0

0
0

文字

分享

0
0
0

隔空舞動的樂音與漂浮空中的現代芭蕾── 2018 年「歌劇院台灣國際藝術節」帶來了什麼新鮮事?

鳥苷三磷酸 (PanSci Promo)_96
・2018/03/27 ・4039字 ・閱讀時間約 8 分鐘 ・SR值 513 ・六年級

本文由臺中國家歌劇院委託,泛科學企劃執行

  • 文/趙軒翎
圖/臺中國家歌劇院 提供

科技發明改變你我的生活,除了技術的進步,關鍵更在於人類的創造力。藝術,是在社會發展之前,先窺探到未來可能發生在人類身上不可思議變化的望遠鏡。當藝術碰上科學,會遇上怎樣的火花呢?

今年(2018)在臺中國家歌劇院舉辦的「歌劇院台灣國際藝術節」(NTT-TIFA)中,將展演一系列來自世界各地的表演藝術作品,它們不只是純粹的芭蕾舞、現代舞、舞台劇,這系列的表演中,藝術家特別加重了「科技」元素的展現。

如果你想趁著清明連假來好好的充實探索一番的話,就讓我們一同欣賞即將在 4/7、4/8 登場的《I / II / III / IIII》和《手足舞蹈音樂會》吧!

-----廣告,請繼續往下閱讀-----

漂浮空中的現代芭蕾《I / II / III / IIII》

《I / II / III / IIII》。 圖/臺中國家歌劇院 提供

音樂落下,黑暗的背景中,只見光影裡一、二、三、四名身穿黑衣的舞者在半空中翻身倒吊,旋轉、懸浮、跪臥、伸展,受制於隱沒在黑暗中的懸吊裝置,魁儡般舞出相同的姿態。音樂中舞姿相似的舞者究竟是人類?還是機器?他們是被拘束行動的機械?還是脫離重力束縛的自由人?

這個奇異到令人不安的現代芭蕾《I / II / III / IIII》,是比利時藝術家克里斯.瓦東克(Kris Verdonck)著名的作品之一,他主張:「面對極端情況,身體自然湧出的能量才是極美。」透過懸吊的方式,克里斯營造出對舞者柔性摧殘的氛圍,讓觀眾在體驗美感的同時還夾雜著不安甚至是略帶恐懼;而感官與思想的衝突也在於眼前懸浮的舞者與人類渴望對抗重力卻不可得的現況,兩者之間所產生的對比。

人類一直都想擺脫地心引力的控制,但就算是人類技術結晶的飛機或是火箭,都僅僅是透過產生能夠抵銷引力的推力,才得以翱翔於天際、短暫脫離地球束縛。地球上的物體永遠都會被重力作用影響,我們嚮往反重力,而這仍是未盡之夢;《I / II / III / IIII》卻營造出了似乎不被重力拘束的漂浮空間,懸吊讓舞者表現出不同於一般現代芭蕾舞者所有的動作與速度感,卻又藉由編舞設計,讓舞者舉止卻又像是被拘束的機械,創造出這在想像之外的奇異場景。

人類和機器的運動有什麼差別?美感的展現是要表現自己的靈魂,還是要拋下自我意識?

科技對於現代人的生活已然無孔不入,在最初的機械問世之時,世人隱性的焦慮,討論「科技性失業」帶出的延伸問題:人與機械有何不同?有一天人類將會被機械所取代嗎?這樣的探問反覆出現在過去的科幻作品之中,也將再現於我們的未來世界中。《I / II / III / IIII》更是將這樣的焦慮具現化為現代芭蕾舞的一部分,瓦東克的編舞讓舞者在舉止間失卻獨特的個性,挑戰觀者對於機械與人性的認知。

-----廣告,請繼續往下閱讀-----

瓦東克:持續探問美感與人性

創作《I / II / III / IIII》的藝術家克里斯 ‧ 瓦東克。 圖/臺中國家歌劇院 提供

I / II / III / IIII》也是瓦東克對於「美感」的探問、實驗。整個表演分成四個段落,分別由一個、兩個、三個、四個舞者依次登場,剛開始時一個舞者的詭異氛圍,在第二、三、四個舞者加入後,卻湧現協調的意外美感。表演中途,舞者因為懸吊的緣故,難免出現動作不完全一致的情況,瓦東克觀察到,這時也會感受到觀眾期待著舞者再次回歸協調、回歸美感的強烈情緒。

看看上面的影片,你是否也有相同的感受呢?

