0

3
4

文字

分享

0
3
4

拉馬克的逆襲?從用進廢退說到表觀遺傳學

劉筱蕾_96
・2018/02/22 ・4623字 ・閱讀時間約 9 分鐘 ・SR值 576 ・九年級

從被遺忘的拉馬克開始說起

悲劇人物拉馬克,沒落貴族出身,結過好幾次婚,生了很多小孩而且好幾個小孩有生理跟精神障礙,晚年兩眼全盲、極度貧窮,死後必須靠人接濟才能完成喪禮。圖/Wikipedia

在正式進入主題之前,我必須先介紹一個人,他的理論價值在生前與死後都被其他大頭學者掩蓋(雖然生物課本有提到他但大家對他的印象可能只剩長頸鹿的長脖子),直到最近研究者才又重新回顧這位仁兄對演化生物學領域發展上的貢獻。我要講的人是拉馬克 (全名:讓-巴蒂斯特·皮埃爾·安托萬·德·莫奈·德·拉馬克, Jean-Baptiste Pierre Antoine de Monet, Chevalier de Lamarck),第一個(廣為流傳的)對生物的形態變化提出可能解釋「用進廢退說」的研究者。

出身法國小貴族家庭的拉瑪克,在現在大名鼎鼎的法國自然史博物館工作。雖然他當時是昆蟲以及蟲類學門(即現今的無脊椎動物)的負責人,但是他更熱衷於自然史的研究。

拉馬克主義:用進廢退說

目前被稱為「拉馬克主義」(Lamarckism)的理論中,「生命力」類似於流動的液體,生物的外在環境或內在需求都能促進「生命汁」的流動,而「生命汁」聚集的部位會促成生理的變化,進一步造成生物形態的改變。頻繁的使用會讓該部位更發達,反之就會退化(他當時用的例子就是我們課本看到的長頸鹿示意圖)。

拉馬克稱這種用進廢退為他理論的「第一基本作用」,第二作用的內容則指出,這些在個體身上發生的改變可以傳給下一代的。基於這兩個定律,拉馬克認為,演化是生物為適應環境所產生緩慢、連續且漸進式改變的結果。

拉馬克系統性闡述了生物發生變化及其可能的原因,雖然他提出的理論在後世看來不能解釋許多新發現的現象;但「生物會發生變異」這樣的洞見衍生出了「演化論」的基礎。很不幸的,他的對生物如何演進的觀點並不符合當時奠基於神創論的科學氛圍,因此並未受到重視。

舉例來說,當時他還有一個名氣更響亮的後輩兼同事——古生物學之父居維葉 (喬治·利奧波德·克雷蒂安·弗列德里克·達戈貝爾·居維葉, Baron Georges Léopold Chrétien Frédéric Dagobert Cuvier.  19世紀法國人的取名藝術真是令人佩服啊)。居維葉在當時是比較解剖學的大師,他經手大批動物化石,最有機會觀察到生物型態的變化。居維葉主張動物體內的各種結構都高度相互依賴。他指出,如果動物身體部分結構發生變化,其他部位必須一同演進來適應隨之而來的生理變動,以回到結構運作的平衡。這代表物種的任何形態變異都會促成整體解剖結構的重大改變,進而影響個體的生存,所以物種的變異必然不會發生。

居維葉的理論提出了尖端的解剖學證據支持,也暗合當時的社會與宗教氣氛,所以在拉馬克與居維葉的時代,拉馬克的理論並不是主流。而後深受拉馬克啟發的達爾文與華萊士聯合闡釋了物競天擇的概念,演化學的發展也奠基在達爾文與華萊士(當然達爾文在這方面的想法更加完整)的觀念上發展,這讓拉馬克更加隱於歷史洪流之中。

拉馬克的大頭同事(不管是政治勢力或真的頭都很大)居維葉。圖/ 科科史上的今天

表觀遺傳學:再度復出的用進退廢說?

