0

0
0

文字

分享

0
0
0

機車為何不該在過彎時煞車?用「合力圓」算給你看

車輛中心ARTC_96
・2018/02/23 ・1715字 ・閱讀時間約 3 分鐘 ・SR值 546 ・八年級

-----廣告,請繼續往下閱讀-----

  • 文/黃嘉聖│ 財團法人車輛研究測試中心技術服務處

機車急煞的危險性

source:airforcelive

跨上機車,除了轉動油門虎嘯風馳,遨遊在車水馬龍的道路上時,騎士難免會受到人、車、物等道路上的外在因素,而進行減速煞車的動作。尤其在遇到危急狀況時,總是直覺地用力拉下煞車拉桿,希望可以將機車盡快停下來,不過輪胎的抓地力有限,如果直接施加過大的煞車力道會造成輪胎鎖死,加上一般機車設計為兩輪,如果其中一輪鎖死甚至兩輪都鎖死,機車將難以控制,很容易失去平衡摔倒而發生意外。

機車在直線道路上行駛遇到危急狀況時,輪胎可以承受的煞車力道相對比在彎道上行駛要大得許多,這是因為輪胎與地面之間的抓地力,除了要提供給車輛行駛時加減速的縱向力,也需要提供給車輛在過彎(轉向)時的橫向力,如果把車輛行駛時的縱向力跟橫向力相加,兩個力的合力最大值就可以畫成一個圓,在這個圓內看作是輪胎可利用的抓力地空間,在相同的道路條件下,只要施加的煞車力不超過圓的範圍,輪胎就不會鎖死,一旦超出圓外,輪胎就會發生鎖死打滑狀況。

過彎前減速,過彎時避免煞車

輪胎的合力圓。 圖/車輛中心提供

上圖為輪胎的合力圓(Kamm Circle),為了方便理解我們可以假設在一個條件下,輪胎的最大的抓地力是 10,也就是圖一中黃色圈的合力圓,機車如果要安全行駛在道路上,則其縱向力(因為加速/煞車)與橫向力(因為轉彎)相加起來的合力必須在 10 以下,一旦超過 10 就會造成輪胎鎖死或打滑,如果接近 10 代表著接近輪胎抓地力的極限,由於沒有多餘的抓力地,此時機車的操控會變得不穩定,就像是在懸崖邊行走一樣,只要一點點的多餘動作就可能超過 10,也就是造成機車的打滑或摔倒。

舉例來說,若機車直線行駛遇到危急狀況而緊急煞車,這時緊急煞車所使用的縱向力如果是 8,那機車還可以在騎士的操控下安全的停下來;但是如果這台機車正在轉彎,而過彎所需要的橫向力已經是7的話,在這過彎過程,如果施加煞車的縱向力是 8,因此時縱向力與橫向力合力已經超過 10 了,所以輪胎就會鎖死打滑,加上機車過彎帶有車身傾斜角度,而使得騎士與機車會直接摔倒而發生意外。

-----廣告,請繼續往下閱讀-----

因此,了解抓地力的合力圓就可知道,在彎道中盡量不要緊急煞車,否則很容易造成機車不穩定或輪胎鎖死打滑,為了避免在彎道中緊急煞車,就應該在過彎前確實完成減速,讓輪胎的抓地力充分用來過彎。

從輪胎的合力圓認知彎道中緊急煞車的風險,更可以進一步延伸機車在道路行駛時,緊急煞車跟閃避這兩個動作同時進行的高度風險,機車在閃避前方障礙物的動作與過彎類似,有時更是急轉彎的狀況,都會用去大部分的側向力,而緊急煞車會用去大部分的縱向力,所以不論是緊急煞車時閃避,或者是閃避時緊急煞車,有相當大的機會造成騎士操控的不穩定及輪胎鎖死或打滑,大幅增加摔倒的風險。

養成危險預測的習慣,隨時控制速度避免風險

或許有人會試問增進駕駛技術的方式應該可以操控補救吧?事實上一般用路人增進駕駛技術的機會及管道不多,且危險狀況發生時環境變因複雜,無法用單純的駕駛訓練環境對應,貫徹防禦駕駛的觀念了解交通環境人、車、路的特性,養成危險預測的習慣,提高危險預測的能力,也就是說行駛中隨時有速度控制的習慣與能力,並且認知危險的所在進而避開危險。

