0

1
1

文字

分享

0
1
1

孟德爾如何種豌豆種出了遺傳學?──《基因:人類最親密的歷史》

時報出版_96
・2018/08/10 ・2985字 ・閱讀時間約 6 分鐘 ・SR值 521 ・七年級

-----廣告,請繼續往下閱讀-----

編按:泛科學八月選書《基因:人類最親密的歷史》,從家庭病史出發,作者穆克吉細數百年間數以百計的科學家如何前仆後繼,破譯遺傳基因這項生命之謎;從近兩百年前在修道院裡發覺遺傳學邏輯,一路到接近基因治療的今日;既介紹遺傳基因的核心概念,亦一窺漫漫科學長河如何前進與掙扎。

我們只想要揭開物體的本質及力量,對抽象的空談沒有興趣。
──布爾諾自然科學協會(Natural Science Society)宣言;孟德爾的論文就是於一八六五年在此首次宣讀。

整個生物世界是由少數幾個因素經無數不同排列組合的結果。這些因素就是遺傳學必須研究的個體。就如物理和化學回歸為分子和原子,生物學也必須深入這些個體,才能解釋……生命世界的現象。
──雨果.德弗里斯

教師考試失利的修士:孟德爾

孟德爾圖/wikimedia

一八五六年春,正當達爾文開始撰寫演化之作時,孟德爾決定回到維也納重考在一八五○年未過關的教師考試。這回他比較胸有成竹。他先前在維也納大學花了兩年學習物理、化學、地質、植物和動物學,於一八五三年回到修道院,在布爾諾現代學校擔任代課老師。經營學校的修士對考試和資格十分在意,該是再考一次取得證書的時候了。於是孟德爾申請參加考試。

可惜他又考砸了。孟德爾考前就病倒了,很可能是焦慮所致。他抵達維也納時頭痛,脾氣也壞。考試總共三天,他第一天就和植物學的考官吵了起來,原因不詳,但可能和物種的形成、變異和遺傳有關係,孟德爾沒有考完。他死了心,回到布爾諾,接受自己只能當代課老師的命運,此後不再嘗試考取得證書。

-----廣告,請繼續往下閱讀-----

實驗的開始:培養累代純系的豌豆

那年夏末,還在耿耿於懷考試失敗的孟德爾種了一批豌豆,這並非他首次種植豌豆。先前他已在玻璃溫室種了近三年的豌豆,他由附近的農場收集了三十四種豌豆,加以培育出「純系」(true)植株,亦即每一株豌豆植物都產生完全相同的後代植物,顏色相同,種子的質地亦相同。這些植物「保持不變,毫無例外,」他寫道。龍生龍,鳳生鳳。他已經收集到實驗的原始材料。

圖/wikipedia

他發現純系豌豆植株擁有獨特的特色,既有遺傳,也有變異。如果同類自行交配,高莖的豌豆就只會生出高莖的豌豆;矮莖的則只會生出矮莖的豌豆。有些植株只會生出種皮光滑的種子,有些則只會生出帶角的皺皮種子。未成熟的豆莢不是綠色就是鮮黃,成熟的豆莢不是扁縮就是飽滿。他列出下面七種純系的特性:

  1. 種皮的形狀(平滑/皺縮)
  2. 種子的顏色(黃/綠)
  3. 花的顏色(白/紫)
  4. 花的位置(植物頂端/樹枝上)
  5. 豌豆莢的顏色(綠/黃)
  6. 豌豆莢的形狀(飽滿/扁縮)
  7. 植株的高度(高/矮)

孟德爾寫道,每個特性都有至少兩種變異,就像同一個字兩重不同的拼法,或者同一件外套的兩種顏色(孟德爾用同一特性的兩種變異作實驗,但在自然界裡,卻可能有多種變異,比如花朵分別為白、紫、淡紫和黃色的植物)。後來的生物學家把這些變異稱為等位基因(alleles),這個字源自希臘文,泛指同一種的兩個亞型。紫和白就是花朵顏色特性的兩個等位基因,高和矮則是另一個高度特性的兩個等位基因。

Uh!來混種吧。圖/wikipedia

純種植物是孟德爾實驗的起點,他知道要找出遺傳的本質,就必須培養雜種,唯有「混種」(bastard,德國植物學家常用此字描述實驗中的混種)才能顯露純種的本質。和後人所認為不同的是,他其實很清楚這個研究的深遠影響:

-----廣告,請繼續往下閱讀-----

他的問題是「生物演化的歷史。」

短短兩年之內,孟德爾便製作出一組試驗品,讓他對遺傳最重要的特性提出疑問。簡言之,孟德爾的問題如下:如果他讓高莖和矮莖豌豆交配,會不會生出身高中等的植物?矮和高兩個等位基因,會不會混合?

