Loading [MathJax]/extensions/tex2jax.js

0

1
2

文字

分享

0
1
2

為何牛奶會讓人「小時好好,長大拉拉」?乳糖不耐和基因調控──《生命如何創新》

馬可孛羅_96
・2018/04/13 ・3739字 ・閱讀時間約 7 分鐘 ・SR值 549 ・八年級

-----廣告,請繼續往下閱讀-----

雖然很甜蜜,卻讓你脹氣的乳糖

用「奶」(milk)隱喻善良與美德的說法很難被打破。馬克白夫人的丈夫有著太多「如奶般的惻隱之心」所以無法殺害君主,《出埃及記》(Exodus)第三章許諾希伯來人一個「流奶與蜜之地」,直到現在我們形容無害的東西「就像母親的乳汁」。

但對世界上超過一半的人來說,一杯健康的牛奶明顯沒有好處,它代表脹氣、打嗝和腹瀉──這是缺乏乳糖酶的結果,它可以為我們的身體預先咀嚼香甜奶中的乳糖。沒有它,身體將無法分解乳糖,只好留給腸道細菌處理。細菌快樂地清除這些未使用的燃料,留下廢物並伴隨討厭的副作用。

乳糖不耐的成人還是嬰兒時能消化母乳中的糖分,當時他們的乳糖酶基因是打開的,科學界稱之為「表現」(expressed),代表身體將乳糖酶的 DNA 指令轉錄成 RNA,再將此 RNA 轉譯成需要的蛋白質。乳糖不耐的成人則將乳糖酶基因永遠關掉並不再表現。能被我們身體打開或關掉、像乳糖酶基因這類的,就是所謂「受調控」的基因。

via geograph

大部分人類歷史中,成人的乳糖酶常態處於「關閉」狀態。若你夠幸運能耐受乳糖,表示在你的乳糖酶控制區域(乳糖酶基因附近的 DNA 延伸)中有個突變,讓乳糖酶基因在成人時期能隨時打開。你的先祖有可能是喝牛奶的牧民,造成乳糖耐受的突變首先在東非和斯堪地那維亞的畜牧族群中傳開,而且速度極快。從人類首次發現畜牧生活型態開始,大約八千年,不過是曇花一現的時間,一些族群就從零突變躍升到九○%突變。這就是天擇在我們基因體留下最有力的近代特徵之一。

-----廣告,請繼續往下閱讀-----

從消化到形態:「調控」的多樣功能

令人嘖嘖讚嘆的是,乳糖引起的消化不良和創新有密切的連結,串起它們的就是「調控」,也就是像乳糖酶基因這種分子活性轉變。調控所影響的遠比腸胃不適來得多,還牽扯到生物千變萬化的形狀:水母優雅的波浪傘狀結構、鯊魚宛如致命魚雷般的體形、玫瑰的細長莖、紅杉的巨大樹幹、蝮蛇的致命盤繞、兔子輕盈的腳,還有鳥類翱翔的翅膀。

從世上初有細胞的朦朧時刻就已經出現調控機制,為這個膜容器與 RNA 基因體的成長取得平衡。超過三十億年後,調控為地球上所有生物的身體塑形。不了解新的調控如何出現,就無法理解任何創新。

即使調控控制了最複雜生物的形狀和功能,但就像其他實驗一樣,在最簡單的細胞中最容易研究──受試的對象就是細菌。這是方斯華.賈科布(François Jacob)和賈克.莫諾(Jacques Monod)兩位法國遺傳學家贏得諾貝爾獎的原因。一九五○年代初期,當時雙股螺旋結構才剛被發現,他們便證明了像大腸桿菌這種原始細菌如何調控基因表現而能夠消化乳糖。

從傘型的水母到乳糖不耐症,「基因調控」都扮演了極重大的角色。圖/wiki

轉錄調控蛋白如何調控乳糖酶的表現?