前方遇有轉彎車路口。 圖/車輛中心提供

以上圖為例,機車為直行車,看到前方有一部車準備左轉或企圖左轉,雖然在此種情境下,通常機車擁有優先路權,但以防禦駕駛的角度(學習保護自己的用路觀念),會建議機車遇到路口時提前鬆開油門並預做煞車準備,自然降低經過路口的速度也能提早因應周遭用路人的行為,避免該車搶快左轉而必須緊急煞車或緊急迴避,造成本文所講的問題,不讓自己陷入高風險的交通困境,自然而然安全行駛。

-----廣告,請繼續往下閱讀-----

本文出自財團法人車輛研究測試中心;原文標題《如何避免機車在彎道煞車時的不穩定危險》,如需轉載,歡迎與車輛中心聯繫。

文章難易度
車輛中心ARTC_96
9 篇文章 ・ 3 位粉絲
財團法人車輛研究測試中心 (ARTC),江湖俗稱車測中心,但更希望大家能稱呼我們為「車輛中心」,因為我們不只做測試,我們也做創新研發;我們是由一群對車輛有著專業知識與熱情的工程師所組成,期望透過泛科學這個平台與大家分享各種車輛知識,讓大家更懂車。

0

1
0

文字

分享

0
1
0
揭密突破製程極限的關鍵技術——原子層沉積
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/30 ・3409字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文由 ASM 委託,泛科學企劃執行。 

以人類現在的科技,我們能精準打造出每一面牆只有原子厚度的房子嗎?在半導體的世界,我們做到了!

如果將半導體製程比喻為蓋房子,「薄膜製程」就像是在晶片上堆砌層層疊疊的磚塊,透過「微影製程」映照出房間布局 — 也就是電路,再經過蝕刻步驟雕出一格格的房間 — 電晶體,最終形成我們熟悉的晶片。為了打造出效能更強大的晶片,我們必須在晶片這棟「房子」大小不變的情況下,塞進更多如同「房間」的電晶體。

因此,半導體產業內的各家大廠不斷拿出壓箱寶,一下發展環繞式閘極、3D封裝等新設計。一下引入極紫外曝光機,來刻出更微小的電路。但別忘記,要做出這些複雜的設計,你都要先有好的基底,也就是要先能在晶圓上沉積出一層層只有數層原子厚度的材料。

-----廣告,請繼續往下閱讀-----

現在,這道薄膜製程成了電晶體微縮的一大關鍵。原子是物質組成的基本單位,直徑約0.1奈米,等於一根頭髮一百萬分之一的寬度。我們該怎麼精準地做出最薄只有原子厚度,而且還要長得非常均勻的薄膜,例如說3奈米就必須是3奈米,不能多也不能少?

這唯一的方法就是原子層沉積技術(ALD,Atomic Layer Deposition)。

蓋房子的第一步是什麼?沒錯,就是畫設計圖。只不過,在半導體的世界裡,我們不需要大興土木,就能將複雜的電路設計圖直接印到晶圓沉積的材料上,形成錯綜複雜的電路 — 這就是晶片製造的最重要的一環「微影製程」。

首先,工程師會在晶圓上製造二氧化矽或氮化矽絕緣層,進行第一次沉積,放上我們想要的材料。接著,為了在這層材料上雕出我們想要的電路圖案,會再塗上光阻劑,並且透過「曝光」,讓光阻劑只留下我們要的圖案。一次的循環完成後,就會換個材料,重複沉積、曝光、蝕刻的流程,這就像蓋房子一樣,由下而上,蓋出每個樓層,最後建成摩天大樓。

-----廣告,請繼續往下閱讀-----

薄膜沉積是關鍵第一步,基底的品質決定晶片的穩定性。但你知道嗎?不只是堆砌磚塊有很多種方式,薄膜沉積也有多樣化的選擇!在「薄膜製程」中,材料學家開發了許多種選擇來處理這項任務。薄膜製程大致可分為物理和化學兩類,物理的薄膜製程包括蒸鍍、濺鍍、離子鍍、物理氣相沉積、脈衝雷射沉積、分子束磊晶等方式。化學的薄膜製程包括化學氣相沉積、化學液相沉積等方式。不同材料和溫度條件會選擇不同的方法。

二氧化矽、碳化矽、氮化矽這些半導體材料,特別適合使用化學氣相沉積法(CVD, Chemical Vapor Deposition)。CVD 的過程也不難,氫氣、氬氣這些用來攜帶原料的「載氣」,會帶著要參與反應的氣體或原料蒸氣進入反應室。當兩種以上的原料在此混和,便會在已被加熱的目標基材上產生化學反應,逐漸在晶圓表面上長出我們的目標材料。

如果我們想增強半導體晶片的工作效能呢?那麼你會需要 CVD 衍生的磊晶(Epitaxy)技術!磊晶的過程就像是在為房子打「地基」,只不過這個地基的每一個「磚塊」只有原子或分子大小。透過磊晶,我們能在矽晶圓上長出一層完美的矽晶體基底層,並確保這兩層矽的晶格大小一致且工整對齊,這樣我們建造出來的摩天大樓就有最穩固、扎實的基礎。磊晶技術的精度也是各公司技術的重點。

雖然 CVD 是我們最常見的薄膜沉積技術,但隨著摩爾定律的推進,發展 3D、複雜結構的電晶體構造,薄膜也開始需要順著結構彎曲,並且追求精度更高、更一致的品質。這時 CVD 就顯得力有未逮。

-----廣告,請繼續往下閱讀-----

並不是說 CVD 不能用,實際上,不管是 CVD 還是其他薄膜製程技術,在半導體製程中仍占有重要地位。但重點是,隨著更小的半導體節點競爭愈發激烈,電晶體的設計也開始如下圖演變。

圖/Shutterstock

看出來差別了嗎?沒錯,就是構造越變越複雜!這根本是對薄膜沉積技術的一大考驗。

舉例來說,如果要用 CVD 技術在如此複雜的結構上沉積材料,就會出現像是清洗杯子底部時,有些地方沾不太到洗碗精的狀況。如果一口氣加大洗碗精的用量,雖然對杯子來說沒事,但對半導體來說,那些最靠近表層的地方,就會長出明顯比其他地方厚的材料。

該怎麼解決這個問題呢?

-----廣告,請繼續往下閱讀-----
CVD 容易在複雜結構出現薄膜厚度不均的問題。圖/ASM

材料學家的思路是,要找到一種方法,讓這層薄膜長到特定厚度時就停止繼續生長,這樣就能確保各處的薄膜厚度均勻。這種方法稱為 ALD,原子層沉積,顧名思義,以原子層為單位進行沉積。其實,ALD 就是 CVD 的改良版,最大的差異在所選用的化學氣體前驅物有著顯著的「自我侷限現象」,讓我們可以精準控制每次都只鋪上一層原子的厚度,並且將一步驟的反應拆為兩步驟。

在 ALD 的第一階段,我們先注入含有 A 成分的前驅物與基板表面反應。在這一步,要確保前驅物只會與基板產生反應,而不會不斷疊加,這樣,形成的薄膜,就絕對只有一層原子的厚度。反應會隨著表面空間的飽和而逐漸停止,這就稱為自我侷限現象。此時,我們可以通入惰性氣體將多餘的前驅物和副產物去除。在第二階段,我們再注入含有 B 成分的化學氣體,與早已附著在基材上的 A 成分反應,合成為我們的目標材料。

透過交替特殊氣體分子注入與多餘氣體分子去除的化學循環反應,將材料一層一層均勻包覆在關鍵零組件表面,每次沉積一個原子層的薄膜,我們就能實現極為精準的表面控制。

你知道 ALD 領域的龍頭廠商是誰嗎?這個隱形冠軍就是 ASM!ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商,自 1968 年,Arthur del Prado 於荷蘭創立 ASM 以來,ASM 一直都致力於推進半導體製程先進技術。2007 年,ASM 的產品 Pulsar ALD 更是成為首個運用在量產高介電常數金屬閘極邏輯裝置的沉積設備。至今 ASM 不僅在 ALD 市場佔有超過 55% 的市佔率,也在 PECVD、磊晶等領域有著舉足輕重的重要性。

-----廣告,請繼續往下閱讀-----

ASM 一直持續在快速成長,現在在北美、歐洲、及亞洲等地都設有技術研發與製造中心,營運據點廣布於全球 15 個地區。ASM 也很看重有「矽島」之稱的台灣市場,目前已在台灣深耕 18 年,於新竹、台中、林口、台南皆設有辦公室,並且在 2023 年於南科設立培訓中心,高雄辦公室也將於今年年底開幕!

當然,ALD 也不是薄膜製程的終點。

ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商。圖/ASM

最後,ASM 即將出席由國際半導體產業協會主辦的 SEMICON Taiwan 策略材料高峰論壇和人才培育論壇,就在 9 月 5 號的南港展覽館。如果你想掌握半導體產業的最新趨勢,絕對不能錯過!

圖片來源/ASM

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
為什麼機車白天還要開大燈呢?
車輛中心ARTC_96
・2018/02/26 ・1668字 ・閱讀時間約 3 分鐘 ・SR值 501 ・六年級

  • 文/黃嘉聖│ 財團法人車輛研究測試中心技術服務處

白天開大燈的機車可不是誤開,而是有安全效果的。 圖/SplitShire @Pixabay

2017 年機車強制配備的「晝行燈」

不知您是否有發現,在路上行駛的汽機車多了些許亮點,遠遠的就能發現白色的燈?其實這是 2017 年交通部對於新型式機車所規定強制配備的晝行燈(Daytime Running Light, DRL,又稱為日行燈),新型式的小型汽車則會在今年強制配備。所謂晝行燈是指汽機車在電源開啟或引擎啟動後,車輛前方就會自動點亮的燈具。

或許會有個疑問,為什麼汽機車要強制安裝晝行燈呢?其實世界各國在個人交通工具的數量增長的狀況下,發生交通事故的數量也隨之升高,於是歐美等先進國家開始研究如何降低交通事故的發生率,尤其在降低日間行駛所發生的交通事故,晝行燈就是其中一項非常重要的因素,愛爾蘭道路交通局[1]的研究數據指出車輛使用晝行燈可以減少 15% 的死亡交通事故、10%的重傷事故、5% 的輕傷事故。

既然晝行燈可以降低交通事故發生率,但如果您的車輛是舊車型(可能沒有配備晝行燈),其實是可以在車輛發動後就將大燈開啟,其效用也等同於配備晝行燈。國外在尚未強制配備晝行燈時,也是大力推廣白天保持開啟大燈。在白天開大燈行車時,由於大燈與道路背景的差異對比提高了車輛的可被視性,也就是說更容易讓其他用路人發現該車輛的存在,而且由於光的照射特徵會讓其他用路人產生該車輛較近的感覺,進而保持較大的安全距離,可減少交通事故發生的機率。

沒有晝行燈,就開大燈吧!

從機車防禦駕駛的層面來說,機車白天保持開大燈更是重要,因為機車體積小且只有兩輪,當其他用路人未與機車保持安全距離,或可能做出沒有考慮到機車的駕駛行為時,可能導致機車因此受到驚嚇做出急煞閃躲等反應動作 [2],將大大增加摔車風險。所以為了提升自身機車的能見度,保持開大燈是建議機車上路必備的動作,讓其他用路人更容易發現並注意到你(機車)。

機車保持開大燈被注意。 圖/車輛中心提供

如上圖的機車保持開大燈可以縮短其他用路人看到機車的時間落差,提早注意到機車的存在,有效縮短其他用路人的反應時間避免事故發生,機車在道路上與其他汽機車同方向行駛時,在對方後視鏡出現的光點可以第一時間反應後方有台機車,進而在路口轉彎或者是汽車在路邊開啟車門時考慮到後方機車的存在;當機車進入較小的道路或巷弄內時,保持開啟大燈更可以提醒對向迎面而來的汽機車,或是行人、自行車等注意到您的出現,尤其是平時較少車輛進出的狹小路段,只要一個光點就能提醒對方提早因應您的動態,避免因為沒注意、一個不小心的動作發生意外。

機車保持開大燈可以縮短其他用路人看到機車的時間落差,提早注意到機車的存在。 圖/free-photo @Pixabay

天色或能見度不佳請開啟大燈,這是一般人知道的安全觀念,但事實上遇到天色或能見度不佳時,很多人都會忘了開燈。保持開大燈能在陰暗的雨天或者晨昏能見度不佳時,或是夏日突然的午後雷陣雨造成的視線不良,提供一層忘了開大燈的保護作用。為了提升自身安全,建議用路時充分發揮防禦駕駛的用路精神,也就是「認知危險、預測危險、避開危險」的用路態度,認知視線不佳的危險、預測其他用路人可能看不見的危險、避開他人可能疏忽或不小心所引發的事故危險。

注解:

  1. Ireland Road Safety Authority, DAYTIME RUNNING LIGHTS Public Consultation
  2. 機車防禦駕駛──如何避免機車在彎道煞車時的不穩定危險

本文出自財團法人車輛研究測試中心;原文標題《機車族自保 保持開大燈讓你被注意》,如需轉載,歡迎與車輛中心聯繫。

車輛中心ARTC_96
9 篇文章 ・ 3 位粉絲
財團法人車輛研究測試中心 (ARTC),江湖俗稱車測中心,但更希望大家能稱呼我們為「車輛中心」,因為我們不只做測試,我們也做創新研發;我們是由一群對車輛有著專業知識與熱情的工程師所組成,期望透過泛科學這個平台與大家分享各種車輛知識,讓大家更懂車。