0

0
0

文字

分享

0
0
0

自行車的誕生 │ 科學史上的今天:06/12

張瑞棋_96
・2015/06/12 ・861字 ・閱讀時間約 1 分鐘 ・SR值 583 ・九年級

-----廣告,請繼續往下閱讀-----

1815 年 4 月,印尼的森巴瓦島(Sumbawa)之坦博拉火山(Mount Tambora)爆發,這是人類史上威力最大的火山爆發之一。數量龐大的火山灰直衝平流層,導致之後一、二年全球的氣溫平均降低攝氏 0.4 到 0.7 度。1816 年成為「無夏之年」,北半球的農作物嚴重歉收,馬匹的食物來源自然也受到影響,而當時的主要交通工具就是馬車,德國發明家德萊斯(Karl Drais, 1785 – 1851)不禁擔憂萬一馬車就此停擺……。

1817 年 6 月 12 日這一天,德國西南部曼海姆市(Mannheim)的街頭上,行人紛紛駐足觀看一個奇特的景象:一位穿著燕尾服,還帶著禮帽的紳士跨坐在一輛木製的雙輪車上,兩手握著控制前輪方向的把手,雙腳輪流用力蹬著地面往前滑行。是的,這位紳士正是德萊斯,他所騎乘的就是史上首部自行車──他所想出來的替代方案。

不過他所發明的這部自行車沒有踏板,用雙腳蹬地前進的方式實在頗為笨拙;也且木製的輪子也沒有輪胎,騎在凹凸不平的一般路面既費力又顛簸,因此並不受民眾喜愛。直到四十幾年後,法國的米丘(Michaux)父子才在自行車的前輪加上曲柄與踏板,雙腳就不用落地,可以踩著踏板前進(上圖)。他們並將木製的自行車骨架改用鑄鐵取代,不但更為堅固,還能大量生產,因此自行車才自一八六○年代開始普及。

下一個重大改進要再等二十年。1885 年,英國發明家斯塔利(J. K. Starley)引進齒輪與鍊條到自行車上,並且將車身骨架設計為兩個三角形構成的菱形,解決了以往效率不佳、操作不便、重心不穩等問題,成為現代自行車的原型。1888 年,蘇格蘭獸醫鄧洛普(J. B. Dunlop)發明了充氣輪胎後,自行車的架構就大致底定了。

-----廣告,請繼續往下閱讀-----

自德萊斯騎自行車上街至今已將近兩百年,也許他不見得真如一些史學家所認為的,因為火山爆發造成的氣候變遷才發明自行車,但可以確定的是,面臨未來氣候變遷的潛在威脅,無需燃料的自行車將因為其環保與便利性,長久存續,永遠都是構造最簡單,卻也最可靠的交通工具。

 

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

文章難易度
張瑞棋_96
423 篇文章 ・ 945 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
0

文字

分享

0
2
0
最新自行車帽設計 MIPS,抵抗側向與旋轉碰撞是怎麼回事?
PanSci_96
・2023/06/04 ・1958字 ・閱讀時間約 4 分鐘

你騎自行車時會戴安全帽嗎?

今年 4 月起日本新規上路,所有騎士不分年齡,騎自行車都必須戴上安全帽,自行車用品店安全帽的銷量直線上升,熱門產品更賣到缺貨。

台灣目前道路相關法規僅規定機車、電動(輔助)自行車要戴安全帽,一般沒有電力輔助的腳踏自行車,還未特別規定要戴安全帽。

自行車的安全帽到底防護效果如何,得要從設計看起;最近的新科技 MIPS 號稱能降低側撞與旋轉衝擊,什麼是旋轉衝擊?什麼是 MIPS 呢?

-----廣告,請繼續往下閱讀-----

都柏林大學腦創傷模型

想要知道這樣摔、那樣摔會有什麼下場?這就需要用假人頭來分析;最著名的實驗模型就是「都柏林大學腦創傷模型」(University College Dublin Brain Trauma Model , UCDBTM)。

UCDBTM 最初發表在 2003 年,是使用男性屍體的腦袋進行「電腦斷層掃描」(computed tomography , CT)和「核磁共振」(magnetic resonance imaging , MRI),開發模擬頭部幾何形狀及頭內部壓力反應的模型,透過一系列屍體衝擊測試,進行參數調整,觀察不同衝擊對於大腦和腦脊液(CSF)體積和剪應力的影響。

在研究的 3D 有限元素模型(three-dimensional finite element model),以大約 2 萬 6 千個六面體元素,來代表頭皮、顱骨、軟腦膜、腦鐮、腦幕、腦脊髓液、灰質與白質、小腦以及腦幹,也就是整個頭部重要的組成都涵蓋進去了。

 3D 有限元素模型頭部重要的組成都涵蓋進去。圖/Envato Elements

安全帽衝擊測試

2022 年 5 月在《Scientific Reports》上的一篇研究,團隊利用先前提到的 UCDBTM 假人頭模型試砸,目的是想了解頭部撞擊的旋轉加速度。為什麼要那麼在意旋轉衝擊?

