦到第 4 期,僅僅剩下一成。

當然,最好的方法,就是做好預防,打從一開始就不讓癌細胞誕生。

那麼我們就要先了解問題到底是出在環境,還是你、我身體中的基因? 過去關於肺癌的遺傳研究,多半以歐美國家為主,套用到我們身上總有些牛頭不對馬嘴。幸好,我這裡一份以臺灣人為主角的大規模研究報告,將為我們揭露答案。

這份研究是由中央研究院團隊主導,結合臺灣大學、臺北醫學大學、臺中榮總等單位的研究,還登上生物領域頂尖期刊《Cell》2020 年 7 月的封面故事。非常具有權威性,不能不看。

-----廣告,請繼續往下閱讀-----

同時,這也是全球第一次完整剖析東亞地區肺癌的成因。他們的主題很明確:「為什麼不吸菸也會得肺癌?」

在西方,肺癌病人裡面只有 20% 左右的人不吸菸。但是在臺灣,卻有超過一半的肺癌病人都不抽菸,顯示有其他致癌要素潛伏在基因裡作怪。另外,臺灣肺癌病人的男女比例和西方人也大不同,臺灣女性通常更容易罹患肺癌。 為了瞭解肺癌,研究團隊取得肺癌病人的腫瘤和正常組織,解讀 DNA 序列和蛋白質表現量,最後鑑定出 5 種和西方人明顯不同的變異特徵。

其中最受關注的,是一種 APOBEC 變異,因為它有可能是臺灣女性為什麼容易罹患肺癌的關鍵。

這種變異特徵屬於內生性的,也就是人體機制自然產生的 bug。

-----廣告,請繼續往下閱讀-----

APOBEC 不是指單一基因,它是細胞內負責編輯 mRNA 的一組酵素,包含 11 個成員。主要功用是把胞嘧啶核苷酸(C)轉變尿嘧啶核苷酸(U)。簡單來說,APOBEC 原本是細胞正常活動的一環。但因為它有改寫核酸序列的能力,在 DNA 修復過程同時活躍時,就很有可能出事。這就像是一個創意豐富的阿嬤,看到破損的古畫,就在沒和別人討論的情況下上去東湊西補,用自己的方式重新修復了這件藝術。一個與原本不同的突變細胞可能就這樣產生了。

APOBEC 變異在臺灣女性病人身上特別明顯,舉例來說,60 歲以下沒有吸菸的女性患者,就有高達四分之三有這種變異特徵。研究團隊認為,APOBEC 出錯造成的基因變異可能是導致女性肺癌的關鍵。 除了內生性變異,另外一個容易導致肺癌發生的,就是周遭環境中的致癌物。

致癌物有哪些?

研究團隊總結出 5 種肺癌危險物質:烷化劑、輻射線、亞硝胺(Nitrosamine)、多環芳香烴(PAHs),還有硝基多環芳香烴(Nitro-PAHs)。

其中,亞硝胺類化合物主要來自食品添加物和防腐劑,多環芳香烴大多來自抽菸和二手菸,硝基多環芳香烴則是透過汽機車廢氣和 PM2.5 等毒害肺部。

-----廣告,請繼續往下閱讀-----
圖/unsplash

他們進一步分析,大略來說,女性在不同年紀,致癌因素也有差異。60 歲以下的女性肺癌病人,APOBEC 特徵的影響比較明顯;70 歲以上的女性患者,和環境致癌物的相關度比較高。 既然找到致癌原因,我們該如何著手預防呢?你知道肺癌,其實有疫苗可打!?

空氣污染和肺癌有關嗎?有沒有癌症疫苗?

想預防肺癌,有 2 種對策,一種是「打疫苗」,一種是「抗發炎」。

是的,你沒聽錯,英國牛津大學、跟佛朗西斯.克里克研究所,還有倫敦大學學院在 2024 年 3 月下旬公布,他們正在研發一款預防性的肺癌疫苗,就叫 LungVax。它所使用的技術,和過往牛津大學協同阿斯特捷利康藥廠製造 COVID-19 AZ 疫苗時的方法相似。

他們已經募到一筆 170 萬英鎊的經費,預計未來兩年資金陸續全數到位,第一批打算先試生產 3000 劑。不過,關於這款肺癌疫苗,目前透露的消息還不多,我們挺健康會持續追蹤這方面研究的進展。

-----廣告,請繼續往下閱讀-----

在疫苗出來之前,我們還有第二個對策:抗發炎。發炎和肺癌有什麼關係呢?這就要先回到一個問題:為什麼空污會提高得肺癌的機率呢?

一個很直觀又有力的推測是,空污會導致肺部細胞 DNA 突變,因此而催生出腫瘤。

圖/unsplash

但是修但幾勒,科學要嚴謹,不能只看結果。科學史上發生過很多次表象和真實截然不同的事件,空污和肺癌會不會也是這樣?

2023 年 4 月《Nature》的一篇封面故事,明確地說:Yes!肺癌真的和我們想的不一樣。

-----廣告,請繼續往下閱讀-----

其實早在 1947 年,就有以色列生化學家貝倫布魯姆(Isaac Berenblum)質疑主流觀點,他提出的新假設是:除了 DNA 突變以外,癌細胞還需要其他條件才能坐大。用白話說,就是肺癌是個會兩段變身的遊戲副本頭目,正常細胞先發生變異,接著再由某個條件「扣下扳機」,突變細胞才會壯大成腫瘤。

也就是説,只要攔住任一個階段,就有機會能防範肺癌。假如這論點正確,全球肺癌防治的方向將會直角轉彎。

《Nature》的研究支持這個假說,扭轉了過去 70 多年來的看法。在這項里程碑研究中,臺灣也是要角。

時間回到 2020 年,《Nature Genetics》上發表了一份針對 20 種致癌物質的研究報告,包括鈷、三氯丙烷和異丙苯等,但注意,這研究指出這些致癌物大多沒有增加實驗鼠的 DNA 變異量。

這個現象實在太違反直覺,過了 3 年,疑團還是懸而未決。直到《Nature》的跨國研究出爐,才解開部分謎底。

英國倫敦佛朗西斯.克利克研究所主導 2023 年的一項研究,他們鎖定對象為肺腺癌。肺腺癌是典型「不吸菸的肺癌」,台灣每 4 個肺癌病人就有 3 人是肺腺癌,尤其是女性肺腺癌患者有高達九成不抽菸。 為了抽絲剝繭探明空污和肺癌的關係,研究團隊聚焦在肺腺癌患者常發生的表皮生長因子受體基因變異,縮寫 EGFR。他們收集英國、加拿大、韓國和臺灣四國大約 3 萬 3 千名帶有 EGFR 突變的病人資料,進行深入分析,並且發現 PM2.5 和肺腺癌發生率有顯著關聯。研究團隊進一步用小鼠做試驗,把小鼠分成吸入和未吸入 PM2.5 兩組,結果發現吸入組更容易長出惡性腫瘤。

圖/pexels

到目前為止都還不算太意外,然而,團隊切下肺部細胞、分析 DNA 以後發現,DNA 的突變量居然沒有明顯增加!但是有另一件事發生了:堆積在肺的 PM2.5 顆粒會吸引免疫細胞從身體各處聚集過來,並分泌一種叫做 IL-1β 的發炎因子,導致肺組織發炎。

這下子有趣了,根據克利克研究所團隊的檢驗結果,估計每 60 萬個肺部細胞有 1 個帶有 EGFR 突變,這些細胞在發炎環境裡會快馬加鞭生長。相反的,當他們給小鼠注射抑制 IL-1β 的抗體,肺癌發病率就跟著下降。 《Nature》一篇評論引述美國加州大學舊金山分校分子腫瘤學專家波曼(Allan Balmain)的看法。他總結說,空污致癌的主要機制,可能不是因為空污誘發了新突變,而是持續發炎會刺激原本已帶有突變的細胞生長。換句話說,本來在熟睡的壞細胞會被發炎反應「叫醒」。

這會給肺癌防治帶來巨大衝擊,這樣一來,問題就從「用公衛或醫療方法防止 DNA 變異」變成了「如何抑制發炎」。

人體的細胞每天不斷分裂,用新細胞替換老舊細胞。但是這就像工廠生產線,良率無法百分百,組裝幾十萬產品難免會做出幾件瑕疵品,也就是帶有基因突變的細胞。換句話說,從自然界角度來看,DNA 變異是一種自發現象,醫療手段實際上幾乎不可能阻止。

但是,降低發炎卻是有可能做到的,例如注射抑制 IL-1β 因子的抗體。不過,就公共衛生來說,要給幾千萬人施打抗發炎因子藥物根本不切實際,因為太花錢,而且也可能造成其他的副作用。 波曼在《Nature》評論裡建議,透過簡易可行的飲食方式來降低體內發炎,或許有機會減少某些癌症的風險。這也就是說,科學家應該重新回來審視,怎樣把每天的生活點滴點石成金變成防癌手段。

圖/unsplash

這也等於預告了肺癌的下一階段研究方向,除了內科、外科醫療科技持續精進,尋求預防惡性疾病的最佳飲食要素,也成為聚焦重點。

也想問問你,關於肺癌,你最看好的下一個突破是什麼呢?

  1. 希望有篩檢技術 2.0,不但百發百中,如果連X光都不必照,只要抽血就能順便驗出有沒有癌細胞,那該多好。
  2. 當然是癌症疫苗,最好是能一勞永逸。
  3. 科學證實有效的抗發炎防癌食物組合,我一定立刻加入菜單,不過還是希望味道要好吃啦。

留言告訴我們你的想法吧,如果你覺得這集的內容特別實用,記得分享給你的親朋好友!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 1