基因表現起始於一種分子複製機器,它是個製造聚合物(polymer)的聚合酶(polymerase)酵素,此聚合物是許多較小建構組成的鏈狀分子,也就是我們在一個基因忠實的 RNA 產物裡找到的四種核苷酸。

-----廣告,請繼續往下閱讀-----
基因表現的其中一個過程:RNA 聚合酶轉錄出 mRNA。By Genomics Education Programme (Process of transcription) [CC BY 2.0], via Wikimedia Commons

當此聚合酶要轉錄一個基因,它首先會接上基因的 DNA,沿著一個個 DNA 字母滑動,並將 RNA 分子串在一起,而 RNA 字母序列會與基因的相同。細菌也是如此表現它們使用的乳糖酶:β-半乳糖苷酶(beta-galactosidase,這個字很累贅,通常簡寫成 beta-gal)。這個酵素會將乳糖切成兩個較簡單的醣類─—葡萄糖及半乳糖,其他代謝酵素可以從它們取得能量和碳。

為了調控 β-半乳糖苷酶基因,細胞用轉錄調控蛋白(transcriptional regulator)來操控轉錄。此蛋白質基本上只做一件事:占據基因附近的一小段 DNA 延伸。

在細胞的液體環境中,多種調控蛋白在其中漂來漂去,當任何一個蛋白遇到特定 DNA 序列(DNA「字碼」)時就會結合並黏住。不同調控的蛋白有相異的關鍵字,β-半乳糖苷酶調控蛋白辨認的關鍵字是「GAATTGTGAGC」。

讓辨認工作可行的,就是像讓酵素能夠工作的摺疊蛋白質的形狀。調控蛋白和 DNA 必須有互補的形狀,類似樂高積木,一塊積木上的幾個小突起與另一塊上面的凹陷緊密貼合。這個比喻十分恰當,但仍有限制,因為形狀不是一切,例如兩個分子還需要帶有互補電性,否則會相互排斥。而且一套標準樂高積木只有幾十種形狀,但分子卻不同,蛋白質有數萬種形狀,DNA甚至還更多—就跟可能的DNA序列一樣多

-----廣告,請繼續往下閱讀-----
基因調控有一點跟樂高有點像:積木上的形狀會決定兩塊零件能不能接合在一起,基因調控則取決於 DNA 和調控蛋白是否能互補結合。via wikimedia

更重要的是,與樂高積木不同,許多分子會自發地改變形狀,這不只發生在它們像酵素一樣震動的時候,也出現在它們彼此結合時。這種形狀的改變就像你把正確的鑰匙插入鎖中一樣,只有在當下轉動鎖芯才可以開門,而分子中除了熱以外,沒有別的方法可以讓它轉動。

調控蛋白類似於樂高積木的結合,用最簡單的可能方法調節 β-半乳糖苷酶的製造:為聚合酶創造路障。因為調控蛋白的關鍵字就被放在聚合酶開始轉錄之處,當周遭沒有乳糖時,調控蛋白(R)會結合此關鍵字並阻止聚合酶(P)讀取基因,基因便保持關閉。

為了使用富含能量的乳糖,細胞需要排除這個路障。要了解它們是怎麼辦到的之前,得先知道調控蛋白不只能跟 DNA 結合,還能結合另外的分子,就像樂高積木可以和許多其他積木連接一樣。所謂另外的分子,就是乳糖。

當乳糖這把鑰匙與調控蛋白這個鎖結合時,調控蛋白便會改變形狀,不再與 DNA 互補而分開。聚合酶現在可以自由地一字一字轉錄 DNA,細胞再從 RNA 製造 β-半乳糖苷酶。總之,當有乳糖可用時,β-半乳糖苷酶的基因打開,製造出β-半乳糖苷酶,否則轉錄會受阻而造成基因關閉。

-----廣告,請繼續往下閱讀-----

β-半乳糖苷酶是絕佳的好東西,只不過用起來所費不貲。一個細胞開啟β-半乳糖苷酶的表現後,產生的不是幾十個蛋白質而已,而是大約三千個相同的分子,每個分子都需要供給超過一千個胺基酸並綑綁在一起,代價就是要付出分子原料和能量。

製造 β-半乳糖苷酶的成本有多高?

