用果汁取代汽油的超級跑車
從第一個輪胎進展到法拉利跑車的速度很快,然而一些生命特徵打從開始到現在三十億年都沒有改變──分子、調控以及代謝仍都是創新的泉源,如同我們在稍後章節將看到的,演化改變除了演化之外的所有事物。早期RNA複製者被複雜蛋白質機器取代,生命學會了不只調控RNA和脂質,還有數千個分子,無數的創新將現代細胞的代謝(法拉利的引擎)轉變成化工技術的奇蹟。
想像一下,傍晚時分駕駛法拉利從晚宴處回家,在一條人跡罕至的公路上沒油了,放眼望去沒有加油站,也沒有任何人可以讓你搭便車。不過沒關係,你打開後車廂,冷藏箱裡有吃剩的食物和飲料,把一罐柳橙汁倒進油箱中,接著是一公升牛奶,再加上一杯葡萄酒,這足以讓你撐到下一個加油站,然後繼續開回家。
現代的代謝引擎就像這樣,可以用許多不同燃料運轉。不只如此,它們還可以把每種燃料當作是製造身體最小分子元件的原料,也就是身體成長、繁殖、復原所需要的部分。彷彿一輛車油箱裡的油料不只是讓引擎運轉,還能臨時修補破掉的輪胎與擋風玻璃。
生命的藍圖基礎:DNA>RNA>胺基酸
上述分子元件由一些中心分子組成,我們的身體運用大約六十種生物質建構組成(biomass building block)來建造並修復。最重要的是基因體中四種 DNA 建構組成,這些核苷酸結合了一個醣類、一個磷酸根及四種含氮鹼基(腺嘌呤〔A〕、胞嘧啶〔C〕、鳥糞嘌呤〔G〕、胸腺嘧啶〔T〕)的其中一種。
再來是 RNA 的四種建構組成—RNA 由 DNA 轉錄而來,也與生命息息相關,這些組成是:A、C、G、U(尿嘧啶),其中尿嘧啶與 DNA 建構組成僅僅差在一個氧原子,但在化學上就造成天壤之別。它使得RNA 成為更好的催化劑,DNA則因為較穩定而成為更好的訊息儲藏庫。
然後,由 RNA 轉譯而成的胺基酸串中有二十種建構組成,有些很常見,例如吃完火雞大餐後讓人昏昏欲睡的色胺酸(tryptophan),或是味精(MSG,麩胺酸鈉)中的麩胺酸(glutamic acid)。再加上膜狀袋上的脂質、艱苦時刻需要的儲存能量分子,以及幫助酵素工作的分子等,細胞內含了建造自己的六十種不同建構組成。
經歷四十億年演化的複雜代謝作用
代謝作用的任務(努力取得能量並製造原料)在最近的三十八億年裡都未曾改變過,它的基本性質(化學反應網絡)也沒變,例如蔗糖與水反應分解成更容易消化的葡萄糖和果糖兩種分子。改變的是反應數量,我們最早的祖先只靠少量反應,但現代的代謝就像現代生命一樣複雜多了。
現代的代謝作用是個交錯並高度連結的化學網絡,歷經四十億年創新的產物。畫出來的樣貌就像是標有每一條街道的美國地圖,從最短的住宅區巷弄到完整的州際公路系統。它的核心是古老的檸檬酸循環,如同連接白宮和美國國會大廈的賓夕法尼亞大道。圖三是網絡一隅,線段連接互相反應的不同分子(不同形狀)。想像它是一座小村落的道路圖。參與切開白砂糖的四個分子分別列出來,並用大橢圓圈在一起。但不要把這個視覺輔助當作真實的東西。不只是這個,果糖一共可以參與三十七個反應,而且需要許多其他分子和反應參與現代代謝的運作。
從頭打造任何分子的大腸桿菌
我們花了超過一個世紀時間來找出一共有多少所需的代謝反應。在這段期間,數千名生物學家藉由研究人類腸道的大腸桿菌建構一座代謝反應的知識高塔。塔頂的景色十分壯觀,它所耗費的時間與建造中世紀大教堂差不多。
我們現在知道大腸桿菌的代謝作用是多麼奇妙,超過一千個小分子重新安排自己進入一千三百個代謝反應。而且我們也已經知道,大腸桿菌和許多其他微生物的代謝能力更勝人類—例如蛋白質中的二十種胺基酸,我們身體只能製造十二種,其餘八種必須從食物取得;我們需要十三種維生素,但只能自行合成維生素D和B7(生物素)兩種;大腸桿菌卻都可以從零開始製造出來。
大腸桿菌代謝如此複雜的部分原因在於六十多種生物質建構組成,要做出每一種得需要許多反應和中間產物。此外,大腸桿菌是傑出的倖存者,不只在我們富含養分的腸道,也可以在只有七個小分子能提供化學原料及能量的嚴峻營養沙漠中繁榮滋長。在如此艱困的極小環境中,諸如葡萄糖分子得扛起雙倍重責大任:既是化學原料也是能量來源。從少數幾種成分,大腸桿菌可以製造所需的六十多種建構組成,然後是一整個細胞。
燒煤油、可口可樂和去光水的賽車
還不只如此。你可以從極小的化學環境中移除葡萄糖,用另一個含有碳和能量的分子來源取代,例如甘油(glycerol),大腸桿菌還是可以從這個分子的碳和能量建構身體。接著用醋裡的乙酸(acetic acid)取代甘油,大腸桿菌依然可以建構自己的身體。總之,大腸桿菌可以使用超過八十種不同分子作為唯一能量來源,以及細胞中數十億個碳原子唯一的供應商,其他像是氮、磷等元素也具有同樣的彈性轉換。大腸桿菌就像一輛自我建造、自我增殖、自我修復的賽車,可以靠煤油、可口可樂或是去光水來運轉。
簡單的化學環境對於在實驗室裡研究微生物很方便有用,但在自然界就不是如此了。像土壤或是人類腸道這樣的環境,有數十種持續改變的燃料分子,想獲得能量並從這些分子提取建構素材,每種燃料的化學反應需要有明確的順序,而想要有更好的生活,微生物必須能夠利用所有這些燃料。
頃刻間,一千個反應聽起來也不覺得多了。
今日的生命和它們難以捉摸的祖先還有另一個差異,那就是加速化學反應的催化劑分子。如果腸道缺乏稱為蔗糖酶的酵素作為催化劑,那麼一杯糖水中的蔗糖就得花幾年或幾十年才會分解成葡萄糖和果糖。你可能每天喝幾加侖的糖水最後卻餓死。
如分子機器的「現代」催化劑
類似這樣的反應不再像早期生命靠簡單的含金屬礦物催化劑來加速,現代催化劑可加速反應達一兆倍,讓分子一見面就盡快反應。這樣的分子機器多達幾千部,都是特定胺基酸鏈。
以蔗糖酶為例,是一千八百二十七個胺基酸組成的巨大分子,每個胺基酸至少有十個原子,所以每個蔗糖酶分子總共有快兩萬個原子。相較之下,四十五個原子大的蔗糖顯得很小,就像豌豆與足球,這也解釋了為何酵素被稱為巨分子,尤其相較於它們協助反應的小分子與生物質建構組成。蔗糖酶看似很大,不過許多酵素可都比它大得多。
當蔗糖酶串開始製造時,像顆毛線球般在三維空間捲曲扭轉,兩者差在每顆毛線球都是獨一無二的,但每個蔗糖酶分子都一模一樣。蔗糖酶製造時,會在空中以精準、定型的方式摺疊,更重要的是,摺疊好的蔗糖酶會持續扭轉、搖晃與震動來執行催化任務。想像蔗糖酶是一個自我聚集的奈米機器,因為擺動過快而形狀顯得模糊,用閃電般的速度吸收分子、切開它們,然後吐出產物。
每個細胞都有數千部奈米機器,每部機器專注執行不同的化學反應,所有複雜的活動都在狹窄的空間發生,生命的分子建構組成塞得比尖峰時段的東京地鐵還要擁擠,很驚人吧!
本文摘自《生命如何創新:大自然的演化創新力從何而來?》,由馬可孛羅文化出版。