0

0
1

文字

分享

0
0
1

這個會議結束之前,所有人都不准做實驗!管控生物危害的「厄西勒瑪會議」──《基因:人類最親密的歷史》

時報出版_96
・2018/08/10 ・4760字 ・閱讀時間約 9 分鐘 ・SR值 556 ・八年級

編按:泛科學八月選書《基因:人類最親密的歷史》,從家庭病史出發,作者穆克吉細數百年間數以百計的科學家如何前仆後繼,破譯遺傳基因這項生命之謎;從近兩百年前在修道院裡發覺遺傳學邏輯,一路到接近基因治療的今日;既介紹遺傳基因的核心概念,亦一窺漫漫科學長河如何前進與掙扎。

人生起伏就像潮起潮落,
趁著高潮勇往直前,就可以功成名就;

若不能把握時機,人生旅程就會駛向淺灘,陷入悲慘絕境。
我們現在正在滿潮的海上。
──莎士比亞《凱撒大帝》(Julius Caesar)第四幕,第三景

我相信所有成年科學家都具有私下愚弄自己的必要權利。
──西德尼.布倫納

當心!生物性危害就在眼前!

一九七三年一月,埃里切之行的數月後,伯格決定在加州召開一場小型研討會,討論大家對基因操控技術日益增進的憂慮。會議在厄西勒瑪(Asilomar)的太平洋樹林(Pacific Groves)會議中心舉行,離史丹福約八十哩,是坐落在蒙特瑞灣(Monterey Bay)岸邊的幾棟建築。各學科的科學家,如病毒學家、遺傳學家、生化學家與微生物學家等齊聚一堂。這次的會議後來被伯格稱為「厄西勒瑪第一次會議」,雖然吸引了很大的興趣,卻並沒有提出什麼建議。

圖/Ron Cruz@flickr

會議主要的內容是生物安全(biosafety),大家踴躍地對於使用猿猴病毒 40 和其他人類病毒發言。伯格告訴我,「那個年代,我們還在用嘴吸取病毒和化學物質。」他的助理瑪麗安.狄克曼(Marianne Dieckmann)記得有個學生不小心把一些液體灑到香菸的菸頭上(那時實驗室裡常看得到點著的香菸在菸灰缸裡空燒),那名學生根本不當一回事,照樣拿起香菸吸,任菸頭上的那滴病毒掉在菸灰裡。

-----廣告,請繼續往下閱讀-----

厄西勒瑪這場會議創造了一本重要的書《生物研究的生物性危害》Biohazards in Biological Research,但更重要的結論卻付之闕如。伯格說,「坦白說,最後的結果是我們明白自己所知多麼有限。」

跨越百萬年演化鴻溝的基因重組

一九七三年夏,波伊爾和科恩在另一場會議提出他們細菌基因混合體的報告,更進一步點燃人們對基因複製的憂慮。同時,位在史丹福的伯格則窮於應付世界各地研究人員對基因重組試劑的要求。芝加哥的一位研究員提議把致病性極高的人類皰疹病毒基因插入細菌細胞,創造出負載致命毒素基因的人類腸道細菌,名義上是研究皰疹病毒基因的毒性(伯格委婉地拒絕了)。抗生素抗性基因經常在細菌之間交換。基因經常在物種和屬之間移動,一躍跨越百萬年的演化鴻溝,就如不經意地踩過沙上的細線這般容易。

美國國家科學院(National Academy of Sciences)注意到不確定性不斷增加,因此召請伯格領導基因重組的研究小組。

圖/imdb

小組共有八名科學家,包括伯格、華生、巴爾的摩和諾頓.辛德(Norton Zinder)等。一九七三年四月一個春寒料峭的日子,他們在波士頓麻省理工學院開會,馬上開始集思廣益,探討控制和調控基因複製的可能機制。巴爾的摩建議培養「經破壞而殘障的『安全』病毒、質體和細菌」,但是,即使它們無法致病,這樣的安全措施也未必萬無一失。誰能保證「殘障」病毒永遠殘障?畢竟,病毒和細菌並非被動的惰性物體。即使在實驗室環境,它們也是活生生的,會移動也會演化。只要一個突變,原本殘障的細菌就可能再度充滿毒性。

-----廣告,請繼續往下閱讀-----

辯論持續了好幾個小時之後,辛德提出了一個簡直可以說是開倒車的計畫:「好吧,只要我們有種,就乾脆告訴大家不要做這些實驗。」這個建議引起了桌前一陣低聲的騷動。這根本不是理想的解決方案──科學家要求限制其他科學家進行研究,實在沒有誠意,不過這至少可以作為暫停令。伯格回憶說,「儘管這樣做教人不快,但我們想或許會有效果。」因此,小組起草了正式函件,要求「暫停」某些重組DNA的研究。這封信衡量了基因重組技術的風險和益處,建議延後一些實驗,直到可以解決安全問題為止。

伯格說,「並不是每一個想得到的實驗都有危險,但是,有些實驗顯然就是比較危險。」其中三種DNA重組程序尤其需要嚴格限制。伯格建議,「不要把毒素基因放入大腸桿菌、不要把抗藥基因插入大腸桿菌、不要把癌基因放進大腸桿菌。」伯格和同僚認為,若能暫停下來,就能讓科學家有一點時間思考他們研究工作的意義。他們建議在一九七五年舉行第二次會議,讓更多科學家討論這些問題。

圖/pxhere

繼續實驗抑或先設定規範?

一九七四年,《自然》、《科學》和《國家科學院學報》都刊登了這封「伯格的信」,立刻引起舉世注意。英國成立了一個委員會,探討重組 DNA 和基因複製「潛在的利弊」,法國的《世界報》(Le Monde)也刊登了針對這封信的反應。那年冬天,賈克柏(因基因調控而知名)應邀審核一件研究補助金申請案,要把人類肌肉基因插入病毒。賈克柏也跟從伯格的先例,敦促擱置這樣的提案,等到國內對重組 DNA 科技有了確切的態度再說。一九七四年,德國某場會議上的許多遺傳學者重申類似的看法,重組 DNA 研究的實驗應該嚴格規範,直到可以清楚描述其風險,確定該採取什麼樣的建議為止。

不過,與此同時,研究依舊如火如荼地進行,打破了生物及演化的種種障礙,彷彿這些障礙弱不禁風,只靠牙籤撐著。在史丹福,波伊爾、科恩和他們的學生把青黴素抗藥基因由一個細菌移植到另一個細菌上,創造了抗藥大腸桿菌。理論上,任何基因都可以由一個生物體轉移到另一個生物體。波伊爾和科恩大膽提出:「將特定代謝或合成功能的基因,引入不同綱的生物(如不同的植物或動物),或許可行。」波伊爾開玩笑地說,「物種是虛假的。」

-----廣告,請繼續往下閱讀-----

一九七四年元旦,在史丹福和科恩一起工作的一位研究員報告說,他已把青蛙的基因插入細菌細胞,就這麼輕易地跨越了另一個演化的邊界。在生物學領域,就如王爾德說的,「表現自然,其實就是一種做作。」

等等,重組DNA也變成一種創客運動了嗎?不會吧。圖/pixabay

第二次厄西勒馬會議:該如何控制科學家重組 DNA 的實驗?

第二次厄西勒瑪會議──科學史上最不尋常的會議之一,是由伯格、巴爾的摩和其他三位科學家於一九七五年二月召開。遺傳學家再一次回到了風大的沙灘沙丘討論基因、重組及未來的展望。這是個美麗的季節,帝王蝶正沿著海岸進行一年一度的遷移,準備飛往加拿大的草原。紅杉和矮松則突如其來地化成了紅、橙和黑色的隊伍。

與會者在二月二十四日抵達,只是其中不只有生物學家。伯格和巴爾的摩十分明智地邀請了律師、記者和作家參加會議。如果要討論基因操控的未來,他們不僅需要科學家的意見,也要參考更多人的想法。他們可以在會議中心周圍的木板走道思索交談;生物學家可以在這些走道或沙灘上交換他們對重組、複製和基因操控的意見。相較之下,會議的中心──四周石牆佇立,宛如大教堂空間且映照著加州陽光的中央大廳,則即將爆發關於基因複製最激烈的辯論。

伯格首先發言,他概述了資料,提出問題的範圍大綱。在研究化學改變DNA方法的過程中,生化學家最近發現了一種較為容易的技術,可以排列組合不同種生物的遺傳信息。依照伯格的說法,這種技術「簡單得離譜」,就連業餘的生物學者也可以在實驗室做出嵌合基因。

-----廣告,請繼續往下閱讀-----

這些混合的DNA分子(重組DNA),可以在細菌裡繁殖(即複製),產生數百萬份相同的副本。其中一些分子可以送進哺乳動物的細胞。由於大家了解這種技術深遠的潛力和風險,因此先前召開的初步會議建議暫停實驗,如今召開第二次厄西勒瑪會議,為的是要商議接下來的步驟。結果,第二次會議在影響和眼界層面,都遠遠超過第一次會議,因此被簡稱為厄西勒瑪會議,或者就叫艾斯洛瑪

圖/pixabay

會議頭一天早上,壓力和情緒很快就爆發了。主要的問題依舊是業界自設的暫停令:科學家重組 DNA 的實驗該不該受到限制?華生表示反對。他希望有完全的自由,他呼籲:讓科學家在科學上不受拘束。巴爾的摩和布倫納則重申他們打算製造「殘障」基因攜帶者的計畫,以確保安全。其他人則意見分歧。

他們認為,眼前科學有很大的機會,如果暫停研究,可能會使進展癱瘓。一位微生物學者對會中提議的嚴格限制深感不滿,指控委員會:「你們毀了研究質體的群組。」伯格一度威脅控告華生,指他未能適度坦承重組DNA的風險。在討論到基因複製風險特別敏感的議題時,布倫納要求《華盛頓郵報》的記者關掉錄音機,「我相信所有成年科學家都具有私下愚弄自己的必要權利。」他說。結果馬上就遭指責是「法西斯」。

組委會五位成員:伯格、巴爾的摩、布倫納,理查.羅布林(Richard Roblin)和生化學家馬克辛.辛格(Maxine Singer)急切地在室內走動,評估越來越火爆的氣氛。一位記者寫道,「爭論一直持續,有些人受夠了這一切,乾脆直接離席到海邊抽大麻。」伯格坐在自己的房間,一臉怒容,擔心這次的會議不會有結論。

-----廣告,請繼續往下閱讀-----

到了會議最後一天晚上,依舊沒有什麼正式的結果,直到律師登場。五位律師要求討論複製的法律後果,並對潛在風險提出了冷酷的看法:

如果一間實驗室的某位成員感染了重組細菌,而感染導致與某種疾病有所牽連,即使只是最微小的牽連,實驗室負責人、實驗室和所屬的機構都須承擔法律責任。整所大學也須關閉。實驗室會無限期關閉,運動人士會守在門口抗議,而大門則會由全副防護衣的化學災害處理人員上鎖。美國國家衛生研究院會恐怕會窮於應付來自四面八方的詢問,一切亂成一團。聯邦政府不得不提出嚴厲的規定,不僅限於重組 DNA,而是包括更大範圍的生物研究。到頭來,各方對科學家的限制恐怕比科學家自願遵守的任何規則都嚴格得多。

律師的報告策略性地安排在第二次厄西勒瑪會議的最後一天,也是整個會議的轉折點。伯格知道如果提不出正式的建議,會議就不該也不能結束。

感覺熬夜討論這個可能就和討論如何殺巨人一樣累啊。圖/imdb

生物實驗的四級計畫

那天晚上,巴爾的摩、伯格、辛格、布倫納和羅布林在他們的小屋裡熬夜,吃著紙盒裡的中國菜外賣,在黑板上塗塗寫寫,並且草擬未來計畫。到了清晨五點半,他們蓬頭垢面、眼神迷茫地步出海邊小屋,全身是咖啡和打字機色帶的氣味,手上拿著一份文件。文件一開始先談起科學家不知不覺地隨著基因複製,進入了生物學奇特的平行宇宙。

「結合截然不同生物的遺傳信息,這種新技術把我們放在許多未知的生物學舞臺上。正是這種無知,使我們得出這樣的結論:進行這種研究時應該格外謹慎。

為了降低風險,文件提出四級計畫,排列各種經遺傳改造生物的生物性危害潛力,並且為每個級別推薦控制層級(比如把致癌基因插入人類病毒將需要最高層級的控制,而把青蛙基因放入細菌細胞,則只需要最低層級的控制)。就如巴爾的摩和布倫納堅決主張的,它建議培養已遭破壞的攜帶基因生物體和媒介,在實驗室進一步限制它們。最後,它敦促持續審查重組和抑制程序,有可能在不久的將來放寬或收緊。

-----廣告,請繼續往下閱讀-----

會議在上午八點半開始時,委員會的五位成員都擔心他們的提案會遭拒絕。出乎意料的是,幾乎所有的人都毫無異議地接受了。

 

本文摘選自八月選書《基因:人類最親密的歷史

-----廣告,請繼續往下閱讀-----
文章難易度
時報出版_96
174 篇文章 ・ 38 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
你的基因是別人的專利?生技產業的金錢遊戲由此開啟
賴昭正_96
・2019/07/12 ・4842字 ・閱讀時間約 10 分鐘 ・SR值 580 ・九年級

我們認為我們已經解開了創造之謎。 也許我們應該為宇宙申請專利,並為每個人的存在收取版稅。

──史蒂芬⋅霍金(Stephen Hawking)

專利是政府向聲稱首先發明某事物的個人、組織、或公司提供的特定的專有權。一旦獲得專利,該專利的持有者就可以在商業和非商業環境(包括研究)中禁止他人使用或收取使用費。在美國,1995 年 6月 8日或之後提交的實用專利的期限是從最早申請日起 20 年(台灣亦然);2015年 5月 13日或之後提交的外觀設計專利(基於裝飾性,非功能性的專利),其期限則為自簽發之日起 15 年(台灣新型專利 10 年,設計專利 12 年)。

你的基因是別人的專利?

筆者以前一直對著作等身或專利齊頂的人佩服得很;但後來才發現,像筆者這種號稱「著有上百篇學術論文」可能只是拿來嚇嚇人而已──因為可能根本沒有人在讀、甚至可以花錢來刊登。1 同樣地,大部分的專利可能根本沒什麼創新或意義!例如 2012 年,蘋果電腦公司獲得了一項用於 iPhone上之有圓角的矩形外觀「產品形狀」專利(其標題為「便攜式顯示設備的裝飾設計」)。你佩服這創見發明嗎?或許不!

但在這裡讓我們來看一更讓人啼笑皆非的專利:有公司將的某些基因專利了──你要先付權利金給該公司,才可以請醫生檢查「的基因」(檢查費另計)!或許史蒂芬‧霍金前面那句「……為每個人的存在收取版稅」並不是開玩笑的?!

當某些公司擁有你的基因專利,每個人的存在可能真的要收取版稅了。

-----廣告,請繼續往下閱讀-----

全世界第一個生物科技專利

話說〈胰島素與生技產業誕生的故事〉1974 年史丹佛大學的生化教授柯漢(Stanley Cohen)及加州大學舊金山分校的生化教授薄耶兒(Herbert Boyer)成功地完成重組 DNA(recombinant DNA)實驗:將青蛙的部份基因導入大腸菌的質體內,讓它隨細菌大量繁殖。

報紙上科幻小說似的報導引起創投家史瓦生(Robert Swanson)的興趣,說服他們於 1976年合創了全世界第一家生物科技公司「基因泰克」(Genentech)。

另一方面,這些報導也引起了史丹佛大學專利辦公室雷莫爾斯(Niels Reimers)的注意。像一般學者一樣,柯漢及薄耶兒兩人從來沒有想到這技術可以或值得申請專利,也沒想到可能有商業價值,但在雷莫爾斯的鼓舞下,他們終於半信半疑地在 1974 年冬天申請全世界第一個生物科技專利「生產生物功能分子嵌合體的方法」(Process for producing biologically functional molecular chimeras)。

基因克隆專利的申請激怒了不少科學家。圖/pixabay

-----廣告,請繼續往下閱讀-----

這項申請基因克隆(clone,複製之意)專利的消息傳到其他科學家時,不少生物科學家感到非常憤怒。例如後來因為首先闡釋了「重組DNA」之可行性、而獲得 1980 年諾貝爾醫學獎的史丹佛大學生化教授柏格(Paul Berg)寫道:「聲稱擁有在所有可能的載體及生物體中,以各種可能的方式重組、克隆所有可能之 DNA 的技術之商業所有權是可疑的、冒昧的、和傲慢的。」

他也擔心專利會將用公共資金支付的生物研究產品私有化。 然而,對柯漢和薄耶兒來說,這一些反對的聲音似乎都很無聊,因為他們認為重組 DNA的專利只不過是一堆紙張,在辦公室之間轉來轉去而已,可能比用於印刷它的油墨都還不值錢。

被批准後,生物研究成為一場金錢遊戲

1980年 12月 2日,美國專利商標局批准了該專利。原則上,方法專利可以因限制重要技術的應用而扼殺創新,但史丹佛大學明智而漂亮地處理這個問題,因而沒有產生任何負面後果:基本上免費給學術研究團體使用,而對唯利是圖之公司所收取的權利金也甚微薄。

儘管如此,顯然出乎柯漢和薄耶兒意料之外,這項專利及其它兩項類似的專利竟為史丹佛大學帶來了 2.5億多美元的權利金2。加上「基因泰克」這一產學合作的巨大成功,完全改變了 1980 年代後傳統生物科學研究的面貌,學術和商業之關係從此以後發生了十年前難以想像的變化:生物研究已不再是一個默默無聞、孤獨的象牙塔工作,而是一場大金錢遊戲!隨著錢的出現,當然帶來了全新的思維方式與問題。

-----廣告,請繼續往下閱讀-----

基因專利改變了生物研究的面貌。圖/pixabay

愈來愈多的專利之爭

1980 年春天,哈佛大學校長思考著在校內成立生物科技公司來商業化研究窒的實驗結果;可是如此一來,教授的昇等與聘請等等,應該以他的學術研究或是金錢貢獻來決定呢?最後終被教授們否決而作罷。

因此其兩位生物科技明星教授 Mark Ptashne 和 Tom Maniatis 只好於年底在校外成立一個稱為「基因學研究所」(Genetics Institute)的公司。基因學研究所與基因泰克幾乎同時發展出透過重組 DNA製造「組織纖溶酶原激活物」(tissue plasminogen activator,用於打破心髒病發作受害者的血栓)蛋白的技術,但前者認為這技術很「明顯」,不應該專利;因此當基因泰克於 1988 年獲得了專利權後,立即吃上官司!

1989 年,當美國國家衛生研究院(NIH)正準備投入有系統地定序整個人類 DNA(人類基因組計畫 Human Genome Project)時,該院一位尚名不見經傳的研究員文特爾(Craig Venter)卻採取快速的散彈方法,只定序製造蛋白質的核酸片段3;如果這段序列與 DNA 資料庫裡某一段相似,那麼那段 DNA很可能就是一個基因的所在地。1991 年 6 月,文特爾在「科學」雜誌上發表了一篇具有里程碑意義的報告,描述了與 DNA 數據庫中具相似性的 337 個新基因之「暫時鑑定」;儘管文特爾幾乎都不知道這些基因的作用,院內官員還是鼓勵他申請專利;一年後,文特爾又在申請名單中增加了 2421 個序列。

-----廣告,請繼續往下閱讀-----

從來沒有人申請過基因的專利!現在竟然有人連作用都還不清楚就要申請它們的專利!這惱火了一大堆科學家──包括當時擔任 NIH 國家人類基因組研究中心主任、發現 DNA 雙螺旋而獲得諾貝爾獎之華生(James Watson)。

代代相傳的基因,還要交權利金?(設計對白)

在一次關於基因組計劃的國會聽證會上,華生強烈地爆發反對之聲:「幾乎任何一隻猴子都可能鑑定這樣的片段(基因)」。因線蟲細胞基因組研究而獲得2002年諾貝爾醫學獎的蘇爾斯頓爵士(John Sulston)也寫道:「專利⎯至少是我所相信的專利⎯旨在保護發明。 找到基因片段沒有任何發明,怎麼可以專利?」華生也向上級抗議,問曰:連功能都不知道,這些專利除了等著坐收將來別人發現的可能商業利益外,它們到底保護了什麼?抗議不旦無效,也播下了他隔年被迫辭職的一顆種子(美國國家衛生研究院後來也改變其基因專利的立場)。

文特爾也因為受不了內部無止無休的爭論,而於 1992 年辭職,在外與 William Haseltine 成立了專做學術研究及商業化其成果的兩個公司。1993 年英國一大藥廠花了 1.25 億美元買了他的所有專利之商業化權利;1995 年,兩人的相片出現在 5 月 8 號的 《商業周刊》(BusinessWeek;亦作《彭博商業周刊》)封面:「基因王/這兩名聲稱擁有潛在的遺傳密碼金礦。他們能兌現嗎?」

-----廣告,請繼續往下閱讀-----

乳癌基因也能申請專利?

Mary-Claire King 在獲得數學學士學位後,到加州大學伯克利分校攻讀統計博士學位時,卻因上了一遺傳學課程而轉攻遺傳學博士,開始做實驗生物學的研究。她分析了蛋白質編碼基因的 DNA 序列,發現人類和黑猩猩兩物種之間的進化距離非常小:99%的氨基酸序列是相同的。1975 年,「科學」以這一個發現作為 4 月 11 日那期的封面故事,使她一舉成名。

人類和黑猩猩之間有99%的胺基酸序列是相同的。圖/science

70 年代早期,當癌症研究主要還是集中在病毒或是外在因素時,King 卻固執地認為乳腺癌可能是由遺傳突變引起的!在花了  17 年,分析了 1500 多個乳腺癌家庭後,她終於找到了這個基因的所在地。 1990 年,King的實驗室在《科學》上發表了具有里程碑意義的論文,確定了 17 號染色體上的乳腺癌基因 BRCA1 4的位置,引發了一場揭發 BRCA1核酸序列的競賽。

但在這一競賽中,King卻不幸於 1994 年輸給了猶他大學之 Mark Skolnick 團隊(包括他於 1991 年所合創之 Myriad Genetics研究人員)。

-----廣告,請繼續往下閱讀-----

1997 年,Myriad Genetics取得了關於測序 BRCA1基因、相關突變、和相關診斷測試的專利。鑑於公眾對乳腺癌的關注,Myriad 本認為他們的測試會受到激動的歡迎;沒想到因追求基因專利,Myriad 所受到的卻是科學和醫學界的巨大反彈!Myriad在乳腺癌基因檢測的專利壟斷且嚴重地阻礙了消費者尋求醫療意見與測試,因此反彈在 2009 年達到了高峰:「美國公民自由聯盟代表」(American Civil Liberty Union)於五月代表多方團體對 Myriad 及美國專利商標局提起訴訟,謂「這案例質疑授予個人個性的最基本要素之專利的合法性和合憲性。」

Myriad乳腺癌基因檢測專利引發嚴重反彈。圖/nature

這案件一直上訴到美國最高法院。4 年後的 2013 年 6 月 13 日,美國最高法院終於以全票通過推翻這項基因的專利:「Myriad 沒有創造任何東西:雖然可以肯定地說它發現了一種重要且有用的基因,但將該基因與其周圍的遺傳物質分離並不是一種發明行為。」在裁決後的幾小時,立即有公司廣告低於美金千元──不到 Myriad 之1/3──的檢測費5

最終判決:自然產物不具專利資格!

在美國最高法院裁決之前,已有超過 4,300 個人類基因獲得了專利。 最高法院的裁決使這些基因專利失效,讓它們可以重新回到研究室和普化商業基因檢測。King 在聽到這一勝訴後,興奮地謂「對於患者、醫生、科學家、和常識來說,這是一個了不起的結果。」

-----廣告,請繼續往下閱讀-----

美國最高法院判決天然存在的 DNA 片段雖然被分離,但仍然是「自然產物」,因此不具專利資格;但法院同時也特別提到了一種稱為互補DNA(cDNA)之人工合成的基因 3,因它不是「自然產物」,還是可以申請專利。

天然DNA屬自然產物,不具專利資格,但人工合成的cDNA則有專利資格。圖/pixabay

對基因專利的進一步深思

筆者可以了解為什麼學術研究人員需要申請專利:因為如果別人申請了,可能會導致其研究受到限制。

事實上,大約有 80%的 DNA 專利持有人均是大學和非營利組織。這些研究大部分都是政府用納稅人的錢資助的,因此他們大多不是非常認真的去保護他們的專利。學校取得的專利,既然是用納稅人的錢資助研究的成果,那便應該屬於整個社會的,任何營利公司都可以申請使用。

但如果只讓某一公司穫得獨家專利使用權,像 Myriad Genetics 一樣地壟斷市場及阻礙進一步的研發,這是否合理?如果這某一營利公司是專利教授在外面的公司,這是否造成「利益衝突」?又如果專利教授在外面又有自己的公司(像發現 BRCA序列之 Skolnick一樣),那麼專利歸誰⎯學校或是公司?….. 這些都是學術和大金錢遊戲互相勾結後所帶來的問題,值得我們深思。

註解

  1. 現在(濫竽充數)期刊之多實在是難以想像!因此百篇學術論文已經不算什麼了(請參考「從陳震遠事件看學術界」⎯⎯見「我愛科學」)。至於只要花錢就可以發表論文,最近網絡上談得不少,筆者在「一手遮天的高科技大騙案:Theranos之興衰(三)」一文也提到。
  2. 學校一般會將 40%的權利金給發明或發現專利的教授,40%給教授所屬之所系,其它作為專利部門的經費。早期(現在就不知道)的專利教授(例如發現胰島素之Frederick Banting,以及柯漢和薄耶兒),都將(大)部分權利金捐出來。
  3. 基因透過信使 RNA(mRNA)製造蛋白質,因此可以由人體內所發現之信使 RNA,反向合成稱為「互補DNA」(complementary DNA,cDNA)的基因。互補 DNA與自然基因不同的是:前者沒有內含子(intron)。自然界中控制蛋白質合成的基因序列通常不是連續的,而是由許多以內含子分離之外顯子(exon)片段組成的。例如「我出生在桃園市」是指示製造胰島素的基因,但染色體內的基因序列卻是「我出生此可以成的桃園市」:「我出生」、「在」、「桃園市」就是外顯子,「此可以」、「成的」則是內含子,「我出生在桃園市」就是互補 DNA
  4. 乳腺癌基因稱為 BRCA,為英文 Breast Cancer(有謂 Berkeley, CA)之縮寫,因後來又發現另一基因,故有 BRCA1 及 BRCA2 之分。BRCA 本身不會導致癌症,事實上它們可通過修復可能導致癌症的 DNA 斷裂來幫助預防它,因此它們實際上是一種腫瘤抑制基因。BRCA 基因的遺傳變異或突變有時會阻止它們的正常運作,而導致癌症。
  5. 現在只要 250 元美金,但這並不代表每個人都需要檢測:雖然 BRCA 基因的變異可以通過家族傳播,增加患某些癌症的風險,但並不是每個繼承 BRCA 變體的人都會患上癌症;事實上大多數乳腺癌、卵巢癌、和前列腺癌病例都不是由遺傳性 BRCA 變異引起的。
-----廣告,請繼續往下閱讀-----
賴昭正_96
48 篇文章 ・ 60 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此獲有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲它轉載我的科學月刊上的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」。