好啦!講古時間結束,為什麼要在前面說這樣落落長一大段呢? 這是因為拉馬克「外在環境可以造成個體形態改變並傳給下一代」的概念又被挖出來啦! 近十多年來的研究發現,個體對外在環境的適應確實可以藉由某些機制傳給下一代。

雖然不管是拉馬克、居維葉、達爾文或是華萊士對此都沒有相應的理解,但隨著現代綜合理論(Modern evolutionary synthesis)的發展,我們通常認為「儲存與表達遺傳訊息」是生命的基礎。傳統認為,遺傳訊息儲存在DNA序列中,需要表現時,DNA 會先轉錄為 RNA,再由 RNA 轉譯成蛋白質。這些遺傳訊息,會經由生殖傳遞給下一代。

承載訊息的DNA代代相傳,也在代代傳承中逐漸改變,成為受天擇(natural selection)作用的原料。但是科學家卻漸漸觀察到,遺傳的全貌沒這麼簡單。在恐懼記憶也能遺傳!?科學家表示,飲食可以影響後代的遺傳訊息中,就談到了所謂的表觀遺傳(epigenetics)。廣義上而言,在不直接改變DNA序列的前提下,通過某些機制,使生物引起可以遺傳給後代的變化,都能稱作「表觀遺傳」。

要怎麼在不改變 DNA 序列之下,還能改變最後的蛋白質成品呢?在概念上,就是要想辦法影響DNA>>RNA>>蛋白質的運作流程。

阻止「完美鋼普拉」成形的 N 種方法

如果 Keroro 軍曹寫了一份「如何設建造完美的鋼普拉」。身為藍星人,為了阻止軍曹的侵略,要如何阻止鋼普拉出廠呢?Keroro source:IMDb

想像一下,住在伽瑪星雲第 58 號行星的 Keroro 軍曹,寫了一份「如何設建造完美的鋼普拉」設計書,打算交給台灣的工廠製作。這份設計書必須先翻譯成中文,交給工廠之後,技師們再根據中文設計書,作出鋼普拉各部位的工程規劃,決定使用素材、製作的順序,以打造真正的鋼普拉。

而你,身為藍星人,為了阻止軍曹的侵略,要如何阻止鋼普拉出廠呢?製造鋼普拉的原始訊息,就是Keroro 軍曹寫的設計書。按表觀遺傳學的作法,可以讓設計書無法被翻譯(不是偷改原文設計書本身),使工廠不能接單;或是燒掉工程規劃,讓工人無法開工。

表觀遺傳調控的作業概念

表觀遺傳學的機制中,影響 DNA 轉錄出 RNA,就和偷改軍曹的設計書,使它無法被翻譯為中文類似。這方面主要與 DNA甲基化(DNA methylation),以及組蛋白修飾(histone modification)有關,不過表觀遺傳學的調控機制,不只有降低基因表現一個方向,如組蛋白乙醯化(acetylation),反而會增加基因表現。但是這篇文章會主要著重於 DNA甲基化的介紹。

保留了「彈性」的 DNA甲基化

DNA甲基化是相當常見、調控基因表現的機制,而且其作用很早以前就發現了。它沒有改變 DNA 的序列本身,而是透過蛋白質酵素,如「DNA甲基轉移酶(DNA methyltransferase 1,簡稱為DNMT1),將甲基 (-CH3)接到DNA分子上。

大致上來說,DNA甲基化會抑制基因的表現,被貼上甲基標籤的基因,便無法繼續製造蛋白質成品,因此隨之造成生物的改變。舉例來說,某些癌症的誕生就是因為細胞本來的甲基標籤失效了,才導致原本正常的人體細胞,發展成為惡性腫瘤。

好!所以我們知道,DNA甲基化可以改變基因表現,而不必修改原本的 DNA序列。但是為何會演化出這種機制呢?要是不想要這個性狀,直接丟掉這段 DNA即可,何必在基因序列被複製出來之後,又大費周章的抑制它呢?

