Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

生命的演化如何因為穩健,所以創新?──《生命如何創新》導讀

Gene Ng_96
・2018/04/29 ・4646字 ・閱讀時間約 9 分鐘 ・SR值 563 ・九年級

-----廣告,請繼續往下閱讀-----

創新,是近年相當火紅的名詞!教授、官員、名嘴都能朗朗上口。

他們告訴我們,國家經濟的成長需要創新、社會進步需要創新、生活品質提升也需要創新,但什麼是創新?一個存有的事物如果能夠源遠流長,不就代表歷經時間考驗的老東西更好用嗎?

在我們的社會中,追求穩定和不變的保守分子,與追求變化和創意的創新分子,看起來是對立的。然而,一味求新求變,就不可能有足夠的積澱,也叫人無所適從,單單為了應付朝令夕改的政策就疲於奔命;可是以不變應萬變,故步自封、墨守成規,可能無法因應環境瞬息萬變的趨勢洪流。

那究竟要如何取得平衡呢?

不進則退,進太快則跌倒?via giphy

創新跟穩定間有機會取得平衡嗎?

關於這個大哉問,我們還是虛心向演化了幾十億年,歷經各種驚濤駭浪、龍潭虎穴的生物來學習吧!

-----廣告,請繼續往下閱讀-----

正好有兩位深入探索演化如何創新的大師級科學家都姓華格納,也剛好都是奧地利維也納大學的校友,都在美國耶魯大學待過,所以不瞞大家說,我剛開始有時候也會搞錯對象。根達.華格納(Günter P. Wagner)是現在美國耶魯大學生態及演化生物學系的講座教授,曾擔任過中央研究院生物多樣性研究中心的學術評鑑委員,對台灣文化深感興趣,我還帶他去參觀過台北孔廟及保安宮。

本書作者安德里亞斯.華格納(Andreas Wagner)則是瑞士蘇黎世大學的教授。他曾在維也納大學主修生物學,於一九九五年在耶魯大學生物系獲得博士學位,師事根達.華格納。然後他到德國柏林高等研究院當研究員,接著在美國新墨西哥大學生物系、後來到了蘇黎世大學生物化學系任教。自一九九九年以來,他同時也是複雜科學的聖地—新墨西哥州聖塔菲研究所的外部教授。自二○一六年起,他擔任蘇黎世大學演化生物學與環境研究系系主任。

本書作者安德里亞斯.華格納。圖/Sylvie Blotiere@wikimedia

自從達爾文發表了《物種起源》(On the Origin of Species),他的天擇說有個大問題,就是他假定族群中存在可遺傳的變異,天擇從中挑出適應環境的存活者。可是達爾文並不知道孟德爾的發現,儘管他們曾經生活在同一個時代,所以前者無法解釋變異從何而來、從何而去。孟德爾的發現一直要到二十世紀初才被三位歐洲科學家「再發現」。

演化生物學界的現代演化綜論

一九一八至一九四○年,演化生物學界興起了一股運動,就是把孟德爾的遺傳學,加上分類學、古生物學、動植物學、族群遺傳學等學科的理論和知識與演化論整合在一起,史稱「現代演化綜論」(modern synthesis)。

-----廣告,請繼續往下閱讀-----

現代演化綜論讓演化論成為科學中一個有完整架構且嚴謹的理論,尤其族群遺傳學更是使用嚴謹的數學作運算,並且有紮實的實驗能夠多次精準地作出預測。然而族群遺傳學家關注的是微觀演化的現象,也就是性狀在代代之間的改變,基本上是量變而非質變,雖然他們相信質變不過是巨大的量變而已。

事實上,族群遺傳學家根本不太關注所有「新性狀」是如何產生的。例如,利用族群遺傳學的方法,可以解釋某種鳥類身上某幾根羽毛的平均長度在一代一代之間變長了多少,可是對於解釋羽毛是如何憑空演化出來,卻是無能為力、也不是族群遺傳學家想去探討的。

不少人對於生物的原貌有著濃厚興趣,此為始祖鳥復原模型。圖/Rama@wikipedia

族群遺傳學家把持演化遺傳學的話語權維持了好幾十年,直到約三十年前出現了演化發育生物學(evo-devo,evolutionary developmental biology)這個學門,演化生物學家才開始重視從胚胎發育以及表現型和基因型間的關連,來研究生物是如何演化出前所未見的新構造或新功能。根達.華格納本人就是試圖用演化發育生物學的方法解釋演化創新的一員大將。

然而,演化發育生物學卻又有其局限性,因為親緣關係遙遠的物種無法交配進行孟德爾式遺傳實驗,所以發育生物學家只能用已知的知識去猜測是哪些基因起了作用,再用胚胎去做基因表現的染色圖譜,探究某些基因在胚胎發育時發生了哪些時空變化。我在念博士班時,母校一些族群遺傳學大老就戲稱我們使用的這種方法是「在胚胎上劃線」而已。

-----廣告,請繼續往下閱讀-----

還好,近年除了演化發育生物學,分子演化學、基因體學等領域也拜DNA定序愈來愈價廉物美所賜而突飛猛進,加上一些生物化學和生物物理學的知識也被用來解釋更多生物演化的現象,讓演化生物學百家爭鳴,綜合起來有更強大的解釋力!

綜合各學門的理論,演化生物學終於越來越能有預測能力啦!(放煙火)via giphy

根達.華格納的弟子安德里亞斯.華格納同樣是位很有創造力的科學家,頗有青出於藍之勢。他精通分子演化學、基因體學、生物化學,並且有良好的數學能力,於是他大膽地挑戰過去被忽視近百年的大哉問:演化是如何創新的?他的研究興趣和工作圍繞著生物系統的「穩健性」(robustness)以及創新力,探討生物如何創造出新的特性,幫助生存和繁殖。

穩健性是創新力的關鍵

他認為,要解釋演化上的創新,單單用隨機的運氣是不夠的。他認為天擇能夠解釋適應性的存活,但無法解釋適應性的出現。打個比方,解釋智慧型手機戰國時代品牌的演替是一回事,解釋 iPhone 的橫空出世、引爆智慧型手機熱潮又是另一回事。

安德里亞斯提出穩健性是創新力的關鍵。在他的理論體系中,穩健性是生物系統承受微擾動(如DNA突變和環境變化)的能力。他曾開發了一個針對基因調控線路的數學模型,並使用這個模型來驗證天擇可以增加這種線路在發生 DNA 突變時的穩健性。

-----廣告,請繼續往下閱讀-----

我們可以想像基因調控線路就像電腦的主機板,上頭有各種電路。他的模型顯示,天擇會篩選出更耐受突變的基因調控線路,不會一丁點小突變就掛點,動不動就要砍掉重練。就像優秀工程師設計的電腦主機板會更穩定,不會裝了新程式就三不五時頻頻當機。

優秀的設計師會讓電腦系統穩定,不會動不動就當機。圖/Reuben Strayer@wikimedia

他的研究也顯示耐受突變干擾的穩健性,其中一種方式是來自冗餘的重複基因。天擇可以保持其冗餘度和隨之而來的穩健性。所謂狡兔三窟,有備而來的高手是不會把雞蛋全都放在同一個籃子裡,總是有B計畫,因此可立於不敗之地。然而,他也認為比冗餘更重要的是複雜生物系統的「分布穩健性」,這是由於多個不同部分(如調控網絡中的蛋白質)的協作而產生的。

這就像一家有多據點的跨國大企業,不會因為一些員工多休幾天假就喪失競爭力。

安德里亞斯提出穩健性可以加速生物演化的創新,因為有助於生物體抵禦其他有害的突變,更能夠創造新的和有用的特徵。這是比較反直覺的,穩健和新穎似乎是天秤的兩端。但他的理論提出DNA上穩健的轉錄因子結合位點可以促進新基因表現的演化。

因此穩健性的另一個後果是,演化中的生物族群可以積累隱蔽的遺傳變異,這種變化在另一些環境中可能會帶來好處。這就像是一個成熟且有包容力的民主社會,不會因為政黨輪替等就被搞得七葷八素。

-----廣告,請繼續往下閱讀-----

安德里亞斯認為,穩健性還可以幫助解決分子演化長期以來的爭議,這個爭論圍繞著頻繁的中性突變在達爾文演化中是否為重要的問題。中性突變指的是不好也不壞的突變,他認為中性突變就是穩健性的結果。因為暫時不會對表現型造成影響,中性突變成了後來的演化適應和創新的重要墊腳石。穩健的系統也讓一些性狀能夠擴展其功能。就像是穩健的大企業,可以更能無後顧之憂地擴展新業務。

安德里亞斯在二○一一年提出了一個創新理論,其中「創新力」(innovability),也就是生命系統創造創新的能力,是其穩健性的結果,而穩健性反過來又是由於曝露在不斷變化的環境中所造成。他提出,許多基因型網路會有相同表現型,所以這些生物族群可以通過DNA突變進行探索,並且有助於創新的起源。這像是現金多到幾世花不完的資本家,可以更放膽去進行高風險投資,因為幾次的虧損基本上不痛不癢。

將所有生命的蛋白質序列比喻為超大宇宙博物館

除了學術上的大哉問,在《生命如何創新》中,華格納要面對一個很具挑戰性的問題,那就是他非得把抽象的概念解釋得清晰易懂,所以他用一個包含所有蛋白質序列可能性的超大宇宙圖書館來比喻。因為圖書館實在太龐大了,所以大部分都是垃圾文字,但仍有可能出現經典名著。蛋白質圖書館也是一樣,大部分序列毫無任何功能,但極少數序列能夠作為酵素等等。

但問題是,在這龐大的圖書館中,一本書要演化成另一本書的機率實在太太太低了,那要怎麼辦到呢?

還好,我們要表達同一個意思,同一種語言中就有千百種說法。就和我們人類的文字一樣,要達成同一個功能,蛋白質的序列也可以是不同的。

-----廣告,請繼續往下閱讀-----

所以在圖書館中,可以找到內容概念相近的書,那也就能找到序列不同但功能相近的蛋白質。一本書不會因為幾個非關鍵字出現了錯別字就有完全不同的意義,一個蛋白質也不會因為幾個非關鍵胺基酸的差異而有不同功能。這使得遺傳變異能夠大量累積而不致於發生損害。

他用圖書館來比喻,如果圖書館以字詞相似度來分類而非書籍屬性來分類的話,讀者可以於分散在圖書館不同處的房間裡讀到類似概念的書,可是隔壁架上字詞相似的書,卻可能呈現不同的概念或學科,因為關鍵字詞的改變,整本書就可能可以出現不同的意思。

當網路愈大,也就是書籍愈多,讀書的人口也愈大,就愈容易發生該狀況。同樣的概念也適用於代謝和基因調控的網絡,他甚至相信能夠適用到所有複雜系統中。

圖/Marcus Hansson@wikimedia

博學多聞的安德里亞斯.華格納在書中列舉了許多五花八門的生物分子和功能為例子,大大增加了可讀性。另外,歐洲科學家和美國科學家有一個很大的不同,就是前者更傾向做更哲學性的思考,這就是為何他會在書中提到古希臘哲學家柏拉圖的本質論(Essentialism)。

-----廣告,請繼續往下閱讀-----

原本視物種為具有永恆不變本質的柏拉圖思想是演化論的大敵,但安德里亞斯卻為本質論辯護,指出二十一世紀的本質論並沒原先那麼簡單。不同生物趨同演化產生出功能上殊途同歸的蛋白質,就是因為它們有相似的本質,而序列只是投射進地穴中的光影。

創新的奧秘,是否能以自然為師?

雖然在《生命如何創新》一書中,安德里亞斯使用的例子都是數學、生物學或科技的,但由此可見,許多複雜的系統都有相似的結構與行為,這也是複雜科學的魅力所在。上述段落中,我用社會和企業的例子來比喻,並不見得完全恰當,但大自然能否為師,端看有沒有天才能有所悟。

科技趨勢專家凱文.凱利(Kevin Kelly)在《科技想要什麼》(What Technology Wants)(延伸閱讀:讀書心得 12)中也揭示了人類科技也出現類似趨同演化和反熵等等類似生物的現象,例如不同文明為了解決類似的問題而創造出相似的技術或工具等等。因此,書中提到的創新力奧祕,或許在我們身處的經濟和社會中,說不定也會有異曲同工之妙,非常值得我們再深入探究!

 

 

本文摘自《生命如何創新:大自然的演化創新力從何而來?》,由馬可孛羅文化出版。

-----廣告,請繼續往下閱讀-----
文章難易度
Gene Ng_96
295 篇文章 ・ 32 位粉絲
來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手Readmoo部落格【GENE思書軒】關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋

0

1
1

文字

分享

0
1
1
貓咪也會學鳥叫?揭秘貓貓發出「喀喀聲」背後的可能原因
F 編_96
・2024/12/24 ・2480字 ・閱讀時間約 5 分鐘

F 編按:本文編譯自 Live Science

貓是一種神秘而又引人注目的動物,牠們看似深居簡出,但擁有多元的聲音表達:從吸引人類注意的「喵喵叫」,到面對威脅時的「嘶嘶聲」與低沉的「咆哮」。

延伸閱讀:貓咪為什麼總愛對人喵喵叫?看貓如何用聲音征服人類的心

然而,細心的貓奴們可能會注意到,貓有時會對著窗外的鳥兒或屋內小動物玩具,發出一種獨特的「卡卡聲」或「咯咯聲」。這種聲音既像牙齒打顫,又好似一陣陣輕微的顫鳴,卻很難歸類到常見的喵叫或咆哮裡。這種名為「chatter」的行為,究竟在貓的生活中扮演什麼角色?目前科學界尚未對此有定論,但有幾種廣為討論的假說,或許能為我們提供一些思考方向。

卡卡叫:情緒的釋放或表達?

有些貓行為專家推測,貓咪在看到獵物(如窗外的鳥、老鼠)卻無法接近時,會因「欲捕無法」的挫折感或興奮感,發出這種「卡卡聲」。就像人類遇到障礙時,可能會發出抱怨的咕噥聲或乾著急的嘆息聲一樣,貓咪的「喀喀聲」也可能只是把當下的情緒外顯,並非有特別針對人或其他動物的溝通目的。

  • 情緒假說
    • 挫折:當貓看見鳥兒在窗外飛舞卻無法撲殺,內心焦躁,遂用聲音抒發。
    • 興奮:或許貓在準備捕獵時也感到高度亢奮,因此嘴部不自覺抖動並出聲。
貓咪的「喀喀聲」可能源於挫折或興奮情緒,表達捕獵受阻的內在反應。圖/envato

要在科學上驗證「情緒假說」並不容易,因為需要同時測量貓咪行為和生理指標。例如,研究人員可能需要測量貓咪在卡卡叫時的壓力荷爾蒙變化,才能確認牠們究竟是帶著正面興奮,或是負面挫折的情緒。不過,由於貓的獨立特質,實驗設計往往困難重重,樣本量要足夠也不容易,所以至今沒有定論。

-----廣告,請繼續往下閱讀-----

增強嗅覺?貓咪的「第二鼻子」

另一種說法則認為,貓咪發出「卡卡聲」時,可能同時開啟了其位於口腔上顎的「犁鼻器」(vomeronasal organ),也稱作「賈氏器官(Jacobson’s organ)」。這個感知器官能捕捉一般鼻腔聞不到的化學分子,如費洛蒙或特定氣味分子,因此對貓的求偶、社交和獵捕行為都非常重要。

  • 嗅覺假說
    • 張口呼吸:如果貓咪一邊「咯咯咯」地開合上下顎,可能在嘗試讓空氣(及其中所含的氣味分子)進入犁鼻器。
    • 蒐集更多環境資訊:在確定下手前,更完整的嗅覺分析或能提高牠們獵捕成功率,或是幫助判斷環境中是否有其他潛在威脅或機會。

然而,要科學驗證「增強嗅覺假說」同樣不簡單。研究人員不僅要觀察貓咪在卡卡叫時的行為,也需要測量牠們是否真的打開了更大的氣道,並在那個同時有效使用犁鼻器。這些行為與生理測量都必須在相對可控卻又不影響貓自由行動的實驗環境中進行,實務上難度頗高。

聲音模仿:貓咪的「偽鳥叫」?

貓咪的「卡卡聲」或許是為了模仿獵物的聲音,讓獵物降低警戒。圖/envato

第三種最有趣也最具「野性色彩」的假說,是「模仿獵物聲音」。在野外,一些中南美洲的小型貓科動物(例如:長尾虎貓,又稱美洲豹貓或瑪家貓,Margay)曾被觀察到,在捕獵小猴群時,發出類似猴子叫聲的音調;有些當地原住民族群也傳說,叢林裡的某些捕食者會模仿目標獵物的聲音來誘捕。由此推測,家貓看到鳥兒時發出的「卡卡聲」,可能包含些微模仿鳥兒啁啾的元素,試圖降低獵物警戒或甚至吸引獵物靠近。

  • 模仿假說
    • 案例參考:野生貓科動物曾出現學習或偽裝聲音的紀錄。
    • 家貓可能繼承的行為:家貓的祖先——北非野貓(African wildcat)及其他小型貓科物種,是否具備聲音模仿能力?這在生物演化研究上仍是未解之謎。
    • 缺乏大規模觀察:由於小型野生貓科動物研究資料有限,且家貓實驗更不易做大樣本長期追蹤,最終導致此理論尚未獲得廣泛實證。

貓咪行為研究的挑戰:野性祖先的重要性

探討貓咪行為,常常需要回溯至野生祖先的棲地環境。家貓(Felis catus)普遍被認為源自北非野貓(Felis lybica),然而,野貓習性的研究本就不多,尤其是關於聲音與捕獵策略更是資料有限。我們想知道「為什麼家貓會卡卡叫」,首先要確定:「牠們的野性祖先或其他小型貓科,也有同樣的行為嗎?」若有,家貓則可能繼承自古老基因;若無,則可能是家貓在與人類共處的環境中演化出的新行為。

-----廣告,請繼續往下閱讀-----
如果要探查家貓「卡卡叫」的原因,還需要了解其祖先或其他小型貓科是否具有類似行為。圖/envato

再者,貓在實驗室中的「不可控」因素相當多。貓不像狗般樂於服從人類指令,常有自己的規律與個性。要在實驗情境下穩定地誘發貓的「卡卡叫」行為、同時檢測牠們的生理和心理反應,並確保每隻貓的個體差異都被考慮到,這些都對研究團隊是極大考驗。

對於許多貓奴來說,貓咪坐在窗邊,一邊盯著外頭的鳥兒或松鼠,一邊發出獨特的「卡卡聲」,是一幕既可愛又神祕的風景。究竟牠們是在抒發情緒、強化嗅覺、抑或真的在「假扮鳥叫」以誘捕獵物?目前沒有確切的答案。然而,也正因為這層未知,貓貓才更顯得迷人。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
20 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

3
2

文字

分享

0
3
2
誠實面對人類參與的「自然」——太田欽也專訪
顯微觀點_96
・2024/07/11 ・3235字 ・閱讀時間約 6 分鐘

本文轉載自顯微觀點

斑馬魚是最知名的模式生物之一,其基因、型態與發育深受了解,並用於探討深度同源等重要演化生物學問題。但也有科學家提出,演化生物學該持續隨環境演進,並嘗試以新的實驗物種——金魚——探討人類世(Anthropocene)環境下的生物演化。

育種歷史與基因巧合 奠定金魚的演化生物學價值

例如有千年馴化歷史、型態千變萬化的金魚,就相當適合探討人類因素與生物型態演化的關聯。

中研院細生所派駐臨海研究站的演化與發育生物學家太田欽也指出,斑馬魚與金魚兩者的胚胎都可以透過顯微鏡仔細觀察,相對於受精一年後才成熟的金魚,斑馬魚有成熟較快,基因組較為單純等優點,也具備許多現成基因研究工具。

-----廣告,請繼續往下閱讀-----

但斑馬品系間仍以其生理機能與基因為主要差別,對型態差異的演化並未那麼明顯。因為,科學家為了操作基因與細胞特徵而培育斑馬魚,使不同品系的差異大多來自目標明確的基因工程。

金魚型態演化圖。Courtesy of Kinya Ota and Gembu Abe

而金魚的型態變異,則完全來自飼養者對型態的偏好和育種,蘊藏更多元的型態變化與發育差異。其悠長的馴養歷史以及更古老的基因重複(Gene Duplication)機遇,使其值得成為演化發育生物學的新模式生物。研究器材和方法上的調整,則是生物學家展現才智的機會。

太田欽也舉例,「一般的解剖顯微鏡工作距離適合觀察和操作斑馬魚,但是經過我們自己的創意,也改裝出可以對金魚進行顯微手術的器具和適合拍攝的大型解剖顯微鏡。設備上的差異並不難克服。」

金魚胚胎的發育生物學優勢

太田欽也說,現代生物學家以果蠅和微生物育種進行遺傳與演化實驗,擴大時間維度來看,千年來金魚愛好者挑選、強化金魚外觀特徵的過程,可以比擬長時間的人擇實驗。

金魚不僅適合用來觀察人擇壓力如何影響成年生物的型態。太田欽也更想進一步探索,從胚胎階段的差異進行選擇,是否可能改變生物的型態。

-----廣告,請繼續往下閱讀-----

太田欽也提到,人工育種對發育與型態的影響力也展現在其他物種上,例如家犬與鴿子也被培育出許多特殊表型。但是哺乳動物和鳥類的胚胎觀察不易,需要相當高的技術與成本。

相對於動物子宮與鳥類蛋殼內的胚胎,在透明卵囊中發育的半透明金魚胚胎,就是非常容易觀察的研究對象。只要有恰當的複式顯微鏡、解剖顯微鏡和顯微手術能力,金魚的胚胎從受精到孵化都可以全程順利紀錄,而且每次繁殖可以蒐集到上百筆資料。

現代顯微攝影技術搭配容易觀察的金魚胚胎,讓太田欽也可以拍攝清晰影片,在網路上生動地分享發育生物學知識。攝影:楊雅棠

自製影片 盼演化生物學跨過學院圍牆

除了將金魚研究成果發表在 Nature 等科學期刊,太田欽也同時努力當起「Youtuber」。他希望能將演化發育生物學、金魚飼育經驗、臨海研究站的學術特色,甚至是宜蘭的風光,透過網路傳達給大眾。

武漢肺炎導致的漫長隔離,是他學習影音製作的契機。最初他在百無聊賴之下看了大量影片,後來逐漸萌發「我也要拍自己的題材!」的企圖心。開始搜尋拍攝、後製、配樂等網路教學,在隔離的單人房中逐漸進步。

-----廣告,請繼續往下閱讀-----

太田欽也說,拍攝影片最重要的動機是「分享」。他解釋,「科學的頻道不管累積再多追蹤者,例如數十萬人追蹤的 Nature, Science, 觀眾也以科學領域工作者為主。現代知識逐漸朝向『專家』與『外人』的兩極化狀態發展,我不喜歡這樣的社會。」

如同他推進學術研究的方法,他也透過自學、自己組裝基礎設備如空拍機、手機等,在節省開支的情況下拍出了中研院同僚為之驚艷的影片。

太田欽也為臨海研究站拍攝的簡介影片,基本款空拍機呈現了頭城的舒暢美景。

在早已開始的人類世 何謂自然?

太田欽也熱衷以空拍影片介紹宜蘭的郊野與人文,但他對主流輿論的「自然環境」內涵存疑,他認為「自然」早已被人類行為大幅改變。自從農業擴張、工業革命發生,人類對環境與生物的改變程度早已無法恢復「自然原貌」。

他以金魚的馴化過程為例,從宋朝開始的愛好者,透過育種極力凸顯特殊形態,從沒有背鰭的「蛋種」,到眼周水泡足以遮蔽視線的「水泡眼」。都不是基於適應「自然」而進行的育種。

-----廣告,請繼續往下閱讀-----

太田欽也強調,「如果是宋朝或明朝人有今天的生物學工具,以他們的追求珍奇的育種態度,一定會用 CRISPR 編輯金魚基因,製造出更奇特的變異型態。」

他說,這樣的行為會在現代科學圈與社會輿論上遭到反對,「認為動物被修改基因、型態變異很可憐」,但人類採用動物進行藥物實驗或經濟用途時,也並未優先考慮「自然原則」。

太田欽也反問,「若是透過基因編輯技術將金魚修改回類似野生鯽魚的型態,更適應野外環境,這樣算是自然或不自然呢?」

建立科技倫理 而非堅守「自然」想像

他指出,金魚的馴化與育種反映著東亞社會的自然觀念,不同於西方基督教倫理的「人統御、保護自然」意識形態。可以促進人們反思,人類也身在其中的「自然」的標準是什麼?而非執著於保護想像中的自然「原狀」。

太田欽也強調,「本質化『自然』、建構一個保守不變的形象,不會幫助人們了解生物學。」

他認為,宋朝人、明朝人的自然觀念與今日不同;甚至現代人常引用的「道法自然」倡議者老子,他所提倡的自然,與現代許多人想像、意圖恢復的也是不同的自然。

背鰭退化、尾鰭倍增的蛋種雙尾金魚,是古代貴族最青眼有加的奇特型態之一。作者:清 馬文麟 來源:國立故宮博物院

太田欽也建言,科學地面對人類因素影響世界各地生態的現實、建立基因科技的社會倫理與規範,都是比恢復建構出的「自然」意象更重要的生物學議題。

-----廣告,請繼續往下閱讀-----

來自日本和歌山縣鄉間的太田欽也說,長期駐守宜蘭頭城的臨海研究站不僅是因為設施與職位,也是因為此處環境與故鄉有幾分神似。

「但我不會說這兩個地方都很『自然』,在人們對我說『這裡很自然!』的時候。」太田欽也無奈地笑說,「想到周遭可以釣起吳郭魚的溪流、被整治疏濬成田園的原洪氾濕地,反而會讓我很疑惑彼此對『自然』的共識。」

1995 年諾貝爾化學獎得主克魯岑(Paul Crutzen)指出,現代已是由人類行為影響地質特性的人類世。此概念引起地質科學界激烈討論,從新石器時代、工業革命到核彈試爆頻繁的 1960 年代都有學者認為是人類世的開端。

最後由國際地層委員會的人類世工作小組投票決定,視第二次世界大戰後、人口與人類活動高速成長的20世紀中葉為人類世起點。

查看原始文章

  1. Li IJ, Lee SH, Abe G, Ota KG. Embryonic and postembryonic development of the ornamental twin-tail goldfish. Dev Dyn. 2019 Apr;248(4):251-283.
  2. Abe G, Lee SH, Chang M, Liu SC, Tsai HY, Ota KG. The origin of the bifurcated axial skeletal system in the twin-tail goldfish. Nat Commun. 2014 Feb 25;5:3360.
  3. 太田欽也實驗室
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

2
1

文字

分享

0
2
1
陸地上的首批動物是什麼?又是如何上岸的呢?——《直立猿與牠的奇葩家人》
大塊文化_96
・2023/08/19 ・3911字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

從志留紀末期到泥盆紀這段時間,地球的大陸成了首批陸生動物的家園。
狀似馬陸的呼氣蟲是最早的節肢動物先驅。
同時,蜘蛛與蠍子的早期親屬,也利用已在地球表面建立起來的植物與真菌生態系。
牠們在陸地上進食、繁殖與死亡,為陸地食物網增添了新的複雜性,也為後來從水邊冒險登陸的其他動物提供了獎勵。

動物隨著地球的演化踏上岸

隨著地球表面被植物染綠,動物跟隨植物的腳步上岸只是時間問題。

隨著地球表面被植物染綠,動物跟隨植物的腳步上岸只是時間問題。圖/envato

第一批維管束植物在地球大陸的年輕土壤中安家後不久,節肢動物踏進了這些矮樹叢。這些無畏探險家留下的最古老證據之一,是在蘇格蘭亞伯丁附近出土的一塊化石,名為呼氣蟲(Pneumodesmus)。

牠是一種多足類,與馬陸和蜈蚣屬於同一個群體。雖然原本將牠的年代界定在四億兩千三百萬年前的志留紀,但是近期研究顯示牠可能更年輕,生活在最早期的泥盆紀。

無論如何,到了泥盆紀,動物已經在陸地上站穩腳跟,而呼氣蟲更是最早在地球上行走的動物之一。

-----廣告,請繼續往下閱讀-----

發現目前唯一的呼氣蟲化石

目前出土的呼氣蟲化石只有一件,而且只是一塊一公分(○.四英寸)的身體碎片。

然而在這一小塊化石中,可以清楚看到很多隻腳,從一隻可識別的馬陸狀動物的六個體節長出來。

呼氣蟲的外觀可能和這種現代的馬陸很像。圖/大塊文化

更重要的是,呼吸結構的細節清楚可見:外骨骼角質層上有稱作氣門的孔。這些氣門讓氧氣與其他氣體進入並離開身體,這塊化石也是根據這項特徵而命名為呼氣蟲(Pneumodesmus 的「pneumo」來自希臘文的「呼吸」或「空氣」)。

這塊化石提供了第一個呼吸空氣的決定性證據,這是一種全新的演化適應,為數百萬微小的節肢動物探索者,以及追隨牠們的捕食者,開放了大陸的表面。

-----廣告,請繼續往下閱讀-----

最古老的多足類演化過程

在泥盆紀,呼氣蟲並非獨自生活在植被中。還有許多多足類和牠一起生活,最古老的多足類化石出現在志留紀與泥盆紀的岩層。

儘管不屬於任何現代的馬陸或蜈蚣群體,牠們是現存馬陸與蜈蚣的早期親戚,外表與馬陸和蜈蚣非常相似,具有分節的長條狀身體許多腳―馬陸每個體節的兩側各有兩隻腳,蜈蚣則只有一隻。

目前已知有最多腳的馬陸是全足顛峰馬陸(Illacme plenipes),擁有七百五十隻腳。現存的大多數馬陸都是食碎屑動物,以腐爛的植物為食。這些動物的化石紀錄很少,因此每一件化石對於我們瞭解生命從水裡浮現的過程都特別珍貴。

一隻有著 618 條腿的雌性 Illacme plenipes。圖/wikipedia

最早的多足類,可能是受到早期植物產生的新食物來源所吸引,才來到陸地上。

-----廣告,請繼續往下閱讀-----

最早的蛛形綱動物也充分利用了頭頂上的廣闊天地。蛛形綱動物包括蟎、蠍子、蜘蛛與盲蛛。牠們有八隻腳(不同於昆蟲的六隻腳),大多數仍生活在陸地上,儘管少數(如水蛛〔Argyroneta〕)又回到水中生活。

奧陶紀與志留紀的化石顯示,蛛形綱動物和其他節肢動物可能在更早的時候就偶爾會出現在陸地上,但是到了泥盆紀,有些已經完全過渡到能夠呼吸空氣的狀態。最早的蛛形綱動物是角怖蛛,這是一個已經滅絕的群體,看起來像是蜘蛛與蟎的雜交體。

蟎與擬蠍也很多,後來還有類似蜘蛛、具有吐絲管能製造絲的始蛛(Attercopus)。就像今天一樣,這些早期的蛛形綱動物大多是捕食者,可能以其他從水邊冒出來的節肢動物為食。

到泥盆紀末期,出現了第一批昆蟲,據估計,昆蟲構成今日地球上所有動物生命的 90%。最後,一些脊椎動物也過渡到陸地上,這或許是受到尋找新的食物來源所驅動。

-----廣告,請繼續往下閱讀-----

我們所知的陸地生命基礎終於到位了。自此之後,演化在這些群體中繼續發揮作用,創造出我們今日所見的驚人多樣與多量。

節肢動物牠們有什麼用處呢?

節肢動物通常被看作是害蟲,昆蟲尤其如此。

然而,牠們在整個地球的運行中扮演十分重要的角色。現在有超過一萬六千個多足類物種、六萬種蛛形綱動物,以及大約一千萬種的昆蟲。

牠們不僅在地球最早期生態系中舉足輕重,至今對自然界及人類的世界仍然非常重要。

-----廣告,請繼續往下閱讀-----

多足類處理森林中的落葉,成為營養循環中的一個重要齒輪。蜈蚣通常是捕食者,最大的蜈蚣甚至能吃小型哺乳動物與爬蟲類。

蛛形綱動物大多也是捕食性的,因此在調節獵物的族群數量方面,發揮重要的作用。這裡所指的包括昆蟲害蟲在內,這些害蟲數量不受控制,就會損害植物的族群數量。因此,不起眼的蜘蛛對人農業非常重要。

蟎與蜱可以寄生並傳染疾病,對人類及其他動物構成威脅,其他昆蟲也會造成類似的危險。然而,昆蟲的角色變化多端,其價值確實無法估量,包括生產蜂蜜,甚至以其勤奮的活動精明操控整個生態系,例如蜜蜂、螞蟻與白蟻。

許多節肢動物都有毒,有些對人類甚至具有致命性。然而,讓獵物喪失能力和死亡的毒液也可發揮其他用處;蜘蛛毒液已被用作替代的殺蟲劑,科學家也正在研究其醫藥用途,以及在新材料上的應用。

-----廣告,請繼續往下閱讀-----
蜘蛛毒液已被用作替代的殺蟲劑,科學家也正在研究其醫藥用途,以及在新材料上的應用。圖/envato

此外,節肢動物可以為包括彼此在內的無數動物提供食物來源。許多節肢動物是人類的食物,包括狼蛛、蠍子、蚱蜢、白蟻與象鼻蟲等。

目前,世界各地有多達二千零八十六種節肢動物被當成食物,而且至少從舊石器時代開始,牠們已經成為食物的來源。

有人認為,隨著人類人口不斷增加,昆蟲尤其可能在未來提供重要的蛋白質來源―這是資源密集型肉類養殖的替代方案。

我們很難想像一個沒有節肢動物的地球;事實上,這樣的地球可能無法存在。早在泥盆紀,世界就是節肢動物的天下。

-----廣告,請繼續往下閱讀-----

但牠們冒險去到的地方,捕食者也在不遠處。節肢動物的存在,為另一個從水中出現的動物群體提供了食物,而這個動物群體在人類的演化史上特別重要:這裡講的是四足動物。

——本文摘自《直立猿與牠的奇葩家人:47種影響地球生命史的關鍵生物》,2023 年 7 月,大塊文化,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
大塊文化_96
11 篇文章 ・ 13 位粉絲
由郝明義先生創辦於1996年,旗下擁有大辣出版、網路與書、image3 等品牌。出版領域除了涵括文學(fiction)與非文學(non-fiction)多重領域,尤其在圖像語言的領域長期耕耘不同類別出版品,不但出版幾米、蔡志忠、鄭問、李瑾倫、小莊、張妙如、徐玫怡等作品豐富的作品,得到讀者熱切的回應,更把這些作家的出版品推廣到國際市場,以及銷售影視版權、周邊產品的能力與經驗。