培育雜種豌豆的工作極為無聊乏味。豌豆通常是自花授粉,雄蕊的花藥和雌蕊的柱頭在花朵如扣環的龍骨瓣內成熟,花粉直接由花藥灑在自己的柱頭。異花授精則是另一回事,孟德爾得先把花藥摘掉,讓花變成單性(幫它去勢),再把另一朵花橘色的花粉沾到另一朵花上。他獨自作業,彎著腰用畫筆和鑷子工作。他把戶外戴的帽子掛在一架豎琴上,每次要到花園,就由水晶般清澈的單一音調為記,這是他僅有的音樂。

第一批混種豌豆開花啦!

我們不知道修院裡其他的修士對孟德爾的實驗知道多少,或者是否在乎。一八五○年代初,孟德爾更大膽地以白和灰色的野鼠(field mice)嘗試此實驗。他偷偷摸摸地在自己房間裡培育野鼠,想要育出雜種野鼠。雖然院長通常會容忍孟德爾的怪念頭,但這回他干預了,畢竟修士讓老鼠交配以了解遺傳奧祕的消息,傳了出去實在傷風敗俗,即使是奧斯定會的修士也一樣。孟德爾只好改回採用植物,並把實驗搬到戶外的溫室。院長這才滿意,他雖然否決了孟德爾的野鼠實驗,卻不在意他用豌豆嘗試。

圖/wikimedia

一八五七年夏末,第一批混種豌豆在修院開了花,紫白相間,好不熱鬧。孟德爾記下花的顏色,等藤蔓結出種莢,他就劃開莢殼,觀察種子。他設計了新的雜交:高與矮;黃與綠;皺縮與飽滿。而且,他又靈光一閃,以雜交種互相再交,生出雜種的雜種。這項實驗如此這般進行了八年,栽培的地方已經由溫室搬到修院旁的一塊地,長三十公尺、寬六公尺的長方形沃土地,就在食堂旁邊,由他的窗戶一眼可見。每當風將窗簾吹開,整個房間就好像變成了巨大的顯微鏡。

-----廣告,請繼續往下閱讀-----

孟德爾的筆記本盡是圖表和潦草的字跡,記錄的是成千上萬次異花授精的資料。他的拇指也因一直在剝除種殼而疼痛不堪。

哲學家路德維希.維根斯坦(Ludwig Wittgenstein)寫道,「如此微小的思想,卻填滿了人的一生。」的確,乍看之下,孟德爾的人生似乎填滿了最微小的思想。播種、授粉、開花、採集、去殼、計數,重複再來一次。這個程序極其枯燥,但孟德爾知道,微小的思想常常會開花結果,誕生巨大的原則。

如果說十八世紀橫掃歐洲的強力科學革命有什麼傳承,那就是:

大自然的原則一以貫之,無所不在。

使蘋果由樹上落在牛頓頭上的力量,正是引導行星沿著軌道前行的力量。如果遺傳也有全宇宙始終如一的自然法則,那麼它對人類起源的影響,就可能如同對豌豆起源的影響。孟德爾在修院的種地雖小,但他並沒有把種地大小和科學雄心混為一談。

-----廣告,請繼續往下閱讀-----

「實驗緩慢地進行,」孟德爾寫道,「起先需要一點耐心,但我很快就發現只要同時進行數個實驗,情況就會好得多。」同時進行多種雜交,產生的資料也更多。慢慢地,他由資料看出一些模式──出乎意料地連貫、守恆的比例、數字的節奏。最後,他終於挖掘出遺傳內在的邏輯。

 

本文摘選自八月選書《基因:人類最親密的歷史

文章難易度
時報出版_96
174 篇文章 ・ 34 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

0
0

文字

分享

0
0
0
癌症治療方法有哪些?臨床試驗有哪些評估面向?
careonline_96
・2024/04/19 ・2447字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

給 每一位剛踏上抗癌路上的鬥士與戰友

醫學中心的臨床試驗機會多,病友們也存在一些錯誤的迷思,我們需要了解,臨床試驗是依據現今最標準的治療方式進行,參加臨床試驗的對照組,也有機會可以使用到健保沒有給付的藥物。不過,現有的臨床試驗不一定都適合每一位病友,病友們一定要與主治醫師充分討論自己的治療計劃,即使是晚期肺癌,只要隨時掌握疾病的狀況,找到合適的治療方式,便能穩定控制,與癌共存!