-----廣告,請繼續往下閱讀-----

在全球車禍直接撞擊造成腦部損傷的機率較小,相比之下,側撞和旋轉衝擊才是最可怕的傷害方式,這是因為人在車禍中會有自主閃避的反應;物理上來說,我們就是身處在移動中的慣性狀態,所以旋轉衝擊,特別是導致腦部受損和致命傷的主要原因。

而在這篇安全帽衝擊研究,團隊選了 3 種已上市的自行車安全帽 ,每種各買 4 頂來 PK,這三款安全帽分別是:

  1. 一般有「貼合棘輪機制」、「EPS 保麗龍」內襯的自行車安全帽。為最常見的安全帽規格,而棘輪的位置在後腦杓,轉動可以調整鬆緊,讓安全帽貼合頭部不會任意鬆脫。
  2. 採用「多向衝擊保護系統」(Multi-Directional Impact Protection System)簡稱 MIPS,MIPS 是一層安裝在安全帽內部的保護裝置,當頭部受到衝擊時,減震層可以提供 1 到 1.5 公分  多方向的移動空間,利用在安全帽內部滑動,緩衝側面撞擊或是旋轉所造成的作用力。
  3. 安裝數個裝著低黏度無色「礦物油」的「熱塑性胺甲酸乙酯 TPU」囊袋,利用這些囊袋緩衝頭部衝擊。

戴著安全帽的假人頭依序被送上「單軌掉落支架系統」之後,再分別以每秒 6.5 公尺的衝擊速度(時速每小時 23 km)自由落體撞擊貼上 80 粒度(grit)砂紙、45 度角的鐵砧表面上,模擬自行車摔車時的高摩擦衝擊狀態。

以實驗的結果來說,作為對照組的【一號】安全帽表現整體來說比較差,雖然一號傳統安全帽在線型加速度控制能力,不輸【二號】,但【二號】與【三號】所加持的旋轉控制科技,表現明顯出色;【二號】的減震層和【三號】的礦物油囊袋,不僅降低了線性和旋轉加速度的峰值(最大值),還減少腦部灰質與白質所受的衝擊。顯然 MIPS 以及類似這類防側撞和旋轉衝擊的新科技,確實有明顯的保護效果。

-----廣告,請繼續往下閱讀-----

科學證實戴帽更安全!

日本安全帽新規已上路,台灣該跟上,還是維持現況呢?圖/Envato Elements

2018 年刊登在《事故分析與預防》期刊(Accident Analysis & Prevention)的薈萃分析研究,從 1989 年至 2017 年的 55 項研究,共 179 個效果估計;結果顯示,使用安全帽可將頭部損傷減少 48%,嚴重頭部損傷減少 60%,創傷性腦損傷減少 53%,面部損傷減少 23%,造成死亡或重傷的總數減少 34%。

總之,科學實證強烈建議騎自行車必須佩戴安全帽。

只是在台灣這種亞熱帶氣候,夏天悶熱考驗也是避不掉的,另外也有不少反對強制立法配戴安全帽的人表示,不想要在騎 Ubike 時被強制戴「共用」安全帽,覺得很不衛生。而且覺得強制規定戴安全帽,反而會降低大眾使用自行車替代汽機車的都市減碳目標。

回到開頭,日本新規已上路,所有騎士不分年齡,騎自行車都必須戴上安全帽,而台灣目前還只有機車、電動自行車要戴安全帽;台灣該跟上,還是維持現況呢?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1217 篇文章 ・ 2147 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
1

文字

分享

0
3
1
腳踏車界的車神——兩津勘吉 |2021數感盃|高中專題|優選
數感實驗室_96
・2021/12/25 ・3739字 ・閱讀時間約 7 分鐘

  • 作者:蔡亦翔、吳柏均、蔡孝綸 / 國立新竹科學園區實驗高級中等學校

數感盃青少年寫作競賽」提供國中、高中職學生在培養數學素養後,一個絕佳的發揮舞台。本競賽鼓勵學生跨領域學習,運用數學知識,培養及展現邏輯思考與文字撰寫的能力,盼提升臺灣青少年科普寫作的風氣以及對數學的興趣。
本文為 2021 數感盃青少年寫作競賽/高中組專題報導類佳作之作品,為盡量完整呈現學生之作品樣貌,本文除首圖及標點符號、錯字之外並未進行其他大幅度編修。

「閃啊閃啊閃啊~撞到不負責啦!」經典台詞搭配上一台平凡的警用腳踏車,兩津勘吉總是如此爽朗的在動畫中登場。

以他為主角連載了數十年的動漫「烏龍派出所」想必大家都不陌生,也是你我兒時的共同記憶。這部動漫講述的是日本龜有公園前派出所的警察——兩津勘吉爆笑的生活故事,在長達 200 本單行卷、300 多集動畫的情節中,我們尤其對兩津他那百毒不侵的身體以及超乎常人的力量感到印象深刻。

而在劇中和他最形影不離的,就非他的那台警用腳踏車莫屬了,它除了是兩津追捕犯人時的得力助手之外,還在好幾次重要劇情中扮演了幫助他完成任務的關鍵角色,被兩津稱為「我的愛車——千鳥」。

每當我們欽佩於主角又再一次解決危機時,也不免被兩津運用這台腳踏車所發揮出的力量所震懾。

-----廣告,請繼續往下閱讀-----
圖(一)漫畫中兩津勘吉和他的腳踏車  

在烏龍派出所動畫的最終回特別篇中,這台腳踏車便是使東京都免於炸彈威脅的關鍵幫手。當大家對爆炸範圍為方圓 500 公尺、再兩分鐘就要爆炸的炸彈包不知所措時,兩津勘吉想到,只要將其帶到高度 634 公尺的東京最高地標「晴空塔」上投擲出去引爆,便能拯救東京都。

看著兩津背負著如此重大的使命,運用這台老夥伴奮力一搏,飛馳騎上晴空塔那近乎垂直的樑柱, 讓炸彈得以在時限內於高空中引爆,而不致於波及地面,真是令人替他捏了一把冷汗!雖然說以兩津在動畫中種種異於常人的表現來看,騎上晴空塔對他來說也不是難事,但現實中一般人可沒有他那種神力,因此我們便對於兩個問題感到好奇:

  1. 若是現實中有一位沒有這般神力的兩津,那他需要在如何的環境條件幫助下,才能像動畫中一樣騎著腳踏車衝上晴空塔呢? 
  2. 在動畫中兩津騎上晴空塔時的速度為多少呢? 

 首先來解決第一個疑問:要有多強的風才能像兩津一樣貼在塔上?

根據我們以往所學,要讓人連同整台腳踏車附著在牆面上不致於掉落,需要有足夠的正向力才行(圖二)。而這個正向力有很多種類,由於晴空塔壁面與地面的傾斜角度大到近乎垂直,正向力無法以重力的分量提供,因此我們假設現實中有一固定方向的「風力」存在,將人穩穩地壓在牆上。

-----廣告,請繼續往下閱讀-----

至於要如何求出風力,則要用以下公式: 

f=μ F(式一)

圖(二)正向力示意圖

我們可藉由摩擦力 f 及摩擦係數 μ 求出風力 F。由於並無打滑,代表其靜力平衡,f 摩擦力會等於重力 W,因此摩擦力 f 由重量求出,透過查詢資料得知,兩津的重量為 71kgw,普通的腳踏車平均重量則為 13kgw,總重力為 84 × 9.8 = 823.2 牛頓,靜摩擦力亦為 823.2 牛頓。

經由查詢資料,得出「橡膠」對上「鋼」的摩擦係數為 0.8 之後,代回式(一)可得到正向力 F 為 823.2/0.8 = 1029.75 牛頓。因此,可得出結論:現實中必須在有約 1030 牛頓的風力時,才能夠使普通人兩津穩穩地貼著晴空塔的表面往上騎。 

-----廣告,請繼續往下閱讀-----

而求得風力後,為了換算為當時環境所需的風速,需要用到風力強度公式:F = 1/2p × v2 × A

圖(三)兩津勘吉騎上晴空塔影像

而要計算風速,除了風力強度公式外,還必須考慮接觸表面積,而由(圖三)騎上晴空塔時的影像,得出所需要計算的部分有:前輪的前半部、後輪的後半部、兩津的後腦杓及背部。

利用公式 BSA(m2) = { [ Height(cm) × Body Weight(kg) ] / 3600 }1/2 ,以動畫中作者設定兩津的身高和體重,得出兩津身體的總表面積約為 1.8 平方公尺。而以成年人來說,背部表面積約佔全身的 18%,而後腦杓則約佔 4.5%,表面積總和約為 0.405 平方公尺。

藉由其身高與站立時的身體比例,可等比例求得上軀幹長(頭頂到腰帶)與腰寬。而兩津勘吉的腳踏車輪胎大小可以藉由騎車時的影像等比例推算求得,直徑約為 55.02 公分,輪胎寬度則約為 6.79 公分。車輪暴露在風下的總表面積為:6.79 × 55.02 × π/2 = 586.53 平方公分,約是 0.059 平方公尺。詳細比例參見下圖(四)、(五)、(六)。

-----廣告,請繼續往下閱讀-----
圖(四)由身高求得腰寬與上軀幹長
圖(五)由上軀幹長求得輪胎直徑
圖(六)由輪胎寬度求得腰寬

將兩津身體曝露在風下的表面積與腳踏車暴露在風下的表面積相加,約為 0.464 平方公 尺。再藉由資料,查得空氣密度 p 為 1.225 公斤/立方公尺,代入式(二)得到: F = 1030 = 1/2 × 1.225 × v2 × 0.464

求出的風速 v 約為 60.2 公尺/秒,由圖(七)可得知,這相當於蒲福式風級的十七級風,是強烈颱風以上的等級。由此進一步下結論:在當地風速約為十七級風時,普通人的兩津才能夠穩定的貼在晴空塔上不會打滑。 

圖(七) 蒲福氏風級表

在求得可以穩定附著在晴空塔的環境因素後,接下來討論第二個問題:兩津在塔上要騎多快才來得及丟掉炸彈?

由晴空塔官方網站得知,晴空塔高 634 公尺,而晴空塔的底部為正三角形,每邊 68 公尺,因此算出外心距離為 \( 68\sqrt{3}/3 \) 公尺,騎上去的樑柱與地面的角度 tanθ = 16.18,約為 86.5 度,綜合以上可以計算出總距離約為 635.2 公尺。詳細計算參考圖(八)、(九)。 

-----廣告,請繼續往下閱讀-----
圖(八)東京晴空塔外心計算
圖(九)東京晴空塔斜邊計算

根據動畫顯示,兩津騎到第 1 展望台時炸彈還剩 60 秒引爆,而兩津從到達最頂端到爆炸這之中過了 24 秒,故可得出兩津從第 1 展望台到最頂端花了 36 秒。由兩津騎腳踏車 284.4 公尺的距離花了 36 秒,可求得速度為 7.9 公尺/秒,相當於 28.4 公里/小時。以一般人在平地騎這種非公路車來說,這個速度已經算頗快了,何況兩津可是在近乎垂直的樑柱上騎到這種速度呢!

就算今天現實中有足夠的風力把我們壓在樑柱上不掉下去,但在要克服向下重力的情況下達到這種速度,也幾乎是也只有兩津才做得到吧,實在太厲害了!

圖(十)東京晴空塔簡圖與剖面

在完結篇的最後,兩津勘吉雖然超乎常理以他的自行車「千鳥」在近乎垂直的角度下騎上東京晴空塔,並成功在時間限制內騎到頂端,使炸彈爆炸時減少對東京都城區的危害,但因為炸彈包卡在手上沒有成功丟出去而喪失了性命(雖然最後還是復活了)。

當他在決定騎上晴空塔時說過一句話:「如果搭乘晴空塔的電梯就太慢了!」但是我們對此有些疑問,根據晴空塔官方的資料,電梯速度為 10 公尺/秒,而兩津的騎車速度為 7.9 公尺/秒,若搭乘晴空塔電梯到觀景台後再騎車上去,到達頂端後應該還可以有多出幾秒時間可以讓他重新將炸彈包丟到更遠的地方,故事也將因此改寫。

-----廣告,請繼續往下閱讀-----

發現這個矛盾後,我們感到有些好笑,不免想要像大原所長一樣向他吼出:「兩津,你這個大笨蛋!」 

在觀賞動漫的途中,不仿試著以物理學來分析其中的情景,遇到難以置信的片段,不知道在現實中能否達成時,保持疑問的態度,嘗試解釋其合理的過程,最終推理出結果。這樣將平時所學運用在生活中,不僅讓那些知識變得更平易近人,也增進了我們的思考能力。

雖說有時會遇到常理無法解釋的片段,或許就只有在動漫中才能實現。但也不要認為動漫都不切實際而不值一顧,像烏龍派出所中儘管有許多超現實的劇情片段,但也因為有了這些部分,才賦予了其主角兩津勘吉的人格形象,也讓這部作品在動漫界中獨樹一幟。

一路走來我們看到兩津飛天遁地、出生入死,為了保護所愛之人不顧一切,情緒也不免隨之變的熱血沸騰, 並在腦海中留下了許多美好的回憶,這也就是這部動漫帶給我們的深遠影響吧! 

-----廣告,請繼續往下閱讀-----

引註資料

1. Material Contact Properties Table

2. 維基百科:兩津勘吉的外貌體格

3. 維基百科:空氣密度

4. 維基百科:蒲福氏風級

5. 東京晴空塔官網

數感實驗室_96
60 篇文章 ・ 40 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/