0

2
0

文字

分享

0
2
0

最新自行車帽設計 MIPS,抵抗側向與旋轉碰撞是怎麼回事?

PanSci_96
・2023/06/04 ・1958字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

你騎自行車時會戴安全帽嗎?

今年 4 月起日本新規上路,所有騎士不分年齡,騎自行車都必須戴上安全帽,自行車用品店安全帽的銷量直線上升,熱門產品更賣到缺貨。

台灣目前道路相關法規僅規定機車、電動(輔助)自行車要戴安全帽,一般沒有電力輔助的腳踏自行車,還未特別規定要戴安全帽。

自行車的安全帽到底防護效果如何,得要從設計看起;最近的新科技 MIPS 號稱能降低側撞與旋轉衝擊,什麼是旋轉衝擊?什麼是 MIPS 呢?

-----廣告,請繼續往下閱讀-----

都柏林大學腦創傷模型

想要知道這樣摔、那樣摔會有什麼下場?這就需要用假人頭來分析;最著名的實驗模型就是「都柏林大學腦創傷模型」(University College Dublin Brain Trauma Model , UCDBTM)。

UCDBTM 最初發表在 2003 年,是使用男性屍體的腦袋進行「電腦斷層掃描」(computed tomography , CT)和「核磁共振」(magnetic resonance imaging , MRI),開發模擬頭部幾何形狀及頭內部壓力反應的模型,透過一系列屍體衝擊測試,進行參數調整,觀察不同衝擊對於大腦和腦脊液(CSF)體積和剪應力的影響。

在研究的 3D 有限元素模型(three-dimensional finite element model),以大約 2 萬 6 千個六面體元素,來代表頭皮、顱骨、軟腦膜、腦鐮、腦幕、腦脊髓液、灰質與白質、小腦以及腦幹,也就是整個頭部重要的組成都涵蓋進去了。

 3D 有限元素模型頭部重要的組成都涵蓋進去。圖/Envato Elements

安全帽衝擊測試

2022 年 5 月在《Scientific Reports》上的一篇研究,團隊利用先前提到的 UCDBTM 假人頭模型試砸,目的是想了解頭部撞擊的旋轉加速度。為什麼要那麼在意旋轉衝擊?

-----廣告,請繼續往下閱讀-----

在全球車禍直接撞擊造成腦部損傷的機率較小,相比之下,側撞和旋轉衝擊才是最可怕的傷害方式,這是因為人在車禍中會有自主閃避的反應;物理上來說,我們就是身處在移動中的慣性狀態,所以旋轉衝擊,特別是導致腦部受損和致命傷的主要原因。

而在這篇安全帽衝擊研究,團隊選了 3 種已上市的自行車安全帽 ,每種各買 4 頂來 PK,這三款安全帽分別是:

  1. 一般有「貼合棘輪機制」、「EPS 保麗龍」內襯的自行車安全帽。為最常見的安全帽規格,而棘輪的位置在後腦杓,轉動可以調整鬆緊,讓安全帽貼合頭部不會任意鬆脫。
  2. 採用「多向衝擊保護系統」(Multi-Directional Impact Protection System)簡稱 MIPS,MIPS 是一層安裝在安全帽內部的保護裝置,當頭部受到衝擊時,減震層可以提供 1 到 1.5 公分  多方向的移動空間,利用在安全帽內部滑動,緩衝側面撞擊或是旋轉所造成的作用力。
  3. 安裝數個裝著低黏度無色「礦物油」的「熱塑性胺甲酸乙酯 TPU」囊袋,利用這些囊袋緩衝頭部衝擊。

戴著安全帽的假人頭依序被送上「單軌掉落支架系統」之後,再分別以每秒 6.5 公尺的衝擊速度(時速每小時 23 km)自由落體撞擊貼上 80 粒度(grit)砂紙、45 度角的鐵砧表面上,模擬自行車摔車時的高摩擦衝擊狀態。

以實驗的結果來說,作為對照組的【一號】安全帽表現整體來說比較差,雖然一號傳統安全帽在線型加速度控制能力,不輸【二號】,但【二號】與【三號】所加持的旋轉控制科技,表現明顯出色;【二號】的減震層和【三號】的礦物油囊袋,不僅降低了線性和旋轉加速度的峰值(最大值),還減少腦部灰質與白質所受的衝擊。顯然 MIPS 以及類似這類防側撞和旋轉衝擊的新科技,確實有明顯的保護效果。

-----廣告,請繼續往下閱讀-----

科學證實戴帽更安全!

日本安全帽新規已上路,台灣該跟上,還是維持現況呢?圖/Envato Elements

2018 年刊登在《事故分析與預防》期刊(Accident Analysis & Prevention)的薈萃分析研究,從 1989 年至 2017 年的 55 項研究,共 179 個效果估計;結果顯示,使用安全帽可將頭部損傷減少 48%,嚴重頭部損傷減少 60%,創傷性腦損傷減少 53%,面部損傷減少 23%,造成死亡或重傷的總數減少 34%。

總之,科學實證強烈建議騎自行車必須佩戴安全帽。

只是在台灣這種亞熱帶氣候,夏天悶熱考驗也是避不掉的,另外也有不少反對強制立法配戴安全帽的人表示,不想要在騎 Ubike 時被強制戴「共用」安全帽,覺得很不衛生。而且覺得強制規定戴安全帽,反而會降低大眾使用自行車替代汽機車的都市減碳目標。

回到開頭,日本新規已上路,所有騎士不分年齡,騎自行車都必須戴上安全帽,而台灣目前還只有機車、電動自行車要戴安全帽;台灣該跟上,還是維持現況呢?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

文章難易度
PanSci_96
1237 篇文章 ・ 2373 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
揭密突破製程極限的關鍵技術——原子層沉積
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/30 ・3409字 ・閱讀時間約 7 分鐘

本文由 ASM 委託,泛科學企劃執行。 

以人類現在的科技,我們能精準打造出每一面牆只有原子厚度的房子嗎?在半導體的世界,我們做到了!

如果將半導體製程比喻為蓋房子,「薄膜製程」就像是在晶片上堆砌層層疊疊的磚塊,透過「微影製程」映照出房間布局 — 也就是電路,再經過蝕刻步驟雕出一格格的房間 — 電晶體,最終形成我們熟悉的晶片。為了打造出效能更強大的晶片,我們必須在晶片這棟「房子」大小不變的情況下,塞進更多如同「房間」的電晶體。

因此,半導體產業內的各家大廠不斷拿出壓箱寶,一下發展環繞式閘極、3D封裝等新設計。一下引入極紫外曝光機,來刻出更微小的電路。但別忘記,要做出這些複雜的設計,你都要先有好的基底,也就是要先能在晶圓上沉積出一層層只有數層原子厚度的材料。

-----廣告,請繼續往下閱讀-----

現在,這道薄膜製程成了電晶體微縮的一大關鍵。原子是物質組成的基本單位,直徑約0.1奈米,等於一根頭髮一百萬分之一的寬度。我們該怎麼精準地做出最薄只有原子厚度,而且還要長得非常均勻的薄膜,例如說3奈米就必須是3奈米,不能多也不能少?

這唯一的方法就是原子層沉積技術(ALD,Atomic Layer Deposition)。

蓋房子的第一步是什麼?沒錯,就是畫設計圖。只不過,在半導體的世界裡,我們不需要大興土木,就能將複雜的電路設計圖直接印到晶圓沉積的材料上,形成錯綜複雜的電路 — 這就是晶片製造的最重要的一環「微影製程」。

首先,工程師會在晶圓上製造二氧化矽或氮化矽絕緣層,進行第一次沉積,放上我們想要的材料。接著,為了在這層材料上雕出我們想要的電路圖案,會再塗上光阻劑,並且透過「曝光」,讓光阻劑只留下我們要的圖案。一次的循環完成後,就會換個材料,重複沉積、曝光、蝕刻的流程,這就像蓋房子一樣,由下而上,蓋出每個樓層,最後建成摩天大樓。

-----廣告,請繼續往下閱讀-----

薄膜沉積是關鍵第一步,基底的品質決定晶片的穩定性。但你知道嗎?不只是堆砌磚塊有很多種方式,薄膜沉積也有多樣化的選擇!在「薄膜製程」中,材料學家開發了許多種選擇來處理這項任務。薄膜製程大致可分為物理和化學兩類,物理的薄膜製程包括蒸鍍、濺鍍、離子鍍、物理氣相沉積、脈衝雷射沉積、分子束磊晶等方式。化學的薄膜製程包括化學氣相沉積、化學液相沉積等方式。不同材料和溫度條件會選擇不同的方法。

二氧化矽、碳化矽、氮化矽這些半導體材料,特別適合使用化學氣相沉積法(CVD, Chemical Vapor Deposition)。CVD 的過程也不難,氫氣、氬氣這些用來攜帶原料的「載氣」,會帶著要參與反應的氣體或原料蒸氣進入反應室。當兩種以上的原料在此混和,便會在已被加熱的目標基材上產生化學反應,逐漸在晶圓表面上長出我們的目標材料。

如果我們想增強半導體晶片的工作效能呢?那麼你會需要 CVD 衍生的磊晶(Epitaxy)技術!磊晶的過程就像是在為房子打「地基」,只不過這個地基的每一個「磚塊」只有原子或分子大小。透過磊晶,我們能在矽晶圓上長出一層完美的矽晶體基底層,並確保這兩層矽的晶格大小一致且工整對齊,這樣我們建造出來的摩天大樓就有最穩固、扎實的基礎。磊晶技術的精度也是各公司技術的重點。

雖然 CVD 是我們最常見的薄膜沉積技術,但隨著摩爾定律的推進,發展 3D、複雜結構的電晶體構造,薄膜也開始需要順著結構彎曲,並且追求精度更高、更一致的品質。這時 CVD 就顯得力有未逮。

-----廣告,請繼續往下閱讀-----

並不是說 CVD 不能用,實際上,不管是 CVD 還是其他薄膜製程技術,在半導體製程中仍占有重要地位。但重點是,隨著更小的半導體節點競爭愈發激烈,電晶體的設計也開始如下圖演變。

圖/Shutterstock

看出來差別了嗎?沒錯,就是構造越變越複雜!這根本是對薄膜沉積技術的一大考驗。

舉例來說,如果要用 CVD 技術在如此複雜的結構上沉積材料,就會出現像是清洗杯子底部時,有些地方沾不太到洗碗精的狀況。如果一口氣加大洗碗精的用量,雖然對杯子來說沒事,但對半導體來說,那些最靠近表層的地方,就會長出明顯比其他地方厚的材料。

該怎麼解決這個問題呢?

-----廣告,請繼續往下閱讀-----
CVD 容易在複雜結構出現薄膜厚度不均的問題。圖/ASM

材料學家的思路是,要找到一種方法,讓這層薄膜長到特定厚度時就停止繼續生長,這樣就能確保各處的薄膜厚度均勻。這種方法稱為 ALD,原子層沉積,顧名思義,以原子層為單位進行沉積。其實,ALD 就是 CVD 的改良版,最大的差異在所選用的化學氣體前驅物有著顯著的「自我侷限現象」,讓我們可以精準控制每次都只鋪上一層原子的厚度,並且將一步驟的反應拆為兩步驟。

在 ALD 的第一階段,我們先注入含有 A 成分的前驅物與基板表面反應。在這一步,要確保前驅物只會與基板產生反應,而不會不斷疊加,這樣,形成的薄膜,就絕對只有一層原子的厚度。反應會隨著表面空間的飽和而逐漸停止,這就稱為自我侷限現象。此時,我們可以通入惰性氣體將多餘的前驅物和副產物去除。在第二階段,我們再注入含有 B 成分的化學氣體,與早已附著在基材上的 A 成分反應,合成為我們的目標材料。

透過交替特殊氣體分子注入與多餘氣體分子去除的化學循環反應,將材料一層一層均勻包覆在關鍵零組件表面,每次沉積一個原子層的薄膜,我們就能實現極為精準的表面控制。

你知道 ALD 領域的龍頭廠商是誰嗎?這個隱形冠軍就是 ASM!ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商,自 1968 年,Arthur del Prado 於荷蘭創立 ASM 以來,ASM 一直都致力於推進半導體製程先進技術。2007 年,ASM 的產品 Pulsar ALD 更是成為首個運用在量產高介電常數金屬閘極邏輯裝置的沉積設備。至今 ASM 不僅在 ALD 市場佔有超過 55% 的市佔率,也在 PECVD、磊晶等領域有著舉足輕重的重要性。

-----廣告,請繼續往下閱讀-----

ASM 一直持續在快速成長,現在在北美、歐洲、及亞洲等地都設有技術研發與製造中心,營運據點廣布於全球 15 個地區。ASM 也很看重有「矽島」之稱的台灣市場,目前已在台灣深耕 18 年,於新竹、台中、林口、台南皆設有辦公室,並且在 2023 年於南科設立培訓中心,高雄辦公室也將於今年年底開幕!

當然,ALD 也不是薄膜製程的終點。

ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商。圖/ASM

最後,ASM 即將出席由國際半導體產業協會主辦的 SEMICON Taiwan 策略材料高峰論壇和人才培育論壇,就在 9 月 5 號的南港展覽館。如果你想掌握半導體產業的最新趨勢,絕對不能錯過!

圖片來源/ASM

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
特斯拉 Cybercab 登場!自駕車事故責任該由誰承擔?
PanSci_96
・2024/07/30 ・1411字 ・閱讀時間約 2 分鐘

特斯拉即將在 2024 年 10 月推出無人計程車,並且 Robotaxi 的正式名稱,將取名為 Cybercab。
等等,在無人車正式上路之前,我先問你一個重要問題。如果我開特斯拉自駕車撞死人,要負責的是我這個駕駛、乘客,還是特斯拉與馬斯克?

你敢開自駕車嗎?肇事責任是誰負責? 圖/envato

自駕車撞死人:駕駛、乘客,還是特斯拉負責?

當你駕駛特斯拉自駕車撞死人,責任歸屬是個複雜問題。無人車上路前,了解現行法律與技術界限至關重要。如果你強行介入自駕車運行,解除自駕功能後的事故責任由你全擔。如果不干預,事故責任可能由車商承擔。然而,最終誰來負責,仍取決於多方因素,包括車輛技術和法律規定。

這是個很現實的電車難題,應該說自駕車難題。如果你駕駛的自駕車正在失控向人群駛去,你是否有勇氣按下緊急剎車,承擔一切責任?

這類問題正是現在無人駕駛技術面臨的道德和法律挑戰。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

電車難題再現:自駕車技術的進展與挑戰

自駕車並不是未來的幻想,而是已經在我們的日常生活中逐漸實現的技術。特斯拉和其他汽車製造商已經展示了他們的自動駕駛系統,這些系統能夠完成從停車到高速公路駕駛的各種操作。目前的自駕技術主要依賴於先進駕駛輔助系統(ADAS),這些系統結合了多種技術以提升駕駛的安全性和效率。

ADAS 並不是一個新概念,它可以追溯到 1950 年代的汽車巡航控制系統,隨後在 1970 年代加入了防鎖死煞車系統和車身動態穩定系統。現代的 ADAS 功能更加多樣化,包括防撞系統、車道偏離警示、盲點監控、自適應巡航和駕駛監控等,這些功能大大降低了人為失誤導致的事故風險。

自駕車三隻眼睛:相機、光達和雷達的全面解析

自駕車依賴於三種主要感知技術:相機、光達和雷達。相機負責辨識交通號誌和行人,光達則通過發射紅外雷射光脈衝繪製 3D 地圖,雷達在惡劣天氣中表現尤為出色,能夠在雨天、霧天和沙塵暴中提供穩定的數據。

自駕車的決策過程可以分為感知、決策和控制三個步驟。感知階段依賴於相機、光達和雷達提供的數據,決策階段則依靠 AI 算法來判斷最佳行動方案,最後由控制系統執行決策。這些技術的進步使得自駕車在面對複雜的交通情況時,能夠做出更準確的反應。

全球無人計程車競賽:各國如何迎接自動駕駛未來

特斯拉並不是唯一的自駕車領導者,Google 的 Waymo 和通用汽車的 Cruise 已經在無人計程車領域取得了重大進展。中國的自動駕駛公司小馬智行和百度的蘿蔔快跑也已成功讓無人計程車在主要城市上路營運。根據預測,到 2025 年,全球將有約 800 萬輛 3 級或 4 級的自駕車在道路上行駛。

特斯拉的 Cybercab 無人計程車即將上路,標誌著自駕車技術進入新的階段。隨著技術的不斷進步和法律框架的完善,自駕車將在未來的交通系統中扮演越來越重要的角色。然而,自駕車事故責任的問題仍需進一步探討和解決,以確保這一新技術能夠安全、可靠地服務於社會。

討論功能關閉中。

PanSci_96
1237 篇文章 ・ 2373 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。