這也許跟生物適應的「彈性」有關。

科學家在實驗中利用化學方法,強制移除阿拉伯芥 DNA 上的所有甲基標籤,再與正常的植物個體比較,結果發現沒有甲基標籤的植株,適應外在環境變化的能力下降,換句話說,生理機制的彈性變差了。

一般來說,植物需要有能在短期內,適應環境變化的能力。例如今年春天暖的早,櫻花就會早開,如果天冷的久一點,花季就會推遲;如果種子落在土壤貧瘠的地方,植株要長得小,才能節省資源,以進行有性生殖。

但是沒有甲基標籤的阿拉伯芥,不管環境條件怎樣,都會長出類似的植株。若是在多變的野生環境中,如此會讓個體過度使用,或是無法合理使用可得的資源,而降低成功生長與繁殖的機會。由此觀之,DNA甲基化可以微調基因的表現,以利個體適應環境,增加生殖成功率。

DNA甲基化在演化上另一個優勢是,可以降低族群面對逆境時的反應時間。

基因組在一般的狀況下,本來就會有很多被甲基化抑制的基因,就像一個儲藏室一樣。當身處於逆境時,與其等待天擇花費好幾個世代、踩過一堆屍體,才好不容易篩選出能適應現在環境的個體,還不如直接拿出本來封印在儲藏室的基因,來因應短期的逆境。因此,DNA甲基化也能間接減輕天擇的的壓力,並維持族群個體數量的穩定。

與其等待天篩選出一個符合現在環境的個體,而且並連帶造成族群數量縮減,還不如從基因庫中直接啟動一個可以因應短期逆境的基因。圖/Fantasy Art

這聽起來好威!但是甲基化的這個特徵,既然根本沒有出現在 DNA 序列中,而每當複製新的 DNA 時,都是全新的分子,那麼甲基化標籤又要如何傳遞,在新的 DNA 分子上重新建立?

其實科學家們也還不確定。根據觀察,DNA 序列上的甲基化標籤,可以在體細胞分裂(有絲分裂,mitosis)時傳遞給新的細胞。在 DNA 合成酶(DNA polymerase)複製出新的一股 DNA 之後,DNA甲基轉移酶會前來作用,現原有的甲基化標籤,加到全新製造的 DNA 分子上。

有性生殖時情況不一樣。過去認為,生殖細胞分裂(減數分裂,meiosis)時,基因組上原本的甲基化狀態會被清空,全部重新開始。但是近年的研究顯示,大部分甲基化標籤會在減數分裂時被「洗掉」,但是爾後隨著胚胎發育,又逐步回復甲基化。

由此可知,想要了解遺傳的奧秘,光是知道 DNA 序列顯然不夠。如果可以大規模的分析生物基因組中的甲基化分布,將有助對生物遺傳機制、甚至醫學領域的探索。

未知的領域:甲基化區域的分布與分析

探測基因組上甲基化分佈位置,目前最常見的方法是亞硫酸鹽定序(bisulfite sequencing)。亞硫酸鹽可使DNA上的胞嘧啶(C)轉變為尿嘧啶(U),不過甲基化的胞嘧啶(5-甲基胞嘧啶)則不受影響。藉由比較處理後序列的差異,實驗者就可以得知,哪些位置的DNA被甲基化。

然而,亞硫酸鹽處理的過程,要經過許多高破壞性的物理、化學手段(如長時間加熱、提高亞硫酸鹽濃度),甚至會導致多達 90% 的 DNA,會在反應過程中被降解。如果樣本一開始的 DNA 總量就不多,舉例來說,材料是古代 DNA的基因組,就可能要考慮其他的分析方法。像是近來有研究者,嘗試比對古代 DNA 和參考用的基因組序列,再利用統計模型,預測古代基因組上甲基化的位置,也是一個可行的方法。

回到拉瑪克,雖然說表觀遺傳領域的建立讓如今拉馬克又從棺材裡被拉出來,讓他稍微享有應得的榮耀,但是表觀遺傳學的詳細機制還沒有完全解讀:我們雖然觀察到現象,但像甲基化這種每個世代都有可能改變的模式(pattern)在試驗設計上本身就有相當的困難。總之,革命尚未成功,同志仍須努力,在甲基化的尋找與分析上,人類還有一段有點長的路要走。

    • 致謝:感謝神秘友人寒波(盲眼的尼安德塔石器匠格主)對專業內容與文章結構上的建議與修改。本文為作者參與歐盟居禮夫人人才培育計畫創新訓練網絡(Innovative Training Networks, Marie Curie Actions)之子計畫 MicroWine 所撰寫。

    a6e43f790ee091cb4d133f89f8772082

參考資料


數感宇宙探索課程,現正募資中!

文章難易度
劉筱蕾_96
7 篇文章 ・ 2 位粉絲
森林系出身,遵守農院傳統熱愛喝酒吃肉的動漫宅,在英國漂流完之後到美國Smithsonian Institution 繼續漂流。我的興趣是植物的演化與馴化。這個過程表現了生物被自然和人為條件「雕塑」的過程。希望能擔任生物與歷史研究間的橋樑,並把研究中的所學到的小故事跟科學觀念分享給大家。


2

6
3

文字

分享

2
6
3

既是科學家,也是樂團鼓手!──專訪數學物理學家程之寧

研之有物│中央研究院_96
・2022/03/11 ・5978字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|郭雅欣、簡克志
  • 美術設計|林洵安、蔡宛潔

在學術與搖滾的多重維度上行走

還記得美劇《The Big Bang Theory》嗎?劇中常常出現的物理名詞「弦論」,是描述物理世界基本結構的理論。中央研究院「研之有物」專訪院內數學研究所程之寧研究員,她正是研究弦論的科學家,也是熱愛音樂的搖滾樂團鼓手,這種跨領域身份並不衝突,兩邊都需要創造力與紀律。由於天生斜槓的性格,讓程之寧在數學和物理領域大展身手,透過數學的深入探討,她試圖將弦論更往前推進。最近程之寧更跨足到人工智慧領域,為學界提供理論物理上的貢獻。

中研院數學所程之寧研究員,主要研究 K3 曲面(特殊的四維空間)的弦論,她發現模函數和有限對稱群之間有 23 個新的數學關聯,稱之為「伴影月光猜想」(Umbral Moonshine)。圖/研之有物

萬有理論和難以捉摸的「月光」

世界從那裡來呢?物理世界的本質是什麼呢?回答這樣的大哉問,一直是理論物理學家所追求的目標。從牛頓力學(日常應用)、廣義相對論(探討很重的物質)到量子力學(探討很小的物質),隨著物理學不斷發展,我們似乎一步步接近答案,但至今卻還未走到終點。

舉例來說,如果有個東西很重又很小,就像「黑洞」,或是大爆炸時的宇宙,我們要怎麼用數學描述?於是科學家試圖整合廣義相對論和量子力學,找出所謂的「萬有理論」(Theory of Everything)──能完全解釋物理世界基本結構的核心理論。

程之寧研究的「弦論」就企圖發展成這樣一個萬有理論。弦論一如其名的「玄妙」,它設定宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。

「人類一直以來的夢想之一就是,如果能用一句話解釋所有事情,那該有多麼美好。」中研院數學所研究員程之寧說道。

程之寧的研究牽涉到數學上的「月光猜想」(Moonshine)與弦論中 K3 曲面的連結。月光猜想是存在於模函數係數與特殊群之間的數學關聯,程之寧與其研究夥伴共發現了 23 個新的關連,並稱之為「伴影月光猜想」(Umbral Moonshine)。

基於弦論的假設,我們的世界是十維的,除了人們在日常生活中可以感知到的 3+1 維(空間+時間),還有六維是因為尺寸太小而無法用肉眼觀察的,這些看不到的維度影響著物理世界,最終也產生了我們這個物理世界所需的各種條件與特性。

綜觀程之寧的研究,橫跨了物理與數學兩個領域,她笑稱自己「天生斜槓」。在學術上,程之寧原先喜歡文學,之後卻走上數理研究的道路;在音樂上,程之寧喜愛搖滾樂,至今仍在自己的樂團裡擔任鼓手。

她如何看待自己一路走來的各種轉折?游徜在數學與物理之間,她又對這兩個領域的連結有怎樣的體會?在與「研之有物」的訪談中,程之寧侃侃而談她的經歷、想法,以及對學術研究的熱忱所在。

在弦論的設定中,宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。圖/iStock
  • 請問您是如何對數學及物理產生興趣?從何時開始?

一開始考大學時,其實我想去念中文系(笑)。不過,因為我高中是選理組,而且只念了一兩年,對文科考試比較沒把握,加上對工程科系沒興趣,最後就選擇臺大物理系就讀。

後來發生兩個轉折,第一個是我很認真的去修了大學中文系的課,結果發現真的沒有想像中容易。第二個就是我發現物理系的課還蠻有趣的,像量子力學和相對論,讓我覺得還想再多學一點、多知道一點。

我開始覺得如果念完臺大物理系就停下來,好像有一種小說沒讀完的感覺,所以就想繼續讀碩士班。那時還沒有覺得自己會走上學術研究的路,單純抱著想把故事看完的想法。

  • 後來是如何接觸到弦論?弦論是如何引起您的興趣?

後來我去荷蘭念碩士,指導教授是諾貝爾物理獎得主 Gerard ’t Hooft。他其實蠻不認同弦論,但他對於如何處理量子力學與相對論很有興趣。

當時 ’t Hooft 教授在建議我碩士題目時就說:「你也知道我不太認為弦論是一條正確的道路,不過聽說弦論最近真的在量子重力這一塊有一些成果。不如妳去讀一讀,看看是不是真的有一些東西在那裡,也可以比較一下其他量子重力理論。」

在我很認真的比較各個量子重力理論之後,就變成弦論派了(笑)。’t Hooft 教授對此也保持開放態度,他有幾個不錯的博士生後來也變成弦論學家,之後我在 Erik Verlinde 的指導下念博士時,就完全以弦論為研究主題了。

  • 研究理論物理會影響您對現實世界的理解嗎?

蠻多人會問我說,妳學了量子力學,是不是就會比較了解這個世界不是非黑即白?或問我量子力學跟宗教是不是有關?可是我覺得我分得很開,我不會去做這樣的連結,我還是活在現實裡,走路時大部分都在專注於自己不要跌倒之類的。

如果真的要講,我蠻感激我們的存在,因為我所學的東西讓我知道這是沒有必然性的。我們能這樣以一種人形的很奇怪的生物的形式存在,然後在這樣一個環境過一輩子,是機率很低的事情,而且我還蠻開心我是當人,而不是奇怪的阿米巴蟲或外星生物!有些人會從這裡連結到宗教或轉世,但我不會,我就停在這裡。

  • 來談談您的研究,伴影月光猜想與 K3 曲面弦論之間是什麼關係?

弦論中有很多的可能性,我們可以挑選特定的四維,然後假設這四維空間是個 K3 曲面。例如說,我們可以把兩個甜甜圈乘起來,在上面做特殊的奇異點,來製造出一個 K3 曲面。這個曲面有一些很有趣的對稱性。從弦論的角度來講,我們可以透過這個過程,找出一個解釋為何有伴影月光猜想的框架。

「把維度乘起來」這個概念很難想像,但這在數學上是成立的。我舉例一個我們能想像的「乘起來」:如果有一個空間是一條線,另一個空間是一個圓,乘起來就變成一個圓柱形,從一個方向剖面可以切出圓,另一個方向則切出線。而在數學上,不管幾維,能不能在紙上畫的出來,都可以這樣操作。

程之寧向「研之有物」採訪團隊解釋「把維度乘起來」的概念。圖/研之有物
  • 如何透過計算,發現捉摸不定的「月光」?

有時候這看似湊巧,一個數學上的函數正好就是弦論某個問題的答案。但其實並不是真的那麼巧,弦論看起來很有彈性,好像什麼都可以解釋,但它其實有非常多結構及限制。

當我在計算一個弦論理論時,它的內部結構可能原本就具有某些特定的性質,然後我再去觀察數學中,有這樣性質的函數可能就只有一兩個,只要再初步算一下,就能知道哪一個是答案。弦論學家日常的計算常常是這樣的,所以這是巧合嗎?是也不是。

  • 您曾經發現 23 個新的伴影月光猜想,您對這類題目特別有興趣嗎?

我覺得數學有兩種,有些數學家喜歡系統性的事情,就像蓋房子一樣,在數學裡建造一個很美麗、非常有系統性的結構,可以把很多事情都放入這個結構來理解。

另一種比較少數的,就是喜歡獵奇,去收集分類奇奇怪怪的特殊東西,例如有這些性質的函數在哪裡?可能你算出來就是 5 個,你也不知道為什麼。月光猜想很明顯就屬於這一類。

兩種的樂趣感覺是不一樣的,我覺得應該都很棒,但我可能是屬於偏好獵奇的這種。

  • 您的研究連結了物理上的弦論與數學上的月光猜想,您怎麼看待這兩個知識體系的互動?

弦論是一個需要很多數學理論配合的物理理論,它是一個有點繁複的框架,我們什麼都要會一些,才能看懂這個理論。當你把許多不一樣的學門的知識加起來,有時候就會在某一個學門──例如幾何──有意想不到的收穫。

弦論在數學上也扮演探索與找尋新方向的角色,讓數學家有新的發現。雖然最後數學定理的證明還是得仰賴傳統數學方法,但在這二三十年間,我們一直從弦論身上找尋數學研究的新方向或有趣的猜想,看到了弦論與數學之間的互動。

數學家有兩種,一種人喜歡建立美麗又有系統性的結構,另一種人喜歡尋找和收集奇怪特殊的數學物件(比如函數),程之寧表示自己屬於後者。圖/研之有物
  • 剛才一開始提到,您高中只念了一兩年,是因為對學校沒有興趣嗎?

其實我一直都覺得上學很無聊。我小時候臺灣教育和現在很不一樣,一班 50 幾個人,老師必須盡量軍事化管理,大家最好都一模一樣,比較好管理。我和學校一直處於互相磨合的狀況,我自認已經努力配合學校,但學校一直覺得我在反抗,這可能是一個認知上的差別。

舉例來說,我小學的時候不想睡午覺,可是老師說大家都一定要睡午覺,不睡午覺的人要罰抄課文,所以我早上到學校時就會把已經抄好的課文交給老師。我覺得我這樣做是在配合老師的規定,可是以老師的立場會覺得我在反抗,學校教育中我遇到了很多類似的情況。

還有就是不喜歡高中的升學氛圍,同學和老師好像都只有一個活著的目標,就是「考大學」。我當時無法習慣升學氛圍,感覺好像活在平行宇宙一樣。

  • 高中休學後,您去唱片行工作,可否談談當時的想法?

我國中開始聽音樂,這是我除了看書之外的重要興趣,我也很快就喜歡上了搖滾樂。高中休學的時候,我唯一的謀生技能可能就是我對音樂的各類知識吧!所以我就去了唱片行,這是唯一一個我會做又有興趣的工作,還好那時候還有很多唱片行(笑)。

  • 對音樂的熱忱,讓您與朋友共組了樂團,並擔任鼓手。您是否比較過樂團生活和學術研究之間的異同之處?

有些人覺得我這樣很跳 tone,但我自己覺得還好。音樂和學術都是我發自內心覺得好玩的東西,兩者也有相同之處,例如它們都需要創造性,也都有需要了解的框架。數學需要嚴謹的證明,音樂演奏也需要遵循結構,例如不能掉拍。

音樂領域還有一點和數學類似──玩樂團的圈子也是以男性為主。我們樂團則是只有一個男生,其他都是女生,可能我真的天生對框架有點遲鈍,玩團之後才發現:「怎麼大家都是男生?」

程之寧表示,學術界仍有許多性別不平等問題未受重視。圖/研之有物
  • 也就是說,目前數學學術圈仍是男性主導,在研究路上,您有因為性別而感受到一些衝擊或眼光嗎?您怎麼面對?

有。那感覺很明顯,日復一日地要去面對,尤其是年紀還比較輕、還必須每一天去證明自己的能力的時候,特別有感。

我遇到時的反應就是,在心裡暗罵一句髒話,然後繼續做我要做的事。我不會想改變別人的想法,感覺那是浪費時間,就算環境給我的阻礙是這樣,我還是繼續去做該做的事。

可是有些事情沒那麼簡單,現在我也當過老師,有時候會看到年輕女生在學術界因為性別而被欺負,或遭到不公平待遇、甚至騷擾。

對此我感到心痛,覺得為何我們學術領域還是這樣的狀況?甚至為什麼性騷擾至今還是一個議題?可以確定的是,學術界許多性別不平等問題未受到重視。

  • 您現在已經有傑出的研究成果,還會因為性別而遭受質疑嗎?

我現在比較會遇到一個狀況反而是來自學生的質疑。我在荷蘭阿姆斯特丹大學教書時,有時候學生會因為我是女教授,而且我的外表在許多歐洲人眼中看起來就像小妹妹,所以比較容易去挑我的毛病。

在課堂上,下面坐的可能都是男學生,只有一兩個女學生,那個氣氛就會變得很奇怪。例如說偶爾會聽到學生評論我的身材或樣貌。

我有和其他一些在歐洲或美國的女性教授聊過這樣的問題,似乎不少人都有類似的不太愉快的經驗。感覺不是很好。

  • 看到您最近的研究和人工智慧(AI)有關,為何會想往這個方向發展?

我有兩個動機。一個就是我真的想深入了解人工智慧。我也可以像普羅大眾,看看 AI 下圍棋,讚嘆「哇!好厲害!」這樣就好,可是我覺得我一定可以真的去理解它,這可能就是數學家的自大吧!

另一方面,我知道對科學研究來說,未來 AI 將會是一個非常重要的工具。這是「在職訓練」的概念,我可能會用到這個新工具,或以後我可能會需要教這樣的課,因為學生是下一代的科學家。因為這些原因,我覺得我需要去訓練自己使用新的工具。在我的領域裡,也有一些有趣的、還沒被解答的科學問題,是 AI 有可能幫得上忙的,我看到了一些潛力。

  • 弦論和 AI 感覺差距很大,AI 也可以應用到弦論的研究嗎?

乍看之下,弦論的確比較抽象,也不像其他許多實驗會產生大量數據。但其實弦論有大量的可能性,我認為使用 AI 來在這些巨量的可能性當中搜尋特別有趣的理論,是一個有潛力能夠加深我們對弦論理解的新的研究方法。

而且 AI 的應用絕不僅限於巨量資料。如果是面對一些比較新的挑戰,在沒有現成的演算法可以用的情形之下,可以自己做出需要的功能嗎?這過程我覺得也非常很有趣,而且應該是會有成果的一條路。這種不是那麼顯而易見的事情,我覺得很有挑戰性,也蠻好玩的。

除了用 AI 來幫助物理跟數學的研究之外,我也試著物理研究當做靈感來源,找出新的 AI 的可能性,我覺得這也是一個很有趣的研究方向。我現在有和 AI 的學者合作,嘗試做出一些創新的演算法,真的還蠻有趣的。

  • AI 對您而言是全新的領域,您如何面對跨領域遇到的門檻?

一開始會覺得真的要去碰這個新的領域嗎?其實現在也還是偶爾會有這樣的懷疑。我在弦論領域可能已經是專家,但去了一個新的領域,我學得不會比二十歲的人快,要怎麼去跟人家競爭?是不是在浪費時間?

但也會想,與其想這麼多,不如先做再說。到目前為止我做了兩年多,感覺還蠻好的,我有學到東西,也有做出小小的貢獻。

其實我還蠻感激有這樣的學習機會。對我來說當科學家最大的好處就是,去搞懂一個新的東西就是工作的一部分。當科學家雖然蠻辛苦,但就結果論來說,我還蠻開心能當一位科學家!

延伸閱讀

  1. Moonshine Master Toys With String Theory | Quanta Magazine
  2. Mathematicians Chase Moonshine’s Shadow | Quanta Magazine
  3. 林正洪教授演講 一 怪物與月光(Monster and Moonshine),《數學傳播》

數感宇宙探索課程,現正募資中!

文章難易度
所有討論 2
研之有物│中央研究院_96
10 篇文章 ・ 8 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook