Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

橫跨科學與人文藝術的天才──達文西誕辰│科學史上的今天:4/15

張瑞棋_96
・2015/04/15 ・1083字 ・閱讀時間約 2 分鐘 ・SR值 516 ・六年級

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1028 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

9
1

文字

分享

1
9
1
五花八「門」——各種肛門的特異功能
阿咏_96
・2021/07/24 ・2618字 ・閱讀時間約 5 分鐘

一般說到肛門,我們常常會用其他詞來表示,例如「後庭」、「菊花」等等,好像是一個「不可說」的部位一樣,平常和別人聊天時,萬一有人脫口而出它的名字,當下就會想立馬播放「最怕~空氣突然安靜~」尷尬的氣氛幾乎可以讓人窒息。

但很多人不知道的是,「肛門」在演化上有很重要的意義,也跟我們的起源有很大的關係。平常不好提沒關係,我們今天就要來大談特談肛門的厲害!

一切才「肛」開始

看到標題先別驚訝,這個故事要從胚胎時期講起,最早期的胚胎稱為「囊胚 (Blastula) 」後來發育成「原腸胚」時,會形成胚孔 (Blastopore) ,而這個開口之後發育成我們的肛門,因此人類屬於「後口動物 (Deuterostome)」,也就是嘴巴是後來形成的,並非由胚孔發育而來,相反的,胚孔之後發育成嘴巴的,稱為「原口動物 (Protostomia)」;而後口動物除了我們脊索動物門(Chordata) 之外,也包含棘皮動物門 (Echinodermata) ,例如海星,以及有「超強肛門」的海參(至於牠的肛門到底有多厲害,看到最後一段就知道了)。

原口動物與後口動物胚胎發育過程的差異。圖/ Wikimedia common

有肛門?沒肛門?

以人類來說,我們將食物從嘴巴送入體內,中間經過消化系統的處理,最後食物殘渣從肛門排出體外;那現在想像一下,如果消化道的尾端沒有像肛門這樣的開口,殘留的食物便會逆流而上,從原本進食的地方排出去⋯⋯沒錯!從人類的角度來看或許會覺得怪怪的,但數億年前,許多在海裡生活的生物都是只有單一開口,由同一個地方進食、排出殘渣,在現存的生物中,例如海葵、珊瑚等,牠們在進食時一次吃一團食物,然後再從同一個孔排出去,也因此這些生物的消化囊就像是假日大賣場的單道停車場,因為空間有限,必須一進一出才能再進,攝取進體內的量便有一定的限制。

-----廣告,請繼續往下閱讀-----
海葵的肛門。圖 / flickr

肛門的出現,就像是把停車場變成了高速公路,有了交流道之後,生物不需要等上一餐排出去才能繼續吃,而能夠一餐接著一餐,而且消化道變長之後,逐漸分隔成不同區域,各自具有獨特的微生物相,也形成能吸收不同的營養,讓生物能夠從攝食中獲取養份的效率提高,與生物的體型變大、變長以及移動方式的改變也有密切的關係。

酷肛門!

在了解肛門在生物體中的重要程度後,如果你以為肛門只能把食物殘渣排出去,那就太小看它了~接著我們來聊聊世界上百百款的肛門吧!

首先,有些動物的消化道、生殖器和泌尿道的末端合併成一個開口,稱為泄殖腔(cloaca) ,能夠排出糞便、尿液、卵子或精子,像是鳥類、兩棲爬蟲類都有這樣的構造,泄殖腔有時候很方便,譬如雌鳥在和不喜歡的雄鳥交配的時候,就能夠輕鬆地將精子排出去。至於為什麼有些動物的生殖孔和肛門是分開的,但位置卻很接近,這又是另一個故事了。

鳥類的泄殖腔。圖 / Judi Lapsley Miller 

除了泄殖腔外,前面提到海參有「最強肛門」,這不是亂說的,因為海參的肛門不只是一個排廢物的出口,還能作為牠的第二張嘴,可以吞食一些藻類,金價ㄟ「後庭進食」就是海參啦!除此之外,海參消化道的末端旁分出一對樹枝狀的器官,稱為呼吸樹 (respiration tree),可以透過肛門肌肉收縮,將海水吸進體內,藉由吸收海水中的氧氣進行氣體交換,也就是用肛門呼吸(屁之呼吸啾4尼啦~)。

-----廣告,請繼續往下閱讀-----

如果你覺得肛門可以進食和呼吸還不夠看,那接著更猛的是——肛門還可以發動攻擊。海參體內有一個防禦器官稱為「居為業小管 (Cuverian tubules)」,在遭受機械刺激時,會從肛門排出一種白色細絲,這些細絲在海水中會變長,與其他物體接觸時還會變得黏黏的,可以用來纏住捕食者,而且對某些魚類來說是有毒的。

除此之外,有些海參的肛門還有「肛齒 (anal teeth) 」,顧名思義就是長在肛門的牙齒,可以避免一些不請自來的生物,在牠的後庭來去自如;但是其實也有生物能夠自由進出海參的肛門,例如隱魚 (pearlfish) ,牠們不會被居為業小管攻擊,而且也對海參排出的毒素有較強的抵抗力,所以當海參張開肛門呼吸時,有時候你可以看到在裡面蠕動的隱魚們 say hi~,正所謂「全家就是你家,你的肛門就是我家啦!」

最後也是我覺得最酷的是,不是所有生物的肛門都像便利商店一樣 24 小時營業的,2019 年的一篇研究發現有一類櫛水母 Mnemiopsis leidyi 的肛門在排便的時候出現,之後就消失了,而重複排便間隔的時間長短則和體型大小有關,例如幼體約十分鐘、成體一小時左右,換句話說,這是一種「間歇性肛門」,科學家們認為這個發現對肛門演化過程有很大的幫助,若繼續深入研究,有機會找到永久性肛門是如何演化出來的。

關於肛門的故事,大概可以聊個三天三夜,例如肛門的演化也是非常精彩,下次當你提到肛門,但旁邊的人露出「假裝不認識你」的表情時,就可以跟他解釋肛門有多偉大、介紹那些超酷的肛門,然後他就會⋯⋯(自行想像)

-----廣告,請繼續往下閱讀-----
  1. Nielsen, C., Brunet, T., & Arendt, D. (2018). Evolution of the bilaterian mouth and anus. Nature ecology & evolution, 2(9), 1358-1376.
  2. Hejnol, A., & Martín-Durán, J. M. (2015). Getting to the bottom of anal evolution. Zoologischer Anzeiger-a Journal of Comparative Zoology, 256, 61-74.
  3. What is Deuterostomes?
  4. Superphylum Deuterostomia
  5. Dean, R., Nakagawa, S., & Pizzari, T. (2011). The risk and intensity of sperm ejection in female birds. The American Naturalist, 178(3), 343-354.
  6. Parmentier, E., & Vandewalle, P. (2005). Further insight on carapid—holothuroid relationships. Marine Biology, 146(3), 455-465.
  7. Flammang, P., Ribesse, J., & Jangoux, M. (2002). Biomechanics of adhesion in sea cucumber Cuvierian tubules (Echinodermata, Holothuroidea). Integrative and Comparative Biology, 42(6), 1107-1115.
  8. Ru, X., Zhang, L., Liu, S., & Yang, H. (2020). Plasticity of respiratory function accommodates high oxygen demand in breeding sea cucumbers. Frontiers in physiology, 11, 283.
  9. Jaeckle, W. B., & Strathmann, R. R. (2013). The anus as a second mouth: anal suspension feeding by an oral deposit‐feeding sea cucumber. Invertebrate Biology, 132(1), 62-68.
  10. Tamm, S. L. (2019). Defecation by the ctenophore Mnemiopsis leidyi occurs with an ultradian rhythm through a single transient anal pore. Invertebrate Biology, 138(1), 3-16.
  11. The Body’s Most Embarrassing Organ Is an Evolutionary Marvel

泄殖腔親吻是什麼?一起看影片了解吧!

-----廣告,請繼續往下閱讀-----
所有討論 1

0

16
2

文字

分享

0
16
2
和鳥類學飛翔,讓人類學會飛行奧秘——《天才達文西的科學教室:像科學家一樣,發明、創造和製作STEAM科展作品》
快樂文化
・2021/01/30 ・3697字 ・閱讀時間約 7 分鐘 ・SR值 512 ・六年級

飛行的物理學

「觀察在稀薄高空中飛翔的老鷹,牠的翅膀是如何鼓動著空氣,讓沉重的身體得到支撐。物體對空氣施加的力量,等於空氣對物體施加的力量。」15 世紀末,達文西在筆記本如此寫道。達文西僅憑觀察,就掌握飛行的原理了。

飛行的原理讓達文西深深為之著迷。他發明人力驅動的飛行器,試圖證明人類能否飛上天,還設計人類可以操縱的翅膀。他仔細研究飛行中的鳥,並且提出飛行的假說:「鳥類張開寬寬的翅膀,加上短短的尾巴,準備起飛,」他接著寫道,「鳥類必須用力抬起翅膀,然後放下翅膀拍動下方的空氣。」

金鵰的翅膀善用空氣分子,身體起飛與降落。圖/天才達文西的科學教室

上圖的金鵰比空氣重,但是翅膀造形卻能善用空氣分子,讓身體起飛與降落。金鵰飛行的時候,你認為氣流通過翅膀上方與下方時,哪邊的速度較快?量量看, 1 公尺有多長,是金鵰身體的長度;再量量看 23 公尺有多長?這是牠的翅膀展開的長度!再想像一下:金鵰拍動翅膀、凌空起飛的模樣。你認為翅膀上方還是下方的氣壓比較大?可以解釋原因嗎?

達文西的《鳥類飛行手稿》。圖/天才達文西的科學教室

上圖的字跡與插圖,出自達文西的《鳥類飛行手稿》 (Codex on the Flight Of Birds)。他的研究,造福許多後世的科學家,包括丹尼爾•白努利 (Daniel Bernoulli)。他在 1738 年解釋了空氣流動的科學原理。

-----廣告,請繼續往下閱讀-----

白努利認為:鳥類飛行時, 因為翅膀結構的關係,空氣通過翅膀上方的速度較快, 使得氣壓較低,而空氣通過翅膀下方的速度較,使得氣壓較高。翅膀上方與下方的壓力差,進而造成了升力。

編按:解釋飛機能升空飛行的物理概念,除了白努利概念外,尚有其他因素,例如飛行時的角度、飛機造形和其他效應等。

有許多物理概念可以解釋飛機能升空的原因。圖/天才達文西的科學教室

飛機為什麼可以在天上飛?

開始調查吧!

我們蒐集資訊,一起設計翅膀,就跟達文西一樣!我們將蒐集涵蓋翅膀形狀、空氣與運動方面的資訊,也跟達文西一樣,提出許多問題。

問題:淚珠的形狀,和飛行有什麼關係?

下圖的形狀,好像淚珠的一側。看到這種形狀,是否讓你聯想到它與飛行的關係呢?

-----廣告,請繼續往下閱讀-----
翼型會聯想到噴射機的機翼或鳥翼的形狀。圖/天才達文西的科學教室

答案:這就是翼型。

淚珠的形狀,我們稱為「翼型」。這樣的造形,可能讓你想起噴射機的機翼或鳥翼的形狀。翼型的前端是較厚的圓弧,後端則逐漸變薄、變窄。

飛行中的翼型向前挺進,空氣分子往上也朝下移動。翼型下方的空氣分子,移動的速度慢於上方滑過的空氣分子。空氣分子移動速度較慢,造成的氣壓就比較大。想像一下:翼型下方的空氣,等於處在被壓縮的狀態,翼型下方,較強的氣壓向上推,造成的力量稱為「升力」

模擬飛行中翼型的空氣分子移動狀態。圖/天才達文西的科學教室

受到鳥類的啟發

看到鳥翼的切面,居然就是翼型,你是否大吃一驚呢?說穿了,航太工程師就是從飛行中的鳥類得到靈感。移動的翼型會切過空氣,與周圍的空氣產生了力的作用。空氣分子——渺小不可見卻能施展強大的力量,從四面八方擠壓著翼型。翼型向前移動的時候,因為與空氣產生了交互作用而起飛。

將書本平放在桌上一隻手塞到書本下方,然後把書托起來。你的手在書下施展的壓力,就像慢速通過翼型下方的高壓。另一方面,通過翅膀上方的空氣,移動速度較快,形成了較低的氣壓。

-----廣告,請繼續往下閱讀-----

空氣分子在機翼上的賽跑

讓我們進一步調查

問題:通過翼型上方的空氣,是否因為空氣要通過的距離較長,因此速度才會變快?

答案:根據美國的國家太空總署 (NASA) 工程師分析,機翼上方空氣的速度很快,只是為了比下方空氣更早抵達機翼後方,而不是因為距離較長。機翼上方的低壓空氣,其實速度更快!

畫出你的翼型

畫出屬於你自己的翼型,請標示以下項目

  • 高壓區
  • 低壓區
  • 快速移動的空氣
  • 慢速移動的空氣
  • 空氣流動的方向
  • 升力的方向
嘗試畫出屬於自己的翼型。圖/天才達文西的科學教室

和達文西一起賞鳥

達文西不只觀察飛行中的鳥,他也細看鳥的各種狀態,而且反覆觀看。他寫下筆一三己,問自己問題,例如:鳥類用什麼樣的方式使用翅膀?然後想辦法找出解答。以上這些行為,就是「觀察」。

當個自然觀察家吧!住家附近就可以好好賞鳥。不管你住在哪裡,都有機會走出家門,觀察鳥類百態及其飛行方式。記得帶著筆記本、鉛筆、色鉛筆與望遠鏡,可能的話帶一台相機,現在就抽出時間邁向戶外吧!

-----廣告,請繼續往下閱讀-----

你的觀察記錄將充滿獨一無二的個人風格。看到小鳥,先用肉眼觀察。接著,以素描記錄觀察到的現象:畫出鳥類的輪廓,有沒有值得注意的花紋或樣式?先畫下外形,然後加上顏色:鳥喙是什麼顏色?腳呢?也花點精力注意體型大小:和其他鳥類相較,有多大或多小呢?有沒有攝食?歌聲或叫聲怎麼描述呢?鳥類如何起飛?如何降落?鳥類會順風起飛嗎?其他數據、記錄地點、天氣與賞鳥的時段,都要記錄下來。

用相機記錄身旁觀察到的現象。圖/Pixabay

以飛機工程師的方式來思考!

用另一種角度來看翼型。機翼後緣窄窄的後翼往上或往下,會有怎樣的效果呢?飛機工程師設計噴射機的時候,讓機翼的後緣可以伸展或彎折,透過這樣的方式讓空氣分子流動,達成特殊目的。如下圖所示請利用本小節的訊息,預測這樣設計的目的,並把假說寫在筆記本裡。

機翼不同構型讓空氣分子流動,達成特殊目的。圖/天才達文西的科學教室

下圖是根據達文西的設計而重建的機械翅膀。翅膀的形狀不像翼型,但是從喇叭似的形狀看來,功能就是壓下空氣分子,以產生向上的升力。這款翅膀有沒有讓你想起某種哺乳動物呢?

根據達文西的設計而重建的機械翅膀。圖/天才達文西的科學教室
根據達文西的設計而重建的機械翅膀很像哺乳動物蝙蝠。圖/天才達文西的科學教室

一起動手玩:創造一個翼型

實驗材料:影印紙、膠帶、30 公分長的直尺、鉛筆(最好是六角鉛筆)、吹風機

實驗步驟

  1. 輕輕彎折紙張,以垂直方向對摺。這時紙張會有淺淺的摺線,並且出現翼型般的曲面。
  2. 把紙張轉成水平方向,曲面朝下。將上半張紙的邊緣往後移 1.27 公分,用膠帶固定。
  3. 把直尺伸到紙張底下,在 5 公分處用膠帶把尺和紙黏在一起;紙張的邊緣也要和直尺黏合。
步驟 1-3 的操作示範。圖/天才達文西的科學教室

4. 把鉛筆放在距離直尺 12.7 公分處,和直尺垂直擺放,並以膠帶黏和。

步驟 4 的操作示範。圖/天才達文西的科學教室

5. 將吹風機設定最小風量模式,待會對著翼型的吹端吹。你認為吹風機啟動後,會發生怎樣的現象?請先寫出假說。

-----廣告,請繼續往下閱讀-----

6. 現在測試你的實驗設計與假說。找個夥伴握住鉛筆兩端,翼型曲面朝向你。這時再啟動吹風機的小風量模式,直尺會怎樣?你感到翼型的升力了嗎?

步驟 5-6 的操作示範。圖/天才達文西的科學教室

實驗背後的科學

如同你所認知,通過翼型上方的空氣,移動的速度比翼型下方的空氣快。翼型下方的空氣分子在較高的壓力下受到擠壓。氣壓較高的空氣分子,向上推擠。翼型下方的高壓及上方的低壓,組合起來造成了升力!

——本文摘自《天才達文西的科學教室:像科學家一樣,發明、創造和製作STEAM科展作品》,2020 年 10 月,快樂文化

-----廣告,請繼續往下閱讀-----