台大醫院胸腔科廖唯昱醫師

臨床試驗增加用藥可近性 為病友延長生命

一名年約 82 歲女士,手術後確定是肺癌第三期,後續接受輔助性的化學治療,在追蹤一段時間後復發,由於當時沒有很好的基因檢測與標靶藥物,僅能接受放射線治療、化學治療控制。廖唯昱醫師說,病友面對治療仍相當樂觀,治療一至兩年後,幸運地找到適合的臨床試驗,便開始使用標靶藥物,其中有兩到三年的時間,只需單純使用標靶藥物即可控制病情,病友也因此延長生命到近 90 歲。

臨床試驗是醫療機構依據醫學的理論,於人體施行新的醫療技術、新的藥品或新的醫材。廖唯昱醫師說,最主要的目的是希望找到一個新的、更有效的治療方式,讓病友可以延長生命,甚至達到治癒。對於晚期肺癌病友而言,最佳的治療方式可能是標靶治療、免疫治療,或是化學治療,若是健保有給付,我們會選擇用健保的方式進行第一線治療;若是對病友最有利的治療方式健保未給付,我們即會想辦法協助病友尋找適合的臨床試驗。

罕見基因治療武器有限 先確定驅動基因再找合適的臨床試驗

面對臨床試驗,可以從兩個方面評估,廖唯昱醫師說,若是新發現的基因突變與新研發的藥物,病友可以先觀察第一期臨床試驗中,新藥物可以達到的治療效果,以及可能出現的副作用,等到狀況較成熟後再加入;假如已通過第一期、第二期臨床試驗,並且清楚知道新藥物的成效,即可考慮加入第三期,無論抽到實驗組或對照組,其實對整個治療都有一定的幫助。

此外,對於一些罕見基因型的肺癌,由於治療武器較有限,病友常期望可以加入臨床試驗,廖唯昱醫師說,在加入臨床試驗前,需要先確定肺癌的驅動基因突變,再去尋找適合的臨床試驗。然而,臨床試驗通常會設定一些條件,如藥物可能有已知的副作用,在臨床試驗開始前,便會需要作詳細檢查,確認病友的所有狀況符合條件後,才有機會加入。

-----廣告,請繼續往下閱讀-----

近年來,肺癌治療有大幅進展,標靶治療、免疫治療、化學治療都持續進步。廖唯昱醫師說,即使是晚期肺癌,只要隨時掌握疾病的狀況,找到合適的治療方式,便能穩定控制病情,而且在接受治療的同時,病友可以回復正常的生活,甚至恢復工作,也能保有良好的生活品質。

他的故事 談生活品質

踩穩自己的節奏 癌後體會慢下來哲學

村上春樹的小說《舞舞舞》,不論世界如何紛亂,你要踩穩自己的舞步和節奏。我在 70 歲確診第四期肺癌,剛開始是肋骨痛,那時剛巧有人推壞我的門,花了些時間把門拆下來再裝回去,第二天睡醒,肋骨開始痛,一直誤以為是修門太費力導致疼痛,就近在診所拿止痛藥,吃了七個月,也耽誤了黃金治療期。

我從事鐘錶業,累積非常多客戶,都是靠著口碑、耳傳而來,客戶群裡有很多醫師。那時有四、五位醫師朋友提醒檢查身體,台大醫院廖唯昱醫師是我 20 年的好友,要我去他的門診掛號,我一直推拖,隔了一年多才就醫。或許是身體在抗議,過去熬夜修錶、抽菸是生活的常態,也不太吃東西,一天大概吃一餐,工作與生活都失序。

加入臨床試驗,接受免疫治療兩年與服用標靶藥物四年,目前病況獲得穩定控制。我很幸運,藥物耐受力不錯,除了體重掉 10 公斤,沒有出現副作用,就是容易累,以前可以連續工作 12 小時等結案再離開桌子;現在工作兩個半小時就需要休息,等體力恢復後才能繼續,以前閒不下來,生病後把休息排到行程表中,做個慢下來的人。

