0

0
0

文字

分享

0
0
0

為什麼機車白天還要開大燈呢?

車輛中心ARTC_96
・2018/02/26 ・1668字 ・閱讀時間約 3 分鐘 ・SR值 501 ・六年級

  • 文/黃嘉聖│ 財團法人車輛研究測試中心技術服務處
白天開大燈的機車可不是誤開,而是有安全效果的。 圖/SplitShire @Pixabay

2017 年機車強制配備的「晝行燈」

不知您是否有發現,在路上行駛的汽機車多了些許亮點,遠遠的就能發現白色的燈?其實這是 2017 年交通部對於新型式機車所規定強制配備的晝行燈(Daytime Running Light, DRL,又稱為日行燈),新型式的小型汽車則會在今年強制配備。所謂晝行燈是指汽機車在電源開啟或引擎啟動後,車輛前方就會自動點亮的燈具。

或許會有個疑問,為什麼汽機車要強制安裝晝行燈呢?其實世界各國在個人交通工具的數量增長的狀況下,發生交通事故的數量也隨之升高,於是歐美等先進國家開始研究如何降低交通事故的發生率,尤其在降低日間行駛所發生的交通事故,晝行燈就是其中一項非常重要的因素,愛爾蘭道路交通局[1]的研究數據指出車輛使用晝行燈可以減少 15% 的死亡交通事故、10%的重傷事故、5% 的輕傷事故。

既然晝行燈可以降低交通事故發生率,但如果您的車輛是舊車型(可能沒有配備晝行燈),其實是可以在車輛發動後就將大燈開啟,其效用也等同於配備晝行燈。國外在尚未強制配備晝行燈時,也是大力推廣白天保持開啟大燈。在白天開大燈行車時,由於大燈與道路背景的差異對比提高了車輛的可被視性,也就是說更容易讓其他用路人發現該車輛的存在,而且由於光的照射特徵會讓其他用路人產生該車輛較近的感覺,進而保持較大的安全距離,可減少交通事故發生的機率。

沒有晝行燈,就開大燈吧!

從機車防禦駕駛的層面來說,機車白天保持開大燈更是重要,因為機車體積小且只有兩輪,當其他用路人未與機車保持安全距離,或可能做出沒有考慮到機車的駕駛行為時,可能導致機車因此受到驚嚇做出急煞閃躲等反應動作 [2],將大大增加摔車風險。所以為了提升自身機車的能見度,保持開大燈是建議機車上路必備的動作,讓其他用路人更容易發現並注意到你(機車)。

-----廣告,請繼續往下閱讀-----
機車保持開大燈被注意。 圖/車輛中心提供

如上圖的機車保持開大燈可以縮短其他用路人看到機車的時間落差,提早注意到機車的存在,有效縮短其他用路人的反應時間避免事故發生,機車在道路上與其他汽機車同方向行駛時,在對方後視鏡出現的光點可以第一時間反應後方有台機車,進而在路口轉彎或者是汽車在路邊開啟車門時考慮到後方機車的存在;當機車進入較小的道路或巷弄內時,保持開啟大燈更可以提醒對向迎面而來的汽機車,或是行人、自行車等注意到您的出現,尤其是平時較少車輛進出的狹小路段,只要一個光點就能提醒對方提早因應您的動態,避免因為沒注意、一個不小心的動作發生意外。

機車保持開大燈可以縮短其他用路人看到機車的時間落差,提早注意到機車的存在。 圖/free-photo @Pixabay

天色或能見度不佳請開啟大燈,這是一般人知道的安全觀念,但事實上遇到天色或能見度不佳時,很多人都會忘了開燈。保持開大燈能在陰暗的雨天或者晨昏能見度不佳時,或是夏日突然的午後雷陣雨造成的視線不良,提供一層忘了開大燈的保護作用。為了提升自身安全,建議用路時充分發揮防禦駕駛的用路精神,也就是「認知危險、預測危險、避開危險」的用路態度,認知視線不佳的危險、預測其他用路人可能看不見的危險、避開他人可能疏忽或不小心所引發的事故危險。

注解:

  1. Ireland Road Safety Authority, DAYTIME RUNNING LIGHTS Public Consultation
  2. 機車防禦駕駛──如何避免機車在彎道煞車時的不穩定危險

本文出自財團法人車輛研究測試中心;原文標題《機車族自保 保持開大燈讓你被注意》,如需轉載,歡迎與車輛中心聯繫。

文章難易度
車輛中心ARTC_96
9 篇文章 ・ 3 位粉絲
財團法人車輛研究測試中心 (ARTC),江湖俗稱車測中心,但更希望大家能稱呼我們為「車輛中心」,因為我們不只做測試,我們也做創新研發;我們是由一群對車輛有著專業知識與熱情的工程師所組成,期望透過泛科學這個平台與大家分享各種車輛知識,讓大家更懂車。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

3
0

文字

分享

0
3
0
【2022 年搞笑諾貝爾安全工程獎】交通安全麋鹿有責!用假麋鹿守護行車和平!
Peggy Sha/沙珮琦
・2022/09/30 ・2013字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

夜路走多了,總匯三明治;公路開久了,總會遇麋鹿(咦?)。

好啦,在台灣不管開車開多久,你都不太可能會撞到麋鹿,但若是在北美、西伯利亞或斯堪地那維亞半島這些高緯度的國家,那實在蠻容易碰上突然衝出來的「麋鹿驚喜包」,一不小心就可能造成車禍慘劇。

在瑞典,平均每天會發生 13 起左右的麋鹿車禍事件,可說是道路安全的一大難題。

在台灣的我們,很難想像開車在路上會撞到一隻鹿。但在高緯度國家,這是一個嚴重的交通問題。
在台灣的我們,很難想像開車在路上會撞到一隻鹿。但在高緯度國家,這是一個嚴重的交通問題。 圖/envato.elements

於是,為了防止車輛被破壞、為了守護行車的和平,瑞典道路管理局贊助了一項碩士論文研究,希望可以找出減少車禍損害的方法;為此,研究團隊做出了非常可愛的鹿鹿……然後努力撞爆它!

-----廣告,請繼續往下閱讀-----

(話說這篇論文的研究對象是肩高可達 2 公尺的那種巨型麋鹿,不是那個拖著聖誕老公公的可愛馴鹿,想知道兩者的差異可以看這篇:「鹿茸」是誰的茸?」)

想守護道路安全?首先,你需要一隻耐撞的鹿鹿

鹿鹿這麼可愛,怎麼可以撞鹿鹿?就算想要守護道路安全,我們也不能夠抓真麋鹿來測試對吧?於是乎,做出一隻既「真實」又「耐撞」的假麋鹿,變成了最重要的功課。

鹿鹿這麼可愛!怎麼可以撞鹿鹿? 圖/GIPHY

真正動手之前,首先要來蒐集一些背景資料。由於麋鹿本身的個體差異很大,要在野外觀察也較不容易,於是,本研究的作者 Magnus Gens 聯繫了科爾莫登野生動物園(Kolmården Zoo)和其中的獸醫,除了取得資料外,也近距離觀察了兩隻 3 歲左右、已馴化的麋鹿。

每年五月左右,當小麋鹿逐漸成熟、長到差不多一歲時,便會被麋鹿媽媽掃地出門。剛離開母親的小麋鹿們會有些懵懂、容易到處亂晃,也因此帶來交通事故的高峰時期。麋鹿雖然看起來笨重,但其實十分苗條,此外,當牠們被撞擊時,會呈現出「柔若無骨」的狀態,肩膀和骨盆的關節甚至可以用超乎想像的方式詭異地扭轉。而當牠們受到驚嚇或是卡在擋風玻璃上時,有時會劇烈掙扎,並對駕駛造成二度傷害。

-----廣告,請繼續往下閱讀-----

親愛的,我為你打造了隻超強無頭麋鹿!

資料收集完成後,就準備要來實行「造鹿大業」了!

首先呢,假鹿的材質可得十分講究,需要耐用、容易取得又接近真實數據,千挑萬選之下,Magnus Gens 決定採用由 Trelleborg Industri AB 所製造的一款又軟又韌,約為蕭氏硬度(Shore)40° 的橡膠「RF 19 Red」。

Magnus Gens 共用了 116 塊橡膠搭配鋼製零件,打造出了超強大的假麋鹿,雖然它的外表實在是不太像頭麋鹿,畢竟沒有毛也沒有頭,不過呢,它能很好地模擬真實麋鹿的組織密度和柔軟度,也解決了舊有模型太硬、太脆而導致撞擊測試失準的問題。

接下來,Magnus Gens 找來了三輛舊車來進行撞擊測試,分別是 Volvo 245 和兩輛 Saab 9-5。關於這撞擊的結果呢,只能說非常令人滿意!因為撞毀的車輛看起來跟真正的車禍車輛看起來有 87% 像,實在是可喜可賀啊!

-----廣告,請繼續往下閱讀-----
假麋鹿撞擊測試。

別小看假麋鹿的力量!交通安全從假麋鹿做起!

看到這裡,你或許會有點好奇:到底為什麼要花這麼多力氣去做假麋鹿呢?

Magnus Gens 表示,研發這種好做、容易維護又耐用的假麋鹿非常重要,因為它能在各個車廠進行車輛安全測試時發揮巨大效用。假設車廠們能根據相同條件進行反覆測試,便能為潛在的買家提供有價值的比較數據。另一方面,如果消費者開始重視相關議題、要求車廠進行安全測試,便能帶來更多資金和支援,進而打造出更加安全的汽車。

所以說,假麋鹿真的是非常重要而且影響深遠的存在啊!難怪在多年後的今天,這個研究能成功拿下 2022 年搞笑諾貝爾中的「安全工程獎」,讓我們感謝假麋鹿們的努力!

感謝研究團隊與假麋鹿們的努力! 圖/GIPHY

另一方面,除了麋鹿之外,世界上還有許多地方都苦於大型野生動物所造成的相關車禍;在澳洲有袋鼠,在非洲有駱駝,因此,相關需求始終存在。不知道,未來會不會有更多人開始研發假袋鼠、假駱駝呢?那想必又將會是一場有趣又有意義的奮鬥吧!

參考資料:

http://www.diva-portal.org/smash/get/diva2:673368/FULLTEXT01.pdf

-----廣告,請繼續往下閱讀-----
Peggy Sha/沙珮琦
69 篇文章 ・ 390 位粉絲
曾經是泛科的 S 編,來自可愛的教育系,是一位正努力成為科青的女子,永遠都想要知道更多新的事情,好奇心怎樣都不嫌多。

1

3
0

文字

分享

1
3
0
「車禍」成為全球年輕人的主要死因?我們能做些什麼?
椀濘_96
・2022/09/23 ・2415字 ・閱讀時間約 5 分鐘

交通事故幾乎天天在台灣各地出現,加上近年受疫情影響,外送產業蓬勃發展,機車騎士經常面臨事故的風險。

下班尖峰時間的摩托車潮。圖/wikipedia

台灣年輕人車禍事故逐年增加

根據交通部道路交通安全督導委員會的官方數據顯示, 18 至 24 歲年輕人的普通輕型及重型機車事故,有逐年增加的趨勢。

台灣歷年車禍事件數與死亡人數折線圖。圖/作者

公路總局統計,在台灣領有機車駕照的人數多達 1497 萬人,其中 18 至 25 歲的年齡層中,持有機車駕照約 142 萬人,占總數將近 1 成。

學生與青年上班族大多以機車作為通勤工具,隨著持有駕照的人數增多,發生車禍事故的機率也跟著提升,年輕人騎乘機車相關的傷亡事故居高不下,這對於台灣人口高齡化現象有著相當程度的影響。

台灣青年多以機車作為通勤工具,相關的傷亡事故提高,對高齡化有一定程度影響。圖/Pexels

不只是台灣,全球年輕人正面臨車禍的危害

「全球交通事故正在剝奪年輕人的生命,並且持續成長,未有減緩。」

根據澳洲新南威爾士大學雪梨分校的一項新研究表明,與交通相關的死亡和傷害是全球年輕人的最大殺手——造成的死亡人數超過了疾病或其他傷害所造成的總數。

-----廣告,請繼續往下閱讀-----
全球交通事故剝奪年輕人的生命,造成的死亡人數超過了疾病和其他傷害。圖/Pixabay

該研究結果發表於專業期刊 The Lancet Public Health《刺胳針全球衛生》上,為首次對全球 10~24 歲年輕族群進行統計分析,討論因交通意外傷害相關發生率及死亡率的綜合趨勢。

研究團隊以 2019 年全球疾病負擔(Global Burden of Disease, GBD)[註1] 研究的最新數據,依照國家、性別、年齡組成(10~14 歲、15~19 歲、20~24 歲)、社會人口指數(Socio-Demographic Index, SDI;社會和經濟狀況密切相關的匯總指標)分層與人口健康狀況,分析了過去 30 年中 204 個國家的青少年,因交通事故意外傷害造成的死亡和失能調整生命年(Disability-Adjusted Life Years, DALYs;為測量疾病對人所造成影響的單位,指一個人因罹病而早夭或失能,所造成的生命損失年數)[註2],也就是:青少年因車禍而導致死亡或失能,所損失的生命年數。

註 1:全球疾病負擔(Global Burden of Disease, GBD)之研究始於 1991 年,由世界衛生組織、世界銀行及哈佛大學共同開發,以醫療經濟學的原理與方法,配合倫理學之公平原則,發展出 DALYs 新指標來測量疾病負擔。from 衛生福利部疾病管制署
註 2:死亡和失能調整生命年(DALYs) 相當於生命損失人年數(Years of Life Lost, YLLs)與失能損失人年數(Years Lived with Disability, YLDs)的總和。from 衛生福利部疾病管制署

結果發現,儘管自 1990 年以來交通傷害死亡率下降了三分之一,但在一些國家,青少年因道路交通事故造成的死亡人數仍在增加

該論文主要作者,新南威爾士大學醫學與健康學院人口健康學院研究員,艾米佩登博士指出:「特別是在低收入和中低收入國家,與道路事故傷害相關的死亡和 DALYs,其絕對數量大幅增加,這表明有越來越多人口面臨受傷的風險。」

-----廣告,請繼續往下閱讀-----

「車禍」問題,需要有更多的關注

該研究也指出,高收入國家近十年來的因交通事故造成的傷害和死亡率,其降低的速度有所減緩;與 1990 年至 2010 年間,每年下降 2.4% 的相比,2010 年至 2019 年間每年僅降低 1.7%。但也有像是澳洲這樣的高收入國家,在過去的 10 年裡,道路交通傷害率的下降基本上是停滯不前的,這也說明該國家對此議題缺乏關注。

對於低收入國家而言,交通事故所帶來的傷害也逐年嚴重,死亡人數的比例從 1990 年的 28%(271,772 人中的 74,713 人)增加到 2019 年的 47%(214,337 人中的 100,102 人)。

佩登博士提到:「低社會人口指數 (Low socio-demographic index)國家,正在應對快速城市化所帶來的挑戰,因此,年輕人面臨更大風險的道路交通和其他類型的傷害。」

車禍問題需有更多關注。圖/GIPHY

為了道路安全,我們應該採取行動

「讓道路更安全並不一定需要激進的解決方案,只需要做出更強有力的承諾來促進安全的使用道路行為。」

與其他青少年死亡原因相比,在預防道路交通傷害的資源仍然不足,與全球其他公衛議題相比,車禍的問題缺乏關注與改善的資金

-----廣告,請繼續往下閱讀-----

正式駕照、最低飲酒年齡、繫安全帶和配戴安全帽等相關法規規定,以及現在學校普及的道路交通安全教育,都已證實可以有效的減少道路交通事故傷害。

接下來我們要做的應該是促進積極的交通基礎設施,並將兒童和青少年的道路安全需求放在首位。進一步策畫一些簡單、負擔得起且行之有效的措施,來減少車禍事故;在加強全球道路安全的同時,進一步保護青少年遠離可預防的傷害。

藉由一些簡單且行之有效的措施,來減少沒有被應用或執行的道路交通傷害,進一步保護青少年。圖/Pixabay

參考資料

  1. Road injuries are killing young people, and it’s hardly slowing down—ScienceDaily
  2. Amy E Peden et al. Adolescent transport and unintentional injuries: a systematic analysis using the Global Burden of Disease Study 2019. The Lancet Public Health, 2022; DOI: 10.1016/S2468-2667(22)00134-7
  3. 台灣機車事故年奪數百性命,恐加劇少子化國安危機?
  4. 交通部道路交通安全督導委員會—道安資訊查詢網
所有討論 1