常識告訴我們,細胞應該要調控β-半乳糖苷酶,以避免浪費這些原料,但如果常識總是引導自然之道,那麼生物學家就要失業沒什麼事可做了。倘若細胞可以製造數以百萬計的其他分子,那麼不斷製造 β-半乳糖苷酶的成本可能就微不足道,讓基因一直開著也有實質上的優勢,當乳糖可利用時就能搶先一步。

二○○五年,以色列魏茨曼科學研究院(Weizmann Institute)的埃雷茲.德克爾(Erez Dekel)和烏里.艾隆(Uri Alon)想要算出表現 β-半乳糖苷酶真正的成本。他們耍了點花招,讓細胞相信乳糖就在周圍,但事實上並沒有。細胞不合理地打開 β-半乳糖苷酶基因,假如浪費真會造成差異,應該會拖長增殖分裂的時間。

確實如此,慢了幾個百分點。這有點像身無分文的開發商蓋房子,有座不需要的游泳池不但花掉錢和原料,還漏掉建造其他必要的房間等等。優良的建商能更快完工,賣出房子並繼續建造新房舍,有人卻還在為挑選泳池瓷磚絞盡腦汁。

-----廣告,請繼續往下閱讀-----

建造延遲總計不過幾個百分點,看起來不多,對大腸桿菌而言,只比平常分裂所需的二十分鐘約莫多了一分鐘,但那一分鐘最後會變得很致命。一個族群剛開始時有五○%的細胞浪費了資源,八十天後比率不到一%,僅僅三百天後少於百萬分之一。快速、必然且不幸地,它們會被繁殖較快的細胞淘汰,這就是天擇迅速而殘忍的行動。

什麼?百分之幾的差距就會被天擇淘汰?via giphy

基因調控:避免資源浪費

若調控因為能避免浪費而事關緊要,那麼它應該無所不在,而事實也是如此。試想一包含數百個反應(乳糖酶只催化其中之一)的代謝作用,就像複雜且相互連接的管線網路,網路裡流動著營養,網路外流動著生物質分子。每條管子有專用泵浦,也就是能在管中推進原料的酵素,一個細胞可以根據所需來調控每個泵浦。

若有新的營養物質出現在土壤的一角,例如一顆掉落的蘋果或一具腐敗的屍體,土壤的細菌就會把能讓這些物質分子流過的泵浦打開;一旦吃乾抹淨,它們就會關閉泵浦。假若營養物質的量出現增加或減少的變化,細胞可以微調泵浦到正確的速度。

β-半乳糖苷酶基因被調控蛋白「抑制」,不過其他基因的調控方式正好相反:

-----廣告,請繼續往下閱讀-----

細胞平時將基因關閉,只在需要時「活化」它們。轉錄調控蛋白這次不是要阻止,而是幫助 DNA聚合酶轉錄一個基因。

儘管轉錄調控是最重要的一種調控形式,但仍有許多其他類型,例如調控從轉錄的RNA製造蛋白質的速度、蛋白質活性和壽命等。也許最具說服力來說明調控重要性的證據是:生命已經發明數十種不同方法來完成這件事。

 

 

本文摘自《生命如何創新:大自然的演化創新力從何而來?》,由馬可孛羅文化出版。

-----廣告,請繼續往下閱讀-----
文章難易度
馬可孛羅_96
25 篇文章 ・ 19 位粉絲
馬可孛羅文化為台灣「城邦文化出版集團」的一個品牌,成立於1998年,經營的書系多元,包含旅行文學、探險經典、文史、社科、文學小說,以及本土華文作品,期望為全球中文讀者提供一個更開闊、可以縱橫古今、和全世界對話的新閱讀空間。

0

1
1

文字

分享

0
1
1
貓咪也會學鳥叫?揭秘貓貓發出「喀喀聲」背後的可能原因
F 編_96
・2024/12/24 ・2480字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

貓是一種神秘而又引人注目的動物,牠們看似深居簡出,但擁有多元的聲音表達:從吸引人類注意的「喵喵叫」,到面對威脅時的「嘶嘶聲」與低沉的「咆哮」。

延伸閱讀:貓咪為什麼總愛對人喵喵叫?看貓如何用聲音征服人類的心

然而,細心的貓奴們可能會注意到,貓有時會對著窗外的鳥兒或屋內小動物玩具,發出一種獨特的「卡卡聲」或「咯咯聲」。這種聲音既像牙齒打顫,又好似一陣陣輕微的顫鳴,卻很難歸類到常見的喵叫或咆哮裡。這種名為「chatter」的行為,究竟在貓的生活中扮演什麼角色?目前科學界尚未對此有定論,但有幾種廣為討論的假說,或許能為我們提供一些思考方向。

卡卡叫:情緒的釋放或表達?

有些貓行為專家推測,貓咪在看到獵物(如窗外的鳥、老鼠)卻無法接近時,會因「欲捕無法」的挫折感或興奮感,發出這種「卡卡聲」。就像人類遇到障礙時,可能會發出抱怨的咕噥聲或乾著急的嘆息聲一樣,貓咪的「喀喀聲」也可能只是把當下的情緒外顯,並非有特別針對人或其他動物的溝通目的。

  • 情緒假說
    • 挫折:當貓看見鳥兒在窗外飛舞卻無法撲殺,內心焦躁,遂用聲音抒發。
    • 興奮:或許貓在準備捕獵時也感到高度亢奮,因此嘴部不自覺抖動並出聲。
貓咪的「喀喀聲」可能源於挫折或興奮情緒,表達捕獵受阻的內在反應。圖/envato

要在科學上驗證「情緒假說」並不容易,因為需要同時測量貓咪行為和生理指標。例如,研究人員可能需要測量貓咪在卡卡叫時的壓力荷爾蒙變化,才能確認牠們究竟是帶著正面興奮,或是負面挫折的情緒。不過,由於貓的獨立特質,實驗設計往往困難重重,樣本量要足夠也不容易,所以至今沒有定論。

-----廣告,請繼續往下閱讀-----

增強嗅覺?貓咪的「第二鼻子」

另一種說法則認為,貓咪發出「卡卡聲」時,可能同時開啟了其位於口腔上顎的「犁鼻器」(vomeronasal organ),也稱作「賈氏器官(Jacobson’s organ)」。這個感知器官能捕捉一般鼻腔聞不到的化學分子,如費洛蒙或特定氣味分子,因此對貓的求偶、社交和獵捕行為都非常重要。

  • 嗅覺假說
    • 張口呼吸:如果貓咪一邊「咯咯咯」地開合上下顎,可能在嘗試讓空氣(及其中所含的氣味分子)進入犁鼻器。
    • 蒐集更多環境資訊:在確定下手前,更完整的嗅覺分析或能提高牠們獵捕成功率,或是幫助判斷環境中是否有其他潛在威脅或機會。

然而,要科學驗證「增強嗅覺假說」同樣不簡單。研究人員不僅要觀察貓咪在卡卡叫時的行為,也需要測量牠們是否真的打開了更大的氣道,並在那個同時有效使用犁鼻器。這些行為與生理測量都必須在相對可控卻又不影響貓自由行動的實驗環境中進行,實務上難度頗高。

聲音模仿:貓咪的「偽鳥叫」?

貓咪的「卡卡聲」或許是為了模仿獵物的聲音,讓獵物降低警戒。圖/envato

第三種最有趣也最具「野性色彩」的假說,是「模仿獵物聲音」。在野外,一些中南美洲的小型貓科動物(例如:長尾虎貓,又稱美洲豹貓或瑪家貓,Margay)曾被觀察到,在捕獵小猴群時,發出類似猴子叫聲的音調;有些當地原住民族群也傳說,叢林裡的某些捕食者會模仿目標獵物的聲音來誘捕。由此推測,家貓看到鳥兒時發出的「卡卡聲」,可能包含些微模仿鳥兒啁啾的元素,試圖降低獵物警戒或甚至吸引獵物靠近。

  • 模仿假說
    • 案例參考:野生貓科動物曾出現學習或偽裝聲音的紀錄。
    • 家貓可能繼承的行為:家貓的祖先——北非野貓(African wildcat)及其他小型貓科物種,是否具備聲音模仿能力?這在生物演化研究上仍是未解之謎。
    • 缺乏大規模觀察:由於小型野生貓科動物研究資料有限,且家貓實驗更不易做大樣本長期追蹤,最終導致此理論尚未獲得廣泛實證。

貓咪行為研究的挑戰:野性祖先的重要性

探討貓咪行為,常常需要回溯至野生祖先的棲地環境。家貓(Felis catus)普遍被認為源自北非野貓(Felis lybica),然而,野貓習性的研究本就不多,尤其是關於聲音與捕獵策略更是資料有限。我們想知道「為什麼家貓會卡卡叫」,首先要確定:「牠們的野性祖先或其他小型貓科,也有同樣的行為嗎?」若有,家貓則可能繼承自古老基因;若無,則可能是家貓在與人類共處的環境中演化出的新行為。

-----廣告,請繼續往下閱讀-----
如果要探查家貓「卡卡叫」的原因,還需要了解其祖先或其他小型貓科是否具有類似行為。圖/envato

再者,貓在實驗室中的「不可控」因素相當多。貓不像狗般樂於服從人類指令,常有自己的規律與個性。要在實驗情境下穩定地誘發貓的「卡卡叫」行為、同時檢測牠們的生理和心理反應,並確保每隻貓的個體差異都被考慮到,這些都對研究團隊是極大考驗。

對於許多貓奴來說,貓咪坐在窗邊,一邊盯著外頭的鳥兒或松鼠,一邊發出獨特的「卡卡聲」,是一幕既可愛又神祕的風景。究竟牠們是在抒發情緒、強化嗅覺、抑或真的在「假扮鳥叫」以誘捕獵物?目前沒有確切的答案。然而,也正因為這層未知,貓貓才更顯得迷人。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
22 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

3
2

文字

分享

0
3
2
誠實面對人類參與的「自然」——太田欽也專訪
顯微觀點_96
・2024/07/11 ・3235字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

斑馬魚是最知名的模式生物之一,其基因、型態與發育深受了解,並用於探討深度同源等重要演化生物學問題。但也有科學家提出,演化生物學該持續隨環境演進,並嘗試以新的實驗物種——金魚——探討人類世(Anthropocene)環境下的生物演化。

育種歷史與基因巧合 奠定金魚的演化生物學價值

例如有千年馴化歷史、型態千變萬化的金魚,就相當適合探討人類因素與生物型態演化的關聯。

中研院細生所派駐臨海研究站的演化與發育生物學家太田欽也指出,斑馬魚與金魚兩者的胚胎都可以透過顯微鏡仔細觀察,相對於受精一年後才成熟的金魚,斑馬魚有成熟較快,基因組較為單純等優點,也具備許多現成基因研究工具。

-----廣告,請繼續往下閱讀-----

但斑馬品系間仍以其生理機能與基因為主要差別,對型態差異的演化並未那麼明顯。因為,科學家為了操作基因與細胞特徵而培育斑馬魚,使不同品系的差異大多來自目標明確的基因工程。

金魚型態演化圖。Courtesy of Kinya Ota and Gembu Abe

而金魚的型態變異,則完全來自飼養者對型態的偏好和育種,蘊藏更多元的型態變化與發育差異。其悠長的馴養歷史以及更古老的基因重複(Gene Duplication)機遇,使其值得成為演化發育生物學的新模式生物。研究器材和方法上的調整,則是生物學家展現才智的機會。

太田欽也舉例,「一般的解剖顯微鏡工作距離適合觀察和操作斑馬魚,但是經過我們自己的創意,也改裝出可以對金魚進行顯微手術的器具和適合拍攝的大型解剖顯微鏡。設備上的差異並不難克服。」

金魚胚胎的發育生物學優勢

太田欽也說,現代生物學家以果蠅和微生物育種進行遺傳與演化實驗,擴大時間維度來看,千年來金魚愛好者挑選、強化金魚外觀特徵的過程,可以比擬長時間的人擇實驗。

金魚不僅適合用來觀察人擇壓力如何影響成年生物的型態。太田欽也更想進一步探索,從胚胎階段的差異進行選擇,是否可能改變生物的型態。

-----廣告,請繼續往下閱讀-----

太田欽也提到,人工育種對發育與型態的影響力也展現在其他物種上,例如家犬與鴿子也被培育出許多特殊表型。但是哺乳動物和鳥類的胚胎觀察不易,需要相當高的技術與成本。

相對於動物子宮與鳥類蛋殼內的胚胎,在透明卵囊中發育的半透明金魚胚胎,就是非常容易觀察的研究對象。只要有恰當的複式顯微鏡、解剖顯微鏡和顯微手術能力,金魚的胚胎從受精到孵化都可以全程順利紀錄,而且每次繁殖可以蒐集到上百筆資料。

現代顯微攝影技術搭配容易觀察的金魚胚胎,讓太田欽也可以拍攝清晰影片,在網路上生動地分享發育生物學知識。攝影:楊雅棠

自製影片 盼演化生物學跨過學院圍牆

除了將金魚研究成果發表在 Nature 等科學期刊,太田欽也同時努力當起「Youtuber」。他希望能將演化發育生物學、金魚飼育經驗、臨海研究站的學術特色,甚至是宜蘭的風光,透過網路傳達給大眾。

武漢肺炎導致的漫長隔離,是他學習影音製作的契機。最初他在百無聊賴之下看了大量影片,後來逐漸萌發「我也要拍自己的題材!」的企圖心。開始搜尋拍攝、後製、配樂等網路教學,在隔離的單人房中逐漸進步。

-----廣告,請繼續往下閱讀-----

太田欽也說,拍攝影片最重要的動機是「分享」。他解釋,「科學的頻道不管累積再多追蹤者,例如數十萬人追蹤的 Nature, Science, 觀眾也以科學領域工作者為主。現代知識逐漸朝向『專家』與『外人』的兩極化狀態發展,我不喜歡這樣的社會。」

如同他推進學術研究的方法,他也透過自學、自己組裝基礎設備如空拍機、手機等,在節省開支的情況下拍出了中研院同僚為之驚艷的影片。

太田欽也為臨海研究站拍攝的簡介影片,基本款空拍機呈現了頭城的舒暢美景。

在早已開始的人類世 何謂自然?

太田欽也熱衷以空拍影片介紹宜蘭的郊野與人文,但他對主流輿論的「自然環境」內涵存疑,他認為「自然」早已被人類行為大幅改變。自從農業擴張、工業革命發生,人類對環境與生物的改變程度早已無法恢復「自然原貌」。

他以金魚的馴化過程為例,從宋朝開始的愛好者,透過育種極力凸顯特殊形態,從沒有背鰭的「蛋種」,到眼周水泡足以遮蔽視線的「水泡眼」。都不是基於適應「自然」而進行的育種。

-----廣告,請繼續往下閱讀-----

太田欽也強調,「如果是宋朝或明朝人有今天的生物學工具,以他們的追求珍奇的育種態度,一定會用 CRISPR 編輯金魚基因,製造出更奇特的變異型態。」

他說,這樣的行為會在現代科學圈與社會輿論上遭到反對,「認為動物被修改基因、型態變異很可憐」,但人類採用動物進行藥物實驗或經濟用途時,也並未優先考慮「自然原則」。

太田欽也反問,「若是透過基因編輯技術將金魚修改回類似野生鯽魚的型態,更適應野外環境,這樣算是自然或不自然呢?」

建立科技倫理 而非堅守「自然」想像

他指出,金魚的馴化與育種反映著東亞社會的自然觀念,不同於西方基督教倫理的「人統御、保護自然」意識形態。可以促進人們反思,人類也身在其中的「自然」的標準是什麼?而非執著於保護想像中的自然「原狀」。

太田欽也強調,「本質化『自然』、建構一個保守不變的形象,不會幫助人們了解生物學。」

他認為,宋朝人、明朝人的自然觀念與今日不同;甚至現代人常引用的「道法自然」倡議者老子,他所提倡的自然,與現代許多人想像、意圖恢復的也是不同的自然。

背鰭退化、尾鰭倍增的蛋種雙尾金魚,是古代貴族最青眼有加的奇特型態之一。作者:清 馬文麟 來源:國立故宮博物院

太田欽也建言,科學地面對人類因素影響世界各地生態的現實、建立基因科技的社會倫理與規範,都是比恢復建構出的「自然」意象更重要的生物學議題。

-----廣告,請繼續往下閱讀-----

來自日本和歌山縣鄉間的太田欽也說,長期駐守宜蘭頭城的臨海研究站不僅是因為設施與職位,也是因為此處環境與故鄉有幾分神似。

「但我不會說這兩個地方都很『自然』,在人們對我說『這裡很自然!』的時候。」太田欽也無奈地笑說,「想到周遭可以釣起吳郭魚的溪流、被整治疏濬成田園的原洪氾濕地,反而會讓我很疑惑彼此對『自然』的共識。」

1995 年諾貝爾化學獎得主克魯岑(Paul Crutzen)指出,現代已是由人類行為影響地質特性的人類世。此概念引起地質科學界激烈討論,從新石器時代、工業革命到核彈試爆頻繁的 1960 年代都有學者認為是人類世的開端。

最後由國際地層委員會的人類世工作小組投票決定,視第二次世界大戰後、人口與人類活動高速成長的20世紀中葉為人類世起點。

查看原始文章

  1. Li IJ, Lee SH, Abe G, Ota KG. Embryonic and postembryonic development of the ornamental twin-tail goldfish. Dev Dyn. 2019 Apr;248(4):251-283.
  2. Abe G, Lee SH, Chang M, Liu SC, Tsai HY, Ota KG. The origin of the bifurcated axial skeletal system in the twin-tail goldfish. Nat Commun. 2014 Feb 25;5:3360.
  3. 太田欽也實驗室
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
26 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

2
1

文字

分享

0
2
1
陸地上的首批動物是什麼?又是如何上岸的呢?——《直立猿與牠的奇葩家人》
大塊文化_96
・2023/08/19 ・3911字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

從志留紀末期到泥盆紀這段時間,地球的大陸成了首批陸生動物的家園。
狀似馬陸的呼氣蟲是最早的節肢動物先驅。
同時,蜘蛛與蠍子的早期親屬,也利用已在地球表面建立起來的植物與真菌生態系。
牠們在陸地上進食、繁殖與死亡,為陸地食物網增添了新的複雜性,也為後來從水邊冒險登陸的其他動物提供了獎勵。

動物隨著地球的演化踏上岸

隨著地球表面被植物染綠,動物跟隨植物的腳步上岸只是時間問題。

隨著地球表面被植物染綠,動物跟隨植物的腳步上岸只是時間問題。圖/envato

第一批維管束植物在地球大陸的年輕土壤中安家後不久,節肢動物踏進了這些矮樹叢。這些無畏探險家留下的最古老證據之一,是在蘇格蘭亞伯丁附近出土的一塊化石,名為呼氣蟲(Pneumodesmus)。

牠是一種多足類,與馬陸和蜈蚣屬於同一個群體。雖然原本將牠的年代界定在四億兩千三百萬年前的志留紀,但是近期研究顯示牠可能更年輕,生活在最早期的泥盆紀。

無論如何,到了泥盆紀,動物已經在陸地上站穩腳跟,而呼氣蟲更是最早在地球上行走的動物之一。

-----廣告,請繼續往下閱讀-----

發現目前唯一的呼氣蟲化石

目前出土的呼氣蟲化石只有一件,而且只是一塊一公分(○.四英寸)的身體碎片。

然而在這一小塊化石中,可以清楚看到很多隻腳,從一隻可識別的馬陸狀動物的六個體節長出來。

呼氣蟲的外觀可能和這種現代的馬陸很像。圖/大塊文化

更重要的是,呼吸結構的細節清楚可見:外骨骼角質層上有稱作氣門的孔。這些氣門讓氧氣與其他氣體進入並離開身體,這塊化石也是根據這項特徵而命名為呼氣蟲(Pneumodesmus 的「pneumo」來自希臘文的「呼吸」或「空氣」)。

這塊化石提供了第一個呼吸空氣的決定性證據,這是一種全新的演化適應,為數百萬微小的節肢動物探索者,以及追隨牠們的捕食者,開放了大陸的表面。

-----廣告,請繼續往下閱讀-----

最古老的多足類演化過程

在泥盆紀,呼氣蟲並非獨自生活在植被中。還有許多多足類和牠一起生活,最古老的多足類化石出現在志留紀與泥盆紀的岩層。

儘管不屬於任何現代的馬陸或蜈蚣群體,牠們是現存馬陸與蜈蚣的早期親戚,外表與馬陸和蜈蚣非常相似,具有分節的長條狀身體許多腳―馬陸每個體節的兩側各有兩隻腳,蜈蚣則只有一隻。

目前已知有最多腳的馬陸是全足顛峰馬陸(Illacme plenipes),擁有七百五十隻腳。現存的大多數馬陸都是食碎屑動物,以腐爛的植物為食。這些動物的化石紀錄很少,因此每一件化石對於我們瞭解生命從水裡浮現的過程都特別珍貴。

一隻有著 618 條腿的雌性 Illacme plenipes。圖/wikipedia

最早的多足類,可能是受到早期植物產生的新食物來源所吸引,才來到陸地上。

-----廣告,請繼續往下閱讀-----

最早的蛛形綱動物也充分利用了頭頂上的廣闊天地。蛛形綱動物包括蟎、蠍子、蜘蛛與盲蛛。牠們有八隻腳(不同於昆蟲的六隻腳),大多數仍生活在陸地上,儘管少數(如水蛛〔Argyroneta〕)又回到水中生活。

奧陶紀與志留紀的化石顯示,蛛形綱動物和其他節肢動物可能在更早的時候就偶爾會出現在陸地上,但是到了泥盆紀,有些已經完全過渡到能夠呼吸空氣的狀態。最早的蛛形綱動物是角怖蛛,這是一個已經滅絕的群體,看起來像是蜘蛛與蟎的雜交體。

蟎與擬蠍也很多,後來還有類似蜘蛛、具有吐絲管能製造絲的始蛛(Attercopus)。就像今天一樣,這些早期的蛛形綱動物大多是捕食者,可能以其他從水邊冒出來的節肢動物為食。

到泥盆紀末期,出現了第一批昆蟲,據估計,昆蟲構成今日地球上所有動物生命的 90%。最後,一些脊椎動物也過渡到陸地上,這或許是受到尋找新的食物來源所驅動。

-----廣告,請繼續往下閱讀-----

我們所知的陸地生命基礎終於到位了。自此之後,演化在這些群體中繼續發揮作用,創造出我們今日所見的驚人多樣與多量。

節肢動物牠們有什麼用處呢?

節肢動物通常被看作是害蟲,昆蟲尤其如此。

然而,牠們在整個地球的運行中扮演十分重要的角色。現在有超過一萬六千個多足類物種、六萬種蛛形綱動物,以及大約一千萬種的昆蟲。

牠們不僅在地球最早期生態系中舉足輕重,至今對自然界及人類的世界仍然非常重要。

-----廣告,請繼續往下閱讀-----

多足類處理森林中的落葉,成為營養循環中的一個重要齒輪。蜈蚣通常是捕食者,最大的蜈蚣甚至能吃小型哺乳動物與爬蟲類。

蛛形綱動物大多也是捕食性的,因此在調節獵物的族群數量方面,發揮重要的作用。這裡所指的包括昆蟲害蟲在內,這些害蟲數量不受控制,就會損害植物的族群數量。因此,不起眼的蜘蛛對人農業非常重要。

蟎與蜱可以寄生並傳染疾病,對人類及其他動物構成威脅,其他昆蟲也會造成類似的危險。然而,昆蟲的角色變化多端,其價值確實無法估量,包括生產蜂蜜,甚至以其勤奮的活動精明操控整個生態系,例如蜜蜂、螞蟻與白蟻。

許多節肢動物都有毒,有些對人類甚至具有致命性。然而,讓獵物喪失能力和死亡的毒液也可發揮其他用處;蜘蛛毒液已被用作替代的殺蟲劑,科學家也正在研究其醫藥用途,以及在新材料上的應用。

-----廣告,請繼續往下閱讀-----
蜘蛛毒液已被用作替代的殺蟲劑,科學家也正在研究其醫藥用途,以及在新材料上的應用。圖/envato

此外,節肢動物可以為包括彼此在內的無數動物提供食物來源。許多節肢動物是人類的食物,包括狼蛛、蠍子、蚱蜢、白蟻與象鼻蟲等。

目前,世界各地有多達二千零八十六種節肢動物被當成食物,而且至少從舊石器時代開始,牠們已經成為食物的來源。

有人認為,隨著人類人口不斷增加,昆蟲尤其可能在未來提供重要的蛋白質來源―這是資源密集型肉類養殖的替代方案。

我們很難想像一個沒有節肢動物的地球;事實上,這樣的地球可能無法存在。早在泥盆紀,世界就是節肢動物的天下。

-----廣告,請繼續往下閱讀-----

但牠們冒險去到的地方,捕食者也在不遠處。節肢動物的存在,為另一個從水中出現的動物群體提供了食物,而這個動物群體在人類的演化史上特別重要:這裡講的是四足動物。

——本文摘自《直立猿與牠的奇葩家人:47種影響地球生命史的關鍵生物》,2023 年 7 月,大塊文化,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
大塊文化_96
11 篇文章 ・ 13 位粉絲
由郝明義先生創辦於1996年,旗下擁有大辣出版、網路與書、image3 等品牌。出版領域除了涵括文學(fiction)與非文學(non-fiction)多重領域,尤其在圖像語言的領域長期耕耘不同類別出版品,不但出版幾米、蔡志忠、鄭問、李瑾倫、小莊、張妙如、徐玫怡等作品豐富的作品,得到讀者熱切的回應,更把這些作家的出版品推廣到國際市場,以及銷售影視版權、周邊產品的能力與經驗。