-----廣告,請繼續往下閱讀-----

我過去是海陸步兵,曾經四個月背 30 公斤裝備行軍,磨了三年,十年沒有感冒過,因為有練過,體力一直很好,從來不覺得癌症這件事會找上我。客戶常來找我聊天,分享生活及心裡的感受,一個朋友後來也罹肺癌,他把我當模範,看到我不會埋怨也不會負面思考,讓他覺得安心也可以樂觀面對。

工作之餘,我會帶著狗兒子到公園玩,一拿出牽繩,狗狗就興奮得狂跳,台灣土狗體力好、運動量大,常常拉著我跑,增強健康也減少肌肉衰退。選擇適合自己的運動很重要,起床和睡前我會練啞鈴,各 20 分鐘,讓我維持好手力,現在還有 700 隻錶等著我,很多客戶勸我不要再收錶了,其實,「專注心之所向」可以釋放壓力及擁有成就感,反而能好好過生活。

生命自會找到出路!提醒學弟妹,接受已發生的事實,調整生活節奏,緩下腳步了解身體的需要,也不妨把罹癌當成一件事去鍛煉它、面對它,把生活重心放在自己喜歡的事物上,就不會被情緒左右。

0

1
0

文字

分享

0
1
0
派大星有頭無身,不該穿褲子?!
胡中行_96
・2023/11/13 ・1778字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

經典兒童動畫系列《海綿寶寶》(SpongeBob SquarePants)裡,主要角色海綿寶寶、派大星、蟹老闆、章魚哥等,還有其他海洋生物,各個人模人樣。就算沒穿上衣,也至少套了件褲子。[1]這裡其實有個值得深思的前提:任何動物倘若想學人類穿褲子,得先搞清楚下半身在哪裡。[2]而根據 2023 年 11 月登載於《自然》(Nature)期刊的海星論文,[3]我們能大膽宣告:派大星不應該穿褲子。不是會被海水沖走的那種乾脆別穿,而是根本就不曉得該怎麼辦的只好不要穿。

派大星表示:「呃…。」圖/SpongeBob SquarePants on GIPHY

棘皮動物 vs. 兩側對稱動物

海綿寶寶有次請派大星,把新鞋穿在腳上給牠看。「你會想看我穿在…手上嗎?」派大星問。睿智又隨和的海綿寶寶覺得都可以,畢竟手套也能戴在腳上。[4]此處劇情的安排,很巧妙地迴避了一個相當關鍵的問題,那就是如何區分海星的身體部位。

如果今天討論的是狗、蝙蝠、蜘蛛、鯊魚,甚至蛞蝓,這些動物的身體,皆有明確的頭尾以及對稱的兩邊。因此,就算找不到手、腳,也能硬把褲子套在下半身。[2]海星、海膽等棘皮動物(echinoderms),跟昆蟲、軟體動物、脊椎動物一樣,都是從左右對稱的祖先演化而來。[3, 5]現代海星幼年時期的外型,也還是兩側對稱動物(bilateria)的模樣;不過長著、長著就長歪了,變成由數瓣完全相同的單位,所組成的放射狀造型。[2, 3, 5]嘴長在底部中央,肛門則於背面朝上,[2]與擬人化還迸出眼睛、眉毛的派大星,大相逕庭。

海星(左)與海膽(右)成年(上)和幼體(下)的形貌。圖/Grausgruber A, Revilla-i-Domingo R. (02 AUG 2023) ‘Evolution: Tracing the history of cell types’. eLife, 90447.(Figure 1A;CC BY 4.0

海星頭尾的假說

生物學家早已知道,海星內部有內骨骼、肌肉,以及消化、水管和中樞神經系統等。然而,過往對其頭尾的方向順序,卻有多種不同的假設,例如:某隻觸角為首,對面那邊就是尾;每隻觸角各司其職,依序繞一圈,分別擔任從頭到尾的身體部位;由正中央的頭朝末梢,箭靶般向外劃分;或是蛋糕般由下而上層疊,整隻倒栽蔥等。[3]

-----廣告,請繼續往下閱讀-----

《自然》期刊這篇論文的美、英研究團隊,抓成年的 Patiria miniata 海星,來跟兩側對稱動物,比較基因分佈,以驗證上述的假說何者正確。比方說,一個活化的基因,若通常位在其他動物的頭部;我們就可以將它出現於海星身上的區塊,也視為頭部。[3]

海星有頭無身

研究團隊在Patiria miniata海星身上,比對到一些活化的前腦(forebrain)、中腦(midbrain),以及中腦與後腦(hindbrain)交界的基因,確定海星有頭部。然後,就沒有然後了。[2, 3]尋遍不著軀幹在哪的研究團隊表示,所謂的「觸角」或「腕」,其實是頭的延伸。[5]總之,以前的那一堆假說全錯,而且海膽等其他棘皮動物,很可能也是這種只有頭的情形。[2]換句話說,符合最新科學描述的派大星,應該是顆嘴巴貼著海床,沒穿褲子的頭,靠著周圍密佈的管足移動、覓食。[5]

「哦~」派大星恍然大悟。圖/SpongeBob SquarePants on GIPHY

多數動物發展出兩側對稱的身體後,不會再走回頭路。[2]海星倒著幹就算了,還在途中搞丟了軀幹,而且不曉得是什麼時候遺失的。研究團隊等於才剛解開一個謎團,馬上又發現了新的問題。接下來可得埋首化石堆,弄清楚海星在演化的過程中,發生了什麼事。[5]

  

-----廣告,請繼續往下閱讀-----

參考資料

  1. List of SpongeBob SquarePants characters’. Wikipedia. (Accessed on 05 NOV 2023)
  2. Nature Video. (02 NOV 2023) ‘How would a starfish wear trousers? Science has an answer’. YouTube.
  3. Formery L, Peluso P, Kohnle I, et al. (2023) ‘Molecular evidence of anteroposterior patterning in adult echinoderms’. Nature.
  4. SpongeBob SquarePants: Your Shoe’s Untied/Squid’s Day Off’. IMDb. (Accessed on 03 NOV 2023)
  5. Davis N. (02 NOV 2023) ‘Starfish ‘arms’ are actually extensions of their head, scientists say’. The Guardian, Australia.
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

3
1

文字

分享

0
3
1
研究自閉症成因的新思路:環狀 RNA——專訪中研院基因體研究中心莊樹諄研究員
研之有物│中央研究院_96
・2023/09/22 ・5439字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|寒波
  • 責任編輯|簡克志
  • 美術設計|蔡宛潔

自閉症研究的新方向

臺灣民眾大概都聽說過「自閉症」這個名詞,自閉症是腦部發育障礙導致的複雜疾病,同時受到先天遺傳以及後天環境因素的影響,具體成因依然是個謎,科學家須對遺傳調控方面有更多了解。中央研究院「研之有物」專訪院內基因體研究中心的莊樹諄研究員,他的團隊結合生物學、資訊學以及統計學方法,發現自閉症的風險基因與 RNA 之間有複雜的交互作用,在自閉症患者與非患者的腦部有很大差異。如果持續研究 RNA 的調控機制,或能開闢新的方向進一步理解自閉症。

遺傳性疾病成因——致病基因

根據衛生福利部 2023 年統計數據,我國自閉症患者超過一萬九千人。自閉症的全稱為「自閉症譜系障礙(autism spectrum disorder,簡稱 ASD)」,常見症狀是溝通、表達、社交上有困難,經常出現反復固定的狹窄行為,目前尚無有效的治療藥物。雖然經典電影《雨人》的主角雷蒙或是韓劇《非常律師禹英禑》的禹英禑都令人印象深刻,不過天才或高智商的自閉症患者只是極少數,而且不同患者的症狀輕重差異很大,故稱之為「譜系」(spectrum)。

理解遺傳性疾病,可利用遺傳學與基因體學的研究方法,比較患者與非患者之間的遺傳差異,便有機會尋獲致病的遺傳成因。過往研究得知,有些遺傳性疾病只取決於單一或少數基因的強力影響,例如亨廷頓舞蹈症(Huntington’s disease)、纖維性囊腫(cystic fibrosis)等,致病原因較為單純。

自閉症自然也受到先天遺傳基因影響,然而,它涉及許多影響力不明顯的基因,而且影響每名患者的基因又不盡相同,讓遺傳與症狀的關係更加複雜。如果從 RNA 研究路徑出發呢?RNA 是核糖核酸,具有承載 DNA 訊息和調控基因等功能,相比於其他疾病,在 RNA 層次研究自閉症的另一挑戰是取樣極為困難,自閉症患者的病因位於大腦內部,通常無法直接從人腦取樣分析。所幸的是,若檢視去世者捐贈的大腦樣本,仍有機會一窺自閉症的腦內奧秘。

-----廣告,請繼續往下閱讀-----

莊樹諄分析的數據來自公共存取的 Synapse 資料庫,包括上百位自閉症患者與非自閉症者的資料。人數乍看不多,卻已是當今想同時探討同一個人的基因體(DNA 層次)與轉錄體(RNA 層次)間因果關係的最佳的選擇。藉由此一資料庫蒐集的人類腦部組織轉錄體資料,可全面探討各式各樣的 RNA,包含信使 RNA(messenger RNA,簡稱 mRNA)、小分子 RNA(microRNA,簡稱 miRNA),以及莊樹諄鎖定的研究目標:環狀 RNA(circular RNA)

自閉症成因不明,目前尚無治療用藥物。有自閉症的人需要社會與家人的支持及陪伴,透過療育和行為輔導的協助,慢慢活出自我。
圖|iStock

不能轉譯,但似乎會互相影響?非編碼 RNA

莊樹諄的教育背景是資訊學博士,博士後研究的階段投入生物資訊學,之前主要從事 RNA 與靈長類演化方面的研究,探討多樣性切割、RNA 編輯(RNA editing)等議題,環狀 RNA 則是他近年來特別感興趣的題材。

根據生物資訊學的預測,環狀 RNA 這類長鍊的 RNA 分子有數萬個,但實際上有多少仍不清楚。它們在大腦神經系統特別常見,似乎涉及許多基因調控的工作。莊樹諄目前最關注環狀 RNA 對自閉症的影響,不過他指出這番思路不限於自閉症,阿茲海默症、帕金森氏症、精神分裂症(schizophrenia)等疾病也能用同樣的方法探索。

不過,什麼是環狀 RNA 呢?按照序列長度、作用,可以將 RNA 分為很多種類。DNA 轉錄出的 RNA 經過處理,有些形成 20 多個核苷酸長的短鏈 RNA,如 miRNA 屬於此類。一些較長鏈的 mRNA 又會轉譯成氨基酸,產生各式蛋白質。還有些長鍊的 RNA 不會轉譯,仍然維持長鍊 RNA 的形式發揮作用,統稱為長鍊非編碼 RNA(long noncoding RNA,lncRNA),莊樹諄研究的主角環狀 RNA 大致上被歸屬於一種非編碼 RNA。這麼多種類的 RNA 彼此會互相影響,導致複雜的基因調控。

-----廣告,請繼續往下閱讀-----
長鍊非編碼 RNA(lncRNA)是 Pre-mRNA 選擇性剪接的產物,根據不同的生成方式,產生各種類型的環狀 RNA。
圖|研之有物(資料來源|International Journal of Oncology

由 DNA 轉錄而成的 RNA 是線形,至於「環狀」RNA 一如其名,是 RNA 長鏈首尾相接後形成的環形結構,相比線形 RNA 更加穩定,不容易遭到分解。這些長期存在的圈圈,假如序列可以和短鏈的 miRNA 互補,兩者便有機會結合在一起,讀者可以想像為類似「海綿」(sponge)的吸附作用。

miRNA 原本的工作是結合 mRNA,使其無法轉錄為蛋白質,抑制基因表現。可想而知,一旦 miRNA 被環狀 RNA 吸附,便無法再干擾 mRNA 作用,失去抑制基因表現的效果。因此環狀 RNA 能透過直接影響 miRNA,來間接參與調控其他的下游基因。這便是環狀 RNA 的許多種調控功能中,最常被研究的一種。

左圖是 miRNA 抑制 mRNA 轉譯的一般流程。右圖是環狀 RNA 像海綿一樣吸附 miRNA,讓 miRNA 原本抑制 mRNA 轉譯的「剎車」功能失去作用。因此環狀 RNA 透過直接影響 miRNA,就能間接參與調控其他的下游基因。
圖|研之有物(資料來源|Frontiers in Cardiovascular Medicine

自閉症的成因要往腦部深究,環狀 RNA 又在腦部表現最多,使得莊樹諄好奇當中的奧秘。然而儘管如今 RNA 定序已經很發達,環狀 RNA 由於結構的關係,一般的 RNA 定序方法無法抓到這類環形分子。莊樹諄指出這也是 Synapse 資料庫的一大優點,此一資料庫罕見地包含能找出環狀 RNA 的 RNA 定序資料,配合 miRNA、mRNA 與基因體等資料交叉分析,才有機會闡明環狀 RNA 的角色。

尋找環狀 RNA 和自閉症的關聯

莊樹諄率領的團隊已經發表 2 篇環狀 RNA 與自閉症的研究論文,第一篇論文著重於尋找哪些環狀 RNA 和自閉症有關,研究假設是環狀 RNA 透過 miRNA 間接影響自閉症風險基因 mRNA 的表現。由於環狀 RNA、miRNA 和 mRNA 都多達數萬個,需要統計分析的幫忙。

-----廣告,請繼續往下閱讀-----

首先,將樣本分為有自閉症/無自閉症。要注意每個自閉症患者的基因表現仍有差異,納入夠多樣本一起比較,才有機會看出端倪。

接著,尋找環狀 RNA 和風險基因有顯著相關的搭配組合。例如:高比例自閉症的人,某個環狀 RNA 含量較高時,某個風險基因的 mRNA 表達量也較高,那這組環狀 RNA 和基因就存在正相關;反之則為負相關。

不過相關性很可能只是巧合,所以莊樹諄團隊比對序列,找到符合上述相關性的中介因子「miRNA」。最後再觀察「當排除 miRNA 影響時,環狀 RNA 與風險基因的顯著關係即消失」的組合,這些消失的組合,就是真正共同參與基因調控的「三人組」(環狀 RNA、miRNA、mRNA)。

一番分析後,篩選出的環狀 RNA 共有 60 個,其中涉及與 miRNA、mRNA 的組合總共 8,170 組。人類一共 2 萬個基因,與自閉症有關的調控網路就有 8,000 組之多,數字相當可觀,顯示環狀 RNA 的重要性。莊樹諄用統計手法找出的自閉症風險基因,和過去科學家已知的部分風險基因相符合,未來可以繼續探究在這 8,000 組調控網路中,有哪幾組是真的作用在生物上。

-----廣告,請繼續往下閱讀-----

在資訊與統計分析之外,莊樹諄的團隊也有人進行分子生物學實驗,驗證 RNA 調控網路的相互影響。以體外培養的人類細胞為材料,人為誘導遺傳突變,精確分析特定環狀 RNA 在細胞內分子層次的作用。實驗證實選取的環狀 RNA,確實會結合 miRNA,又影響 mRNA 的表現。

環狀 RNA 會取消原本 miRNA 抑制 mRNA 轉譯的「煞車功能」,進而影響自閉症風險基因的表現。
圖|研之有物(資料來源|中研院基因體研究中心

基因調控是什麼?

莊樹諄強調,使用資料庫的公開資料,好處是經過多方檢視,避免資料品質不一致的問題,缺點是大家都能取得數據,必須要跳脫既有的思考模式才能發現新的結果。他在環狀 RNA 議題的新思路,成為第二篇論文的內容:探討環狀 RNA 的遠端調控(trans-regulation)對自閉症的影響

基因的表達會受到基因調控元件(regulatory element,一段非編碼 DNA 序列)的影響,若調控元件就在基因附近,稱為近端調控(cis-regulation);如果調控元件不在附近,甚至位於另一條染色體上,則為遠端調控。

研究基因調控,通常近端比遠端調控容易,因為近端調控元件(cis-regulatory element)的位置就在基因旁邊,不難尋找;但遠端調控卻沒那麼直觀,作用機制也比較難以想像。實際上常常能發現一個基因的表現,受到多處近端調控,加上多處遠端調控的影響。如果想全方位認識一個基因的表現與調控,最好能都能得知近端與遠端的影響,否則難以掌握調控的全貌。

-----廣告,請繼續往下閱讀-----

莊樹諄的想法是,某些基因被遠端調控的過程,是否有環狀 RNA 參與?具體說來就是某個調控位置,先近端調控其周圍的環狀 RNA 基因,再藉由環狀 RNA 影響基因體上其他位置的基因表現,發揮遠端調控的效果。

如圖顯示,環狀 RNA 表達數量性狀基因座(circQTL)近端調控了環狀 RNA,遠端調控其他基因。莊樹諄的想法是,某些基因被遠端調控的過程,是否有環狀 RNA 的參與?
圖|研之有物(資料來源|Molecular Psychiatry

為了避免用語誤解,有必要先解釋一下什麼是「基因」。基因的概念隨著生物學發展持續改變,如今一般人熟悉的定義,基因是由 DNA 編碼序列構成,能轉錄出 mRNA,再轉譯為蛋白質的訊息載體。不過若將基因定義為會轉錄出 RNA 的 DNA 序列,那麼即使沒有對應的蛋白質產物,只要其衍生的 RNA 產物有所作用,也能視為「基因」,如 miRNA 基因、mRNA 或長鏈非編碼 RNA 基因。既然是有 DNA 編碼的基因,便會受到近端、遠端調控位置影響。

探索遠端調控機制有很多想法,莊樹諄可以說又打開了一條新思路。遠端調控位置不在基因旁邊,亦即基因體任何地方都有機會。假如直接挑戰基因與遠端調控位置的關聯性,可能相關的數量可謂天文數字,而且缺乏生物性的理由支持,找到的目標往往令人半信半疑。

莊樹諄引進環狀 RNA 涉及其中的可能性,尋找「環狀 RNA 基因的近端調控位置」與「目標基因的遠端調控」之交集,大幅縮小了搜索範圍。

-----廣告,請繼續往下閱讀-----
莊樹諄透過「環狀 RNA 基因的近端調控位置」與「目標基因的遠端調控」之交集,找到環狀 RNA 參與遠端調控的證據。
圖|研之有物(資料來源|莊樹諄

一番分析後,研究團隊從自閉症患者的基因體上,定位出 3,619 個近端調控的 circQTLs,這些表達數量性狀基因座相當特殊,可能藉由直接或間接遠端調控兩種模式來調控遠端基因(如上圖)。而這 3,619 個 circQTLs,與環狀 RNA、遠端基因三者形成了八萬六千多組的遠端調控網路。接著團隊使用了不同的統計方法,其中 8,103 組通過多重統計測試,顯示較高的機率是屬於間接遠端調控模式。

莊樹諄團隊透過統計手法,找到相當多基因和調控路徑,雖然目前仍不清楚它們影響自閉症的具體細節,卻無疑讓我們新增一分對自閉症的認識。

莊樹諄指出,這套統計方法或可應用至人類的其他複雜疾病(如思覺失調症),找出基因調控的多個可能路徑,提供臨床醫藥研發更多線索。

生物與資訊的跨領域結合

訪談中問到:為何會從資訊科學跨入到生物領域?莊樹諄回憶,1998 他博士班畢業那年才第一次聽到「生物資訊」這個詞,他基於對生命科學的興趣,以及因為內在性格想往學術轉型的想法,引領他到了中研院。

-----廣告,請繼續往下閱讀-----

莊樹諄接著說,2003 年李文雄院士延攬他進入基因體研究中心,之前他們不曾認識。他感謝李院士帶他進入了分子演化的世界,就此打開了研究視野。在剛開始成立自己的實驗室時,缺少人力,李院士讓當時的博後陳豐奇博士(現為國衛院群體健康科學研究所研究員兼任副所長)與他共同工作。莊樹諄強調,他所有分子演化的觀念與基礎,都是陳博士幫他建立的,如果說陳博士是他的師父,那李院士就是師父的師父了。

如今,莊樹諄在中研院的研究生涯邁入第 25 年,從資訊學背景投入生物學研究,大量使用統計工具,他經常需要持續整合不同領域的觀念與工具,推動自己的新研究。在訪談中,他也感謝諸多研究同儕的協助,特別是幾年前建立分生實驗室時,蕭宏昇研究員及其團隊成員的鼎力相助。

莊樹諄的團隊包含資訊、統計、分子生物三個領域的同仁,來自不同領域,傾聽他人意見自然也特別重要,這是他們實驗室的核心價值之一。莊樹諄認為在科學面前,人是很渺小的,需要互相尊重和理解,方能一起解開科學之謎。

最後,莊樹諄特別強調他個人在相關領域的研究,仍有極巨大的進步空間,感謝研之有物的主動邀訪,期望將來能與更多先進交流學習,也企盼年輕新血加入這個生物資訊的跨領域團隊。

莊樹諄期望在環狀 RNA 與基因調控網路的研究基礎之上,可以對自閉症這個複雜疾病的調控機制,提供更多科學線索,幫助臨床上的診斷和治療。
圖|研之有物
研之有物│中央研究院_96
296 篇文章 ・ 3404 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook