0

1
0

文字

分享

0
1
0

橫跨科學與人文藝術的天才──達文西誕辰│科學史上的今天:4/15

張瑞棋_96
・2015/04/15 ・1083字 ・閱讀時間約 2 分鐘 ・SR值 516 ・六年級

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1036 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
228 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

9
1

文字

分享

1
9
1
五花八「門」——各種肛門的特異功能
阿咏_96
・2021/07/24 ・2618字 ・閱讀時間約 5 分鐘

一般說到肛門,我們常常會用其他詞來表示,例如「後庭」、「菊花」等等,好像是一個「不可說」的部位一樣,平常和別人聊天時,萬一有人脫口而出它的名字,當下就會想立馬播放「最怕~空氣突然安靜~」尷尬的氣氛幾乎可以讓人窒息。

但很多人不知道的是,「肛門」在演化上有很重要的意義,也跟我們的起源有很大的關係。平常不好提沒關係,我們今天就要來大談特談肛門的厲害!

一切才「肛」開始

看到標題先別驚訝,這個故事要從胚胎時期講起,最早期的胚胎稱為「囊胚 (Blastula) 」後來發育成「原腸胚」時,會形成胚孔 (Blastopore) ,而這個開口之後發育成我們的肛門,因此人類屬於「後口動物 (Deuterostome)」,也就是嘴巴是後來形成的,並非由胚孔發育而來,相反的,胚孔之後發育成嘴巴的,稱為「原口動物 (Protostomia)」;而後口動物除了我們脊索動物門(Chordata) 之外,也包含棘皮動物門 (Echinodermata) ,例如海星,以及有「超強肛門」的海參(至於牠的肛門到底有多厲害,看到最後一段就知道了)。

原口動物與後口動物胚胎發育過程的差異。圖/ Wikimedia common

有肛門?沒肛門?

以人類來說,我們將食物從嘴巴送入體內,中間經過消化系統的處理,最後食物殘渣從肛門排出體外;那現在想像一下,如果消化道的尾端沒有像肛門這樣的開口,殘留的食物便會逆流而上,從原本進食的地方排出去⋯⋯沒錯!從人類的角度來看或許會覺得怪怪的,但數億年前,許多在海裡生活的生物都是只有單一開口,由同一個地方進食、排出殘渣,在現存的生物中,例如海葵、珊瑚等,牠們在進食時一次吃一團食物,然後再從同一個孔排出去,也因此這些生物的消化囊就像是假日大賣場的單道停車場,因為空間有限,必須一進一出才能再進,攝取進體內的量便有一定的限制。

-----廣告,請繼續往下閱讀-----
海葵的肛門。圖 / flickr

肛門的出現,就像是把停車場變成了高速公路,有了交流道之後,生物不需要等上一餐排出去才能繼續吃,而能夠一餐接著一餐,而且消化道變長之後,逐漸分隔成不同區域,各自具有獨特的微生物相,也形成能吸收不同的營養,讓生物能夠從攝食中獲取養份的效率提高,與生物的體型變大、變長以及移動方式的改變也有密切的關係。

酷肛門!

在了解肛門在生物體中的重要程度後,如果你以為肛門只能把食物殘渣排出去,那就太小看它了~接著我們來聊聊世界上百百款的肛門吧!

首先,有些動物的消化道、生殖器和泌尿道的末端合併成一個開口,稱為泄殖腔(cloaca) ,能夠排出糞便、尿液、卵子或精子,像是鳥類、兩棲爬蟲類都有這樣的構造,泄殖腔有時候很方便,譬如雌鳥在和不喜歡的雄鳥交配的時候,就能夠輕鬆地將精子排出去。至於為什麼有些動物的生殖孔和肛門是分開的,但位置卻很接近,這又是另一個故事了。

鳥類的泄殖腔。圖 / Judi Lapsley Miller 

除了泄殖腔外,前面提到海參有「最強肛門」,這不是亂說的,因為海參的肛門不只是一個排廢物的出口,還能作為牠的第二張嘴,可以吞食一些藻類,金價ㄟ「後庭進食」就是海參啦!除此之外,海參消化道的末端旁分出一對樹枝狀的器官,稱為呼吸樹 (respiration tree),可以透過肛門肌肉收縮,將海水吸進體內,藉由吸收海水中的氧氣進行氣體交換,也就是用肛門呼吸(屁之呼吸啾4尼啦~)。

-----廣告,請繼續往下閱讀-----

如果你覺得肛門可以進食和呼吸還不夠看,那接著更猛的是——肛門還可以發動攻擊。海參體內有一個防禦器官稱為「居為業小管 (Cuverian tubules)」,在遭受機械刺激時,會從肛門排出一種白色細絲,這些細絲在海水中會變長,與其他物體接觸時還會變得黏黏的,可以用來纏住捕食者,而且對某些魚類來說是有毒的。

除此之外,有些海參的肛門還有「肛齒 (anal teeth) 」,顧名思義就是長在肛門的牙齒,可以避免一些不請自來的生物,在牠的後庭來去自如;但是其實也有生物能夠自由進出海參的肛門,例如隱魚 (pearlfish) ,牠們不會被居為業小管攻擊,而且也對海參排出的毒素有較強的抵抗力,所以當海參張開肛門呼吸時,有時候你可以看到在裡面蠕動的隱魚們 say hi~,正所謂「全家就是你家,你的肛門就是我家啦!」

最後也是我覺得最酷的是,不是所有生物的肛門都像便利商店一樣 24 小時營業的,2019 年的一篇研究發現有一類櫛水母 Mnemiopsis leidyi 的肛門在排便的時候出現,之後就消失了,而重複排便間隔的時間長短則和體型大小有關,例如幼體約十分鐘、成體一小時左右,換句話說,這是一種「間歇性肛門」,科學家們認為這個發現對肛門演化過程有很大的幫助,若繼續深入研究,有機會找到永久性肛門是如何演化出來的。

關於肛門的故事,大概可以聊個三天三夜,例如肛門的演化也是非常精彩,下次當你提到肛門,但旁邊的人露出「假裝不認識你」的表情時,就可以跟他解釋肛門有多偉大、介紹那些超酷的肛門,然後他就會⋯⋯(自行想像)

-----廣告,請繼續往下閱讀-----
  1. Nielsen, C., Brunet, T., & Arendt, D. (2018). Evolution of the bilaterian mouth and anus. Nature ecology & evolution, 2(9), 1358-1376.
  2. Hejnol, A., & Martín-Durán, J. M. (2015). Getting to the bottom of anal evolution. Zoologischer Anzeiger-a Journal of Comparative Zoology, 256, 61-74.
  3. What is Deuterostomes?
  4. Superphylum Deuterostomia
  5. Dean, R., Nakagawa, S., & Pizzari, T. (2011). The risk and intensity of sperm ejection in female birds. The American Naturalist, 178(3), 343-354.
  6. Parmentier, E., & Vandewalle, P. (2005). Further insight on carapid—holothuroid relationships. Marine Biology, 146(3), 455-465.
  7. Flammang, P., Ribesse, J., & Jangoux, M. (2002). Biomechanics of adhesion in sea cucumber Cuvierian tubules (Echinodermata, Holothuroidea). Integrative and Comparative Biology, 42(6), 1107-1115.
  8. Ru, X., Zhang, L., Liu, S., & Yang, H. (2020). Plasticity of respiratory function accommodates high oxygen demand in breeding sea cucumbers. Frontiers in physiology, 11, 283.
  9. Jaeckle, W. B., & Strathmann, R. R. (2013). The anus as a second mouth: anal suspension feeding by an oral deposit‐feeding sea cucumber. Invertebrate Biology, 132(1), 62-68.
  10. Tamm, S. L. (2019). Defecation by the ctenophore Mnemiopsis leidyi occurs with an ultradian rhythm through a single transient anal pore. Invertebrate Biology, 138(1), 3-16.
  11. The Body’s Most Embarrassing Organ Is an Evolutionary Marvel

泄殖腔親吻是什麼?一起看影片了解吧!

-----廣告,請繼續往下閱讀-----
所有討論 1

0

16
2

文字

分享

0
16
2
和鳥類學飛翔,讓人類學會飛行奧秘——《天才達文西的科學教室:像科學家一樣,發明、創造和製作STEAM科展作品》
快樂文化
・2021/01/30 ・3697字 ・閱讀時間約 7 分鐘 ・SR值 512 ・六年級

-----廣告,請繼續往下閱讀-----

飛行的物理學

「觀察在稀薄高空中飛翔的老鷹,牠的翅膀是如何鼓動著空氣,讓沉重的身體得到支撐。物體對空氣施加的力量,等於空氣對物體施加的力量。」15 世紀末,達文西在筆記本如此寫道。達文西僅憑觀察,就掌握飛行的原理了。

飛行的原理讓達文西深深為之著迷。他發明人力驅動的飛行器,試圖證明人類能否飛上天,還設計人類可以操縱的翅膀。他仔細研究飛行中的鳥,並且提出飛行的假說:「鳥類張開寬寬的翅膀,加上短短的尾巴,準備起飛,」他接著寫道,「鳥類必須用力抬起翅膀,然後放下翅膀拍動下方的空氣。」

金鵰的翅膀善用空氣分子,身體起飛與降落。圖/天才達文西的科學教室

上圖的金鵰比空氣重,但是翅膀造形卻能善用空氣分子,讓身體起飛與降落。金鵰飛行的時候,你認為氣流通過翅膀上方與下方時,哪邊的速度較快?量量看, 1 公尺有多長,是金鵰身體的長度;再量量看 23 公尺有多長?這是牠的翅膀展開的長度!再想像一下:金鵰拍動翅膀、凌空起飛的模樣。你認為翅膀上方還是下方的氣壓比較大?可以解釋原因嗎?

達文西的《鳥類飛行手稿》。圖/天才達文西的科學教室

上圖的字跡與插圖,出自達文西的《鳥類飛行手稿》 (Codex on the Flight Of Birds)。他的研究,造福許多後世的科學家,包括丹尼爾•白努利 (Daniel Bernoulli)。他在 1738 年解釋了空氣流動的科學原理。

-----廣告,請繼續往下閱讀-----

白努利認為:鳥類飛行時, 因為翅膀結構的關係,空氣通過翅膀上方的速度較快, 使得氣壓較低,而空氣通過翅膀下方的速度較,使得氣壓較高。翅膀上方與下方的壓力差,進而造成了升力。

編按:解釋飛機能升空飛行的物理概念,除了白努利概念外,尚有其他因素,例如飛行時的角度、飛機造形和其他效應等。

有許多物理概念可以解釋飛機能升空的原因。圖/天才達文西的科學教室

飛機為什麼可以在天上飛?

開始調查吧!

我們蒐集資訊,一起設計翅膀,就跟達文西一樣!我們將蒐集涵蓋翅膀形狀、空氣與運動方面的資訊,也跟達文西一樣,提出許多問題。

問題:淚珠的形狀,和飛行有什麼關係?

下圖的形狀,好像淚珠的一側。看到這種形狀,是否讓你聯想到它與飛行的關係呢?

-----廣告,請繼續往下閱讀-----
翼型會聯想到噴射機的機翼或鳥翼的形狀。圖/天才達文西的科學教室

答案:這就是翼型。

淚珠的形狀,我們稱為「翼型」。這樣的造形,可能讓你想起噴射機的機翼或鳥翼的形狀。翼型的前端是較厚的圓弧,後端則逐漸變薄、變窄。

飛行中的翼型向前挺進,空氣分子往上也朝下移動。翼型下方的空氣分子,移動的速度慢於上方滑過的空氣分子。空氣分子移動速度較慢,造成的氣壓就比較大。想像一下:翼型下方的空氣,等於處在被壓縮的狀態,翼型下方,較強的氣壓向上推,造成的力量稱為「升力」

模擬飛行中翼型的空氣分子移動狀態。圖/天才達文西的科學教室

受到鳥類的啟發

看到鳥翼的切面,居然就是翼型,你是否大吃一驚呢?說穿了,航太工程師就是從飛行中的鳥類得到靈感。移動的翼型會切過空氣,與周圍的空氣產生了力的作用。空氣分子——渺小不可見卻能施展強大的力量,從四面八方擠壓著翼型。翼型向前移動的時候,因為與空氣產生了交互作用而起飛。

將書本平放在桌上一隻手塞到書本下方,然後把書托起來。你的手在書下施展的壓力,就像慢速通過翼型下方的高壓。另一方面,通過翅膀上方的空氣,移動速度較快,形成了較低的氣壓。

-----廣告,請繼續往下閱讀-----

空氣分子在機翼上的賽跑

讓我們進一步調查

問題:通過翼型上方的空氣,是否因為空氣要通過的距離較長,因此速度才會變快?

答案:根據美國的國家太空總署 (NASA) 工程師分析,機翼上方空氣的速度很快,只是為了比下方空氣更早抵達機翼後方,而不是因為距離較長。機翼上方的低壓空氣,其實速度更快!

畫出你的翼型

畫出屬於你自己的翼型,請標示以下項目

  • 高壓區
  • 低壓區
  • 快速移動的空氣
  • 慢速移動的空氣
  • 空氣流動的方向
  • 升力的方向
嘗試畫出屬於自己的翼型。圖/天才達文西的科學教室

和達文西一起賞鳥

達文西不只觀察飛行中的鳥,他也細看鳥的各種狀態,而且反覆觀看。他寫下筆一三己,問自己問題,例如:鳥類用什麼樣的方式使用翅膀?然後想辦法找出解答。以上這些行為,就是「觀察」。

當個自然觀察家吧!住家附近就可以好好賞鳥。不管你住在哪裡,都有機會走出家門,觀察鳥類百態及其飛行方式。記得帶著筆記本、鉛筆、色鉛筆與望遠鏡,可能的話帶一台相機,現在就抽出時間邁向戶外吧!

-----廣告,請繼續往下閱讀-----

你的觀察記錄將充滿獨一無二的個人風格。看到小鳥,先用肉眼觀察。接著,以素描記錄觀察到的現象:畫出鳥類的輪廓,有沒有值得注意的花紋或樣式?先畫下外形,然後加上顏色:鳥喙是什麼顏色?腳呢?也花點精力注意體型大小:和其他鳥類相較,有多大或多小呢?有沒有攝食?歌聲或叫聲怎麼描述呢?鳥類如何起飛?如何降落?鳥類會順風起飛嗎?其他數據、記錄地點、天氣與賞鳥的時段,都要記錄下來。

用相機記錄身旁觀察到的現象。圖/Pixabay

以飛機工程師的方式來思考!

用另一種角度來看翼型。機翼後緣窄窄的後翼往上或往下,會有怎樣的效果呢?飛機工程師設計噴射機的時候,讓機翼的後緣可以伸展或彎折,透過這樣的方式讓空氣分子流動,達成特殊目的。如下圖所示請利用本小節的訊息,預測這樣設計的目的,並把假說寫在筆記本裡。

機翼不同構型讓空氣分子流動,達成特殊目的。圖/天才達文西的科學教室

下圖是根據達文西的設計而重建的機械翅膀。翅膀的形狀不像翼型,但是從喇叭似的形狀看來,功能就是壓下空氣分子,以產生向上的升力。這款翅膀有沒有讓你想起某種哺乳動物呢?

根據達文西的設計而重建的機械翅膀。圖/天才達文西的科學教室
根據達文西的設計而重建的機械翅膀很像哺乳動物蝙蝠。圖/天才達文西的科學教室

一起動手玩:創造一個翼型

實驗材料:影印紙、膠帶、30 公分長的直尺、鉛筆(最好是六角鉛筆)、吹風機

實驗步驟

  1. 輕輕彎折紙張,以垂直方向對摺。這時紙張會有淺淺的摺線,並且出現翼型般的曲面。
  2. 把紙張轉成水平方向,曲面朝下。將上半張紙的邊緣往後移 1.27 公分,用膠帶固定。
  3. 把直尺伸到紙張底下,在 5 公分處用膠帶把尺和紙黏在一起;紙張的邊緣也要和直尺黏合。
步驟 1-3 的操作示範。圖/天才達文西的科學教室

4. 把鉛筆放在距離直尺 12.7 公分處,和直尺垂直擺放,並以膠帶黏和。

步驟 4 的操作示範。圖/天才達文西的科學教室

5. 將吹風機設定最小風量模式,待會對著翼型的吹端吹。你認為吹風機啟動後,會發生怎樣的現象?請先寫出假說。

-----廣告,請繼續往下閱讀-----

6. 現在測試你的實驗設計與假說。找個夥伴握住鉛筆兩端,翼型曲面朝向你。這時再啟動吹風機的小風量模式,直尺會怎樣?你感到翼型的升力了嗎?

步驟 5-6 的操作示範。圖/天才達文西的科學教室

實驗背後的科學

如同你所認知,通過翼型上方的空氣,移動的速度比翼型下方的空氣快。翼型下方的空氣分子在較高的壓力下受到擠壓。氣壓較高的空氣分子,向上推擠。翼型下方的高壓及上方的低壓,組合起來造成了升力!

——本文摘自《天才達文西的科學教室:像科學家一樣,發明、創造和製作STEAM科展作品》,2020 年 10 月,快樂文化

-----廣告,請繼續往下閱讀-----