I / II / III / IIII》發想自經典芭蕾《天鵝湖》的片段「四小天鵝圓舞曲」,四名舞者像機械人做出一模一樣的動作,而對瓦東克來說,直到有舞者出現錯動打破和諧,美感才在其中油然而生。瓦東克自 2000 年初開始創作,遊走於劇場、裝置藝術與舞蹈間,他過去的作品就時常試圖挑戰肉體與機器的界線,探問人性和機械、空虛與存在。

《I / II / III / IIII》主要發想自《天鵝湖》。圖/2018 台灣國際藝術節

利用整齊劃一的動作,《I / II / III / IIII》的創作,將人體轉化為活動機械,再加入機械與之共處與協調;原始規劃的舞蹈動作遠超過正式表演的內容,經歷各種嘗試後,團隊與機械妥協,將舞蹈速度整體放慢、參與舞者數量減少,卻也因而營造出截然不同的氣氛。

-----廣告,請繼續往下閱讀-----

克里斯的多數作品中,「恐怖」與「美」相輔相成、缺一不可,作品中的美感依靠著恐怖不協調的元素建構出內在張力,進而帶來與眾不同的感受。
你,準備好踏上這個充滿美感張力的旅程了嗎?

特雷門琴:現代與奇幻兼具的電子樂器

20 世紀初期,世界上首款使用電能演奏的電子樂器橫空出世,遠在現今大眾熟悉的合成器、電吉他出現之前。這款樂器改變了對「演奏」的認知,從獨奏到交響樂,不管是弦樂、管樂或打擊樂,音樂家都必須要觸碰到樂器,經過弓弦摩擦、鼓棒打擊、呼氣吹奏,才能發出樂聲。這款電子樂器的彈奏畫面非常奇幻,演奏家雙手懸空,優雅的動作或顫抖或停頓,變動看不見的電磁場操控如泣如訴的聲線。

這種樂器稱為特雷門琴(Theremin),俄國發明家里昂.特雷門(Léon Theremin)所發明。先來看看特雷門琴的長相,一個長方形的盒子,左右兩邊分別長出水平和垂直的兩個構造,水平的是個金屬環,垂直的是根金屬桿。

這就是傳說中的特雷門琴,是種「不能觸碰」卻可以演奏的樂器,由垂直和水平兩根天線所組成。圖/Hutschi – Self-photographed, [CC BY-SA 3.0] via wikipedia

營造特殊氛圍的電影配樂

特雷門琴的外型跟多數樂器截然不同,光看外表非常難以想像到其音色呈現。但多數人在不知情的情況下,應該都體驗過它的聲音,在 1950 年代前後,特雷門琴就常被應用於電影配樂,特別是恐怖片、科幻片這類型片,它虛無飄渺、充滿類比感的音色用於營造出特殊氛圍,引發出淒厲、詭譎、奇幻、的感受。
下面一段影片是 1951 年上映的科幻片《當地球停止轉動》(The Day the Earth Stood Still)的片段,旁邊搭配一名特雷門琴的演奏者。大家應該可從這個影片中感覺到特雷門琴演奏的音樂,如何成功地為這些早期的科幻片配樂。其他運用特雷門琴作為配樂的電影,有人整理好了相關文章,有興趣的話也可以參考。

-----廣告,請繼續往下閱讀-----

影片中可以看到,演奏者完全沒有碰觸到琴身,僅僅在半空中手指移動就能夠操控演奏特雷門琴。特雷門琴的左右兩側的金屬構造,其實就是兩根天線,具備了不同功能:右側垂直的天線影響音調頻率,左側水平的天線則操控音量大小。

這兩根天線都圍繞著電磁場,當手指靠近或遠離天線時,人體帶電的特性會造成特雷門琴的電磁場改變。當演奏家的手靠近特雷門琴的金屬天線,手和天線之間的電容會改變,進而影響到震盪的頻率,在不同手勢的操作下,發出不同的樂聲。

著迷於特雷門琴的人充滿世界各地,2015 年日本就曾經于吉祥寺舉行過特雷門琴音樂節;甚至更進一步,嘗試開發「家電樂器」,如果想要一把屬於自己的特雷門琴,也可以參考網站資料,親自動手打造喔!

《手足舞蹈音樂會》復刻挑戰人體的特爾西琴

開發特雷門琴後,特雷門以相同的原理,研發了挑戰人體極限的特爾西琴(Terpsitone)。Terpsitone,源自希臘神話舞蹈女神「Terpsichore」;顧名思義,特爾西琴的表演與舞蹈息息相關。特爾西琴的天線埋在舞台底下,當舞者在這個舞台上,舉手投足都會影響到電磁場,使電子樂器隨著舞動發聲。

-----廣告,請繼續往下閱讀-----

臺中國家歌劇院 2018 年 NTT-TIFA 藝術節,即將出現「復刻版」的特爾西琴;來自波蘭的新銳編舞家藝術家歐拉.瑪齊耶斯嘉,受到特爾西琴啟發,規劃出精彩的表演《手足舞蹈音樂會》。

來自波蘭的新銳編舞家藝術家歐拉.瑪齊耶斯嘉。 圖/臺中國家歌劇院 提供

特雷門琴與特爾西琴如此玄幻絢麗的樂器,駕馭兩者可是充滿了挑戰。特雷門琴懸空彈奏的魔幻特性,音樂家手指在空中就可以操控出虛無飄渺的樂音,因此一場完美的演出,需要不斷苦練熟悉立體空間的位置與手法,才能維持音準、完美演奏。而特爾西琴的挑戰更加龐大與艱辛,在直立的天線間,舞蹈家細微的移動、節奏變化,都會擾動電磁場,影響音調與響度;可以說,每場特爾西琴的表演都是舞蹈與音樂獨一無二的結合。

目前原始版的特爾西琴保存在瑞士,是特雷門為他愛跳舞的孫姪女 Lydia Kavina 精心打造的舞台。而今日,無須遠赴歐陸,歐拉.瑪齊耶斯嘉即將於臺中開鑼的《手足舞蹈音樂會》,大膽挑戰,再次引入特爾西琴的魅力,讓舞者在樂器天線間起舞,肢體引動音樂,搭配現場 DJ 即興演出,意圖挑戰觀眾對音樂與舞蹈結合的另一種認知。

跨越舞蹈與音樂,讓特爾西琴以另一種形式再現,邀你共舞。

-----廣告,請繼續往下閱讀-----

手足舞蹈音樂會》是一種舞蹈與音樂演奏結合的新挑戰,而《I/II/III/IIII》則開啟觀眾對於恐怖與美並存的感受。清明連假在臺中國家歌劇院,快來體驗科技融入藝術共舞時前所未見的魅力吧!

參考資料:

本文由臺中國家歌劇院委託,泛科學企劃執行

 

2018「歌劇院台灣國際藝術節」活動,精彩開鑼囉!

-----廣告,請繼續往下閱讀-----
文章難易度
鳥苷三磷酸 (PanSci Promo)_96
237 篇文章 ・ 317 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
以創造力漫舞於科技與藝術間,探索人類的未來──2018「歌劇院台灣國際藝術節」策展專訪
鳥苷三磷酸 (PanSci Promo)_96
・2018/03/01 ・4265字 ・閱讀時間約 8 分鐘 ・SR值 484 ・五年級

本文由臺中國家歌劇院委託,泛科學企劃執行

  • 文/趙軒翎

    圖/臺中國家歌劇院 提供

「藝術家永遠是在社會發展之前,看到未來三十年可能發生在人類身上不可思議的變化。」

邀請到臺法文化獎得主克里斯汀 · 赫佐(Christian Rizzo)擔任「2018 歌劇院台灣國際藝術節」(NTT-TIFA)共同策展人的幕後推手、同時也是臺中國家歌劇院藝術總監王文儀,談到科技與藝術時這麼說。

科技發明改變人們生活,關鍵並非技術的進步,而在於人類的創造力。藝術,更是創造力的先行者。當藝術家透過科學、科技等元素去成就表演時,我們能從中感知的不只是創造力萌發的歷程,更是利用藝術去對科技的未來進行探索。

今年(2018)在臺中國家歌劇院舉辦的「歌劇院台灣國際藝術節」(NTT-TIFA)中,將展演一系列來自世界各地的表演藝術作品,它們不只是純粹的芭蕾舞、現代舞、舞台劇,這系列的表演中,藝術家特別加重了「科技」元素的表現。

準備好要跟著我們一起用藝術去探索科技了嗎?

-----廣告,請繼續往下閱讀-----

與庫卡機器人翩翩起舞

舞台上兩道燈光,緊隨著男舞者與橘色機器手臂,舞者在起舞的同時,機器也隨之動作,像是有意識地成為舞伴。一人一機、一左一右詩意共舞,有如正在一同互動對話。台上的舞者是編舞家黃翊,而他的舞伴,並不是人類或是具有人類外型的「機器人」,其實是來自大型工廠的「機械手臂」,它的名字叫庫卡(KUKA)。

庫卡是德國機器人大廠製作的工業機器產品,不管是搬運大型玻璃、機械鑄造、金屬焊接等工作,它都能忍一般人所不能忍,耐高溫、耐髒、耐操、耐勞,成為自動化生產線的助力;在工廠的環境中,它是電腦控制的機械手臂,能夠精準完成被交付的任務。

《黃翊與庫卡》劇照。圖/臺中國家歌劇院 提供

在舞台上,庫卡似乎跳脫了機械的身分,有了自己的意識。王文儀說,在表演中有些時候黃翊想要去觸碰庫卡,有些時候換成庫卡也有「積極」觸碰人類的行為,冷冰冰的機器和舞者有溫度的肉身,用和諧舞蹈展開了既協調又對比的畫面。

-----廣告,請繼續往下閱讀-----

庫卡這個機器手臂能夠與人和諧共舞,背後依舊是程式在運作。在黃翊編舞時,也必須一行一行的編寫庫卡的移動程式,「教導」著庫卡這個新舞者,在他的指令下舞動,讓機器可以到這個舞台上與舞者一同展現美感與對話。

極美:面對極端情況,身體自然湧出的能量

而另一個擁有類似概念的表演是《I/II/III/IIII》,比利時編舞家克里斯.瓦東克的作品。特別的是,表演中女舞者們通通被懸吊在空中,像是魁儡般以相同的肢體動作,循環著獨舞、雙人舞、三人舞甚至四人舞。王文儀說,一開始看到懸吊在空中的舞者時,忍不住會聯想到影片中拍攝的屠宰場畫面,因此她自己將這個表演歸類成一個「危險邊緣」的作品。現代舞最基本的元素,包括了舞者個性的身軀以及適切的音樂;但是在這個作品中,漂亮的舞者被懸掛在機械裝置上,修長的腿、美麗的比例、柔軟的身體,都因此被限制,只能重複自動化系統一般的相同動作。

《I/II/III/IIII》劇照 圖/臺中國家歌劇院 提供

對於觀眾來說,這場表演也因此心情上也呈現一種洗三溫暖起伏的感覺,王文儀說自己在剛開始看表演時,時常在為台上懸吊著的舞者擔心,深怕她們一不小心跌下來,或是撞到旁邊的舞者。編舞家好似刻意將表演和觀眾都帶到懸崖邊,讓大家都繃緊了神經。但漸漸地,當觀眾感受到舞者其實完全能控制、掌握自己的姿態,緊張感才慢慢褪去。同時也因為緊張集中,而更能感受到舞蹈中的獨特美感。如果最初編舞家沒有將女舞者吊掛起來,那麼這齣現代舞碼反而無法帶來這麼深刻的感官體驗。

-----廣告,請繼續往下閱讀-----

編舞家瓦東克認為「面對極端情況,身體自然湧出的能量才是極美」表演中試圖藉由這種柔性的「摧殘」,希望引發觀眾奇異的聯想。如果要簡短形容這齣舞碼,或許就是一齣機械版的「天鵝湖」,讓觀眾感覺矛盾,微微驚異的同時被其中的翩翩優雅所吸引。

以機械音表達空間哲學

而另一名義大利籍編舞家瑪麗亞.多娜塔.居荷索的表演《黃金 E 空間》,卻又是另外一種藝術家與科技之間的應用與妥協。非常喜愛東方文化的她,想在舞台上呈現日本文化對於空間的概念。在她的舞台上,有許多多面體在舞台上轉動,舞者在舞蹈中自然地與多面體互動。

《黃金 E 空間》劇照 圖/臺中國家歌劇院 提供

王文儀分享,這個表演當初在設計上,為了要讓多面體能夠如編舞家的要求,在舞台上可以平滑、順利、安靜的轉圈,確實在儀器上花了許多功夫。然而,最終「安靜」這點受限於器材本身,有了一些調整,卻成為作品中一個巧妙的設計。

-----廣告,請繼續往下閱讀-----

原來,要使舞台上的多面體轉動,馬達聲響始終無法避免。就像是我們生活上有許多電器用品,使用的過程仍不免產生額外的聲音,成為生活中的背景音。在這齣表演中也相同,編舞家既無法解決馬達的聲響,她選擇了與聲音共存,讓它成為作品音效的一部分。在表演的音樂之中,沒有特別去掩蓋馬達的聲音,反而與配樂共處,成為演出音樂的一部份。而在最終,表演中存在的馬達音,就好像我們生活中冷氣機室外機的運轉聲、汽車引擎聲般,不突兀也不引起注意,反而作為一個補充空間感的存在。觀眾們更能隨著舞者的肢體,去探索幾何美學,感受編舞者的空間哲學。

使用高科技的苦惱:器材還需要更好!

藝術領域時常搶先使用科技新產品,而本次為了讓表演達到藝術家所要的效果,場館花費了許多心力去備齊所有器材。

以這次 NTT-TIFA 的《熱室》表演為例,這是一個把觀眾帶到舞台上,把觀眾席當作舞台的表演。當觀眾們坐在舞台之上,會有四個螢幕環繞在身邊,或上或下移動,播放著不同的片段。這是泰國導演阿比查邦.韋拉斯塔古的作品,他希望打造讓觀眾身處在夢境,感受虛實交錯的感官體驗,因此不僅需要多個螢幕投影,更要將原本的觀眾席佈滿煙霧。在其他小場館的表演還好,但這次《熱室》搬到歌劇院的大劇院表演,原來可容納 2000 人的場地得充滿煙霧,就得動用 40 台煙霧機才能做到。王文儀說,整個臺灣各式場館煙霧機總量可能也只有 4、50 台,這一個表演就需要這麼多台,真的超乎想像。

《熱室》劇照 圖/臺中國家歌劇院 提供

-----廣告,請繼續往下閱讀-----

除此之外,導演設計在觀眾席的最後方進行投影,不同於只是投影在舞台布幕上,由觀眾席最後方投影讓距離變遠,投影在煙霧上的影像效果得以清晰可見,著實費了籌備團隊許多苦心。投影機的原理在於使用高亮度的鹵素燈泡來製造光源,再透過將光分成紅色、綠色和藍色三種色光,打在螢幕上。因此投影機的燈泡是機器中相當重要的一環,也是昂貴的消耗品。然而這次歌劇院為了這個表演使用了新型的投影機,以雷射光作為光源,亮度可達 3 萬流明,具有遠比一般投影機更強大的投影效果,解決了表演所需儀器的難題。

因此在觀賞《熱室》的時候,就像身處一場穿梭在觀眾席以及舞台上、參與現場演出的電影,在醫院照顧嗜睡症病患的志工阿珍,和沉睡的士兵阿義,在彼此的夢境中相遇。隨著聲光音效的轉換,跟從導演的安排,穿越在故事的現實、回憶與傳說之中。然而,你也會發現這不只是一個表演,更是導演自己對於泰國生活與社會的描繪,與對現狀提問的能量釋放。

鏡像的舞蹈,挑戰你的感知

不只利用高科技,今年臺中國家歌劇院也有些表演運用了特殊的設計,玩弄觀眾的感知。

在《立體.境》中,對分為二的舞台上,每邊各站著一個舞者,隨著音樂舞動。兩邊舞者以相同的舞姿開場,然而隨聲光的改變,以舞台中線為鏡面,舞者竟逐漸相對跳起鏡像的舞蹈。在這齣表演中,編舞家梵松.居彭打造出一個超現實的平行舞台,讓舞者動態宛如雙胞胎,相似,卻又相異。

-----廣告,請繼續往下閱讀-----

《立體.境》劇照。圖/臺中國家歌劇院 提供

在這齣表演中,編舞者恣意的挑逗著你的感官,在各種破壞後,試圖重新搭造一個新的感知體驗。舞台上會刻意安排兩個舞者躍往舞台的兩方,讓觀眾不知該追逐哪一道身影;或是讓戴著耳機觀賞的觀眾,感受現場空氣、呼吸、聲響以及配樂節奏與影像動作間的微妙錯位,藉此挑逗眾的感官經驗與聆賞經驗。

特雷門琴,啟發舞動的音樂

特雷門琴。 圖/wikipedia

20 世紀初,既是物理學家也是音樂家的李昂.特雷門(Léon Theremin),發明了「特雷門琴」,一種完全不需要接觸就能演奏的樂器。這個樂器由兩個天線結構組成,一個控制聲量、一個控制頻率。人體與樂器的天線距離變化,會影響特雷門琴的電容大小,從而調整振盪頻率、產生不同的聲音。

-----廣告,請繼續往下閱讀-----

來自波蘭的編舞家藝術家歐拉.瑪齊耶斯嘉,就是受到特雷門琴的啟發,創作了《手足舞蹈音樂會》這支表演。在表演中,她牽動舞者身體與樂器天線之間的關聯,讓肢體引動而生的音樂,搭配 DJ 現場即興表演,每一場表演,都擁有獨一無二的旋律。

藝術家探索的不只是科技,更是人類未來的模樣

台灣國際藝術節(TIFA)已在臺北兩廳院進行十年左右,新開幕的臺中國家歌劇院從去年開始加入,成為 TIFA 的生力軍「歌劇院台灣國際藝術節」(NTT-TIFA)。

今年(2018)是 NTT-TIFA 的第二年,去年歌劇院剛正式啟用,以「青春」作為年度主題,相較於臺北,臺中在表演領域仍是個年輕的市場,王文儀希望帶給剛接觸劇場的觀眾優秀且經典的作品,選擇的表演相對在語言、劇情上較明顯。然而第二年的 TIFA,強調的則是「跨學科」,編舞家將不同領域的意象加入在表演之中,雖然仍有深層的情感連結與生動的情緒描繪,但因為使用了更多元的器材,讓人體在不同材質間創新表演的想像,拓寬了素材的範疇,並加重了作品的力量。

王文儀強調,這次的 TIFA 雖然運用了許多科技,但最重要的內容不只是科技,而是藝術家藉此展現的創造力。為什麼不強調技術?王文儀說,確實所有科技藝術節都在探索如何在表演中加入高端的科技,但這一次我們呈現的藝術節,希望觀眾理解到表演背後藝術家充沛的好奇心與執行力。

「藝術沒有想要征服或證明什麼,而是一個探索的驚喜過程。」王文儀說。

本文由臺中國家歌劇院委託,泛科學企劃執行

 

2018「歌劇院台灣國際藝術節」活動,精彩開鑼囉!

-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
237 篇文章 ・ 317 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia