Loading [MathJax]/extensions/tex2jax.js

0

2
0

文字

分享

0
2
0

生命如何長大的:胚胎學奠基者卡斯帕・吳爾夫誕辰|科學史上的今天:1/18

張瑞棋_96
・2015/01/18 ・857字 ・閱讀時間約 1 分鐘 ・SR值 559 ・八年級

-----廣告,請繼續往下閱讀-----

生命究竟是如何從胚胎發展為成體?從亞里斯多德以降,這個問題一直有兩派不同的理論,一個是漸成論,認為是由不定形的同質物質逐漸分化成不同器官;一種是預成論,認為所有部位一開始就存在胚胎或種子內,只是逐漸由小變大。但沒有具體證據,兩派理論都純屬臆測;直到十七世紀顯微鏡發明後,才終於得以觀測胚胎的初期階段,斷定孰是孰非。

卡斯帕・吳爾夫。圖/wikimedia

然而即使經過虎克在十七世紀中期予以改良,顯微鏡頂多也只能放大二、三十倍,還因為色差的問題,成像並不精確,以至於先後有兩位科學家在已存定見的預期心理下,竟然分別宣稱在未受精的卵中看見小雞的形體,以及在蛹中看見蝴蝶的形體。因此很諷刺的,顯微鏡反而助了預成論一臂之力,加上這也符合上帝早就造好一切的神學理論,於是預成論壓倒漸成論,成為主流觀念。直到十八世紀中期,德國生理學家吳爾夫才發表論文,提出駁斥預成論的科學證據。

吳爾夫觀察雞蛋中的胚胎,確認初期只有清澈黏稠的液體,並沒有任何組織,因此不可能如預成論主張的肢體器官早已存在;他並用小雞血管的逐漸增生來支持漸成論。1768 年他再度發表論文,描述小雞的腸子如何從最開始一片簡單的組織摺疊成凹槽,再封閉起來形成管子,而不是一開始就從小管子變成大管子。他還在高等動物的胚胎中發現,有一種原始的腎在發育完成之前會消失不見(後來為了紀念他,命名為吳爾夫體)。可見預成論一定是錯誤的,漸成論才符合他觀察到的事實。

只是主張預成論的保守勢力仍十分頑強,吳爾夫的實驗未能立即改變世人的觀念。然而他的論文還是啟發了許多學者,相繼投入胚胎的研究,漸成論直到十九世紀中期才終於取得勝利。雖然亞里斯多德是最早研究胚胎的人,但吳爾夫仍被公認是胚胎學的奠基者之一。

-----廣告,請繼續往下閱讀-----

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1027 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

0
0

文字

分享

0
0
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

8
1

文字

分享

1
8
1
侏羅紀公園的場景可能真實發生?生物複製技術有哪些發展?複製人要出現了嗎?
PanSci_96
・2024/06/15 ・5062字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

如果用我們的基因製造複製人,可以代替我們上班上課嗎?想像一下,如果世界上每個人都有一個雙胞胎分身?或者,如果我們可以克隆出已故的名人?甚至複製已故的寵物或親人?

當然,這些都是幻想,但複製生物技術的發展正在讓這個幻想漸漸變為現實⋯⋯

科幻小說的故事照進現實,在技術層面上有哪些困難?道德上又會引發哪些問題呢?

讓我們一起探索這項驚人技術的曲折歷程吧!

-----廣告,請繼續往下閱讀-----

今天的文章將會回答以下問題:

  1. 複製生物技術的早期實驗有哪些?又帶來什麼影響?
  2. 基因複製技術最大的困難是什麼?
  3. 複製技術面臨哪些主要挑戰和倫理道德問題呢?
  4. 複製生物技術除了複製生物還能有哪些應用?

克隆實驗早期的探索與突破?

複製生物技術的發展是一個漫長而曲折的過程,從 19 世紀末的早期實驗,到 20 世紀中葉的技術突破,再到 21 世紀的應用與挑戰。

胚胎實驗的歷史可以追溯到 19 世紀末,當時德國生物學家杜里舒(Hans Driesch,1867-1941)進行了一項開創性的實驗。他通過搖晃的方式將四個海膽胚胎細胞分離,並觀察到每個分離的細胞都能發育成完整的幼體,儘管體型較小。這一實驗證明了早期胚胎細胞具有全能性(totipotency),即早期胚胎的每個細胞都能發展成完整個體,這為後來的細胞核移植技術奠定了基礎。

圖/giphy

在 20 世紀初,植物學家發現通過嫁接和分裂植物組織可以產生與母體相同的植物。奧地利植物學家戈特利・哈伯蘭特(Gottlieb Haberlandt,1854-1945)提出了「植物細胞全能性」(totipotency)的概念,即每個植物細胞都具有發育成完整植物的潛力。哈伯蘭特的實驗主要是通過無菌技術培養植物細胞,雖然當時他並未成功培育出完整的植物,但他的理論和研究為後來的植物組織培養和克隆技術奠定了基礎。

-----廣告,請繼續往下閱讀-----

1914 年,德國生物學家漢斯・斯佩(Hans Speman,1869-1941)進行了另一個具有里程碑意義的實驗。他利用了一根嬰兒頭髮製作的環狀結,將其繫在受精的蠑螈卵細胞上,並將細胞核推到一側。當細胞核所在的一側開始分裂成多個細胞後,他鬆開結讓一個細胞核滑回未分裂的細胞一側,從而產生了兩個獨立的細胞群,這些細胞群最後發育成了兩個完整的胚胎。這是最早的核移植(nuclear transfer)實驗,顯示了細胞核在胚胎發育中的重要性​。

20 世紀中葉,科學家們進一步推動了克隆技術的發展。1952 年,美國科學家羅伯特・布里格斯(Robert Briggs,1911-1983)和湯瑪斯・金恩(Thomas Joseph King,1921-2000)首次成功地將青蛙胚胎細胞的細胞核移植到去核的卵細胞中,並培育出蝌蚪,雖然這些克隆青蛙無法存活至成年,但這實驗證明了細胞核可以在去核卵母細胞中重新編程,進而發育成新個體。

圖/giphy

桃莉羊的誕生:克隆技術的重要里程碑

克隆技術的重大突破出現在 1996 年,當時英國羅斯林研究所的伊恩・威爾穆特(Ian Wilmut,1944-2023)和基思·坎貝爾(Keith Campbell,1954-2012)成功地克隆了第一個成年哺乳動物,也就是廣為人知的——桃莉羊(Dolly)。他們使用的是一隻成年綿羊的乳腺細胞核,將其移植到一個去核的卵細胞中,最終培育出桃莉。這一成就震驚了全世界,因為它證明了成體細胞的基因信息可以被重置為胚胎狀態,並成功發育成為一個完整的生物體,標誌著克隆技術的一個重要里程碑​。

1996 年,成功地克隆了第一個成年哺乳動物,也就是廣為人知的——桃莉羊(Dolly)。圖/wikipedia

桃莉羊的誕生引發了廣泛的科學和倫理討論。一方面,科學家看到了複製技術在醫學研究、保護瀕危物種以及農業中的潛力。另一方面,社會各界對複製技術的倫理問題表示擔憂,特別是人類複製的可能性。

-----廣告,請繼續往下閱讀-----

桃莉羊的成功開啟了克隆技術的新篇章,此後,小鼠、牛、山羊等多種哺乳動物相繼被成功複製,展示了這一技術的廣泛應用潛力。同時,科學家們將目光投向了更為複雜的靈長類動物。

靈長類動物的複製技術在 21 世紀取得了進一步的突破。2018年,中國科學家成功利用與桃莉羊相同的「體細胞核轉植」技術複製出兩隻有相同基因的長尾彌猴「中中」和「華華」,標誌著克隆技術的又一個突破​。2020年中國又成功複製了恆河猴,並取名為「ReTro」,不同於印象中印象中複製動物壽命都很短或是飽受疾病之苦,ReTro 在今年(2024年)已經要滿四歲了,是首隻平安長大成年的複製恆河猴。

複製技術的挑戰?

儘管克隆技術在基因層面上已經相對成熟,但要複製出健康的個體仍然面臨巨大挑戰。許多克隆動物都表現出健康問題,如免疫系統缺陷、心血管問題、早衰、壽命縮短或在在肝、腎、肺、大腦、關節等地方產生發育上的缺陷,也有部分出現體型異常巨大的問題​​。例如綿羊的正常壽命約在 12 年左右,但桃莉羊在 6 歲時,就因關節炎與肺部感染而去世。

這主要是因為,細胞核在卵細胞中的重新啟動過程容易出現問題,導致克隆個體可能存在基因表達異常。即便是中國科學院成功複製的 ReTro 也只是難得成功的個案。

-----廣告,請繼續往下閱讀-----

基因複製出的人類會和本人完全一模一樣嗎?

克隆技術,特別是克隆人類,涉及複雜的倫理和道德問題。一方面,克隆技術可能會被用來治療某些疾病,或是用於治療遺傳疾病和器官移植,甚至延長壽命;但另一方面,它也可能被濫用,導致倫理危機。例如,克隆人類可能引發身份認同問題,並挑戰現有的社會和家庭結構​,反對者擔心擔心這樣的技術會對社會和人類本質造成不可預見的影響。

如果突破細胞核重新啟動的困境,複製出來的克隆人會和本人完全一樣嗎?

答案是:「不會」。

圖/imdb

美國演化生物學家阿亞拉(Francisco J. Ayala,1934-2023)在《美國國家科學院院刊》上提出,我們目前進行的生物複製實驗複製的只是「基因型」而非「表現型」。基因型指的是基因組成;而表現型指的是包含個體外表、解剖結構、生理機能以及智力、道德觀、審美、宗教價值觀等行為傾向和屬性,還有透過經驗、模仿、學習所獲得的特徵。表現型是基因與環境間複雜作用下的產物。基因型的複製就像是同卵雙胞胎,就算長得再像,他們怎麼樣都不會是「同一個人」。透過生物複製技術基因複製出的克隆人,其實也只不過是跟你擁有相同基因的雙胞胎而已。

-----廣告,請繼續往下閱讀-----

不過目前世界上也存在一種能複製表現型的技術,那就是——「AI」。

隨著人工智能技術的進步,模擬人類個性和行為變得越來越現實。例如,AI 可以通過學習大量數據來模擬特定個體的行為模式,甚至在某些情況下,AI 克隆可能會比生物克隆更具實用性。然而,這也帶來了新的風險,包括隱私泄露、數據濫用等​​。

複製技術在生物醫學領域來能有哪些應用?

複製技術的應用範圍廣泛,涵蓋了醫學研究、農業、生態保護等多個領域。

複製技術在生物醫學領域具有巨大的潛力。幹細胞治療可以利用克隆技術培育出患者自身的幹細胞,從而避免免疫排斥反應。製藥公司可以利用克隆動物來進行藥物測試,提高藥物研發的效率和準確性​。科學家也可以生產出大量具有相同基因組的細胞,用於研究疾病機制和開發新藥。克隆技術被用於創建動物模型,這些模型有助於研究人類疾病的機制和治療方法。例如,科學家利用克隆技術創建了患有阿爾茨海默症和帕金森症的動物模型,這些模型為藥物開發和治療策略的研究提供了重要的工具。

-----廣告,請繼續往下閱讀-----

在農業領域,複製技術被用於繁殖優良品種,增加牲畜的生產力和抗病能力。通過克隆優秀的畜禽個體,農民可以提高產量,降低疾病風險,從而提高農業生產的效益。

此外,複製技術在生態保護方面也有重要的應用。許多瀕危物種由於種群數量減少,面臨滅絕的危險。科學家們利用複製技術試圖保護這些物種,例如,已經有研究成功克隆了瀕危的野生動物,為保護生物多樣性提供了新的方法。

圖/imdb

結論

總結而言,複製生物技術的發展歷程充滿了挑戰和機遇。從早期的胚胎細胞分離實驗,到 20 世紀中葉的核移植技術,再到 1996 年桃莉羊的成功,科學家們在不斷探索和突破。儘管技術上取得了許多進展,但複製健康個體的挑戰仍然存在。此外,倫理和道德問題也不容忽視。未來,隨著技術的不斷進步,克隆技術在生物醫學領域的應用將更加廣泛,但我們也必須謹慎對待其可能帶來的社會和倫理影響,我們需要謹慎管理這項強大的技術,在發揮其潛力的同時,避免可能帶來的社會和倫理風險。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 1

0

0
0

文字

分享

0
0
0
胚胎發育必不可少的兩位舞者:胚胎幹細胞與滋養層幹細胞——《生命之舞》
商周出版_96
・2023/10/22 ・2668字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

細胞工程如何進行?

如果我們真的要進行細胞工程的話,我們就得要以孩童拼樂高積木的方式,一次一個地將細胞組合成胚胎。但我們並沒有經由口吸管的方式(請參考第五章)來這樣做,而是把一切都留給機率來決定。

我們在培養皿中混合了不同濃度的兩種細胞,並讓它們自由接觸。我們在第二天透過顯微鏡看到,有些細胞確實開始相互作用並形成結構。但為數不多,因為這取決於無法預測的機率。不過當胚胎幹細胞與滋養層幹細胞結合時,它們就會以驚人的方式進行自我建構,它們好像知道自己要做什麼,也有個目標。

胚胎發育過程經歷了什麼?

我們在實驗室暗房的顯微鏡下,看到許多胚胎發育的基本過程。我們首先看到細胞極化。接著幹細胞會自我建構,胚胎幹細胞會聚集在一端,而滋養層幹細胞則聚集在另一端。由於胚胎幹細胞衍生出的胚胎部分與滋養層幹細胞衍生出的胚外部分會進行對話,所以在每個細胞群中的空腔後續會打開並創造出三維的 8 字形。我們發現這涉及到一個名為 Nodal 的蛋白所傳送的訊號。這兩個空腔之後會融為一體,最終形成一個對胚胎發育至關重要的大型羊膜腔。這種體腔形成的過程似乎就跟真正胚胎在著床不久後會發生的情況一樣。我們看見了自我建構的驚人創舉。

不過,我們當然總是想要更進一步,讓合成胚胎中胚胎幹細胞所衍生部位裡的那些類胚胎細胞,能夠適當地打破對稱性。我們的意思是讓這些細胞設法進行原腸化,也就是提供未來身體體制基礎的關鍵步驟。
我們發現若是可以讓胚胎幹細胞與滋養層幹細胞結構再發育久一點,它們確實會打破對稱性。

-----廣告,請繼續往下閱讀-----

像 Brachyury 這類基因就會在胚胎與胚外部位之間開始表現,就跟真正胚胎的情況一樣。Brachyury 基因至關重要,因為它會影響中胚層的形成與前後軸線。 這個發現不但讓我的心跳差點停止,也讓實驗室中的每個人都大為驚奇。

這些類胚胎結構與正常胚胎結構非常相像,足以用於揭開在母體著床時期的某些發育謎團。很明顯地,胚胎幹細胞與滋養層幹細胞一同建造的結構所模擬出的胚胎形態與結構模式,要比只使用胚胎幹細胞要來得精確許多——這是更值得信賴的發育模型。

圖/unsplash

感覺起來,這兩種幹細胞就好像兩名舞者彼此都告訴對方,自己在胚胎中的所在位置。沒有這場雙人舞,正確形狀與形式的發育以及關鍵生物機制的適時運作就不會適當發生。我們也發現這個結構模式的發育,得仰賴 Wnt 與骨成形性蛋白質(bone morphogenetic protein, BMP)的訊號路徑,這與真正胚胎的發育情況一樣。

投稿論文的種種阻力與助力

我們將這篇論文投稿至《自然》。由於許多論文在初始階段就會被退回,所以我們知道編輯將稿子送去審閱時,士氣不由得為之一振。編輯們的知識淵博,經驗也豐富,能走到這一步就是一種重要的認可,所以我們有場小小的慶祝活動,因為即使是小小的成功也能做出改變。

-----廣告,請繼續往下閱讀-----

不過最終他們沒有接受我們的論文,除非得像一位審稿人要求的那樣,提供合成胚胎在自我建構時所用基因的詳細資料,以及這些基因的表現模式在自我建構的每個階段是如何變化的。這將會是一件大工程。然而這彷彿算不上是什麼壞消息,因為我的實驗室中並沒有技術可以研究這些基因所運用的轉變形態模式。我需要尋求經費來購買我負擔不起的設備,我們也需要找到合作夥伴。

我受邀到澳洲獵人谷為歐洲分子生物學組織大會進行講座。那時正值學校放假,所以我帶著賽門一起踏上這次的冒險旅途。我們在香港轉機,順便停留一天拜訪當時的行政長官梁振英,他是我最好的前博士生之一梁傳昕的父親。

圖/unsplash

我的演講是由小鼠發育生物學家譚秉亮(Patrick Tam)開場,我感到非常榮幸,因為我向來就對譚秉亮的研究極為崇拜。賽門與我加入譚秉亮與他太太伊莉莎白(Elizabeth)的行列,一起到雪梨的海邊走走,一路上譚秉亮告訴我有關他與上海生命科學研究院景乃禾(Naihe Jing)的合作,景乃禾利用雷射切割胚胎,揭露了胚胎基因的表現模式。我非常幸運,因為在我回到劍橋不久後,景乃禾就到劍橋來拜訪,所以我能夠親自與他見上一面。我們同意一起合作揭開我們類胚胎結構中基因表現的模式。景乃禾團隊的貢獻將是我下一章故事的重心。那時我們才意識到,可能要花上一年的時間才有辧法確實做到這一點,而我也不確定我們是否願意為了讓《自然》的編輯滿意(或者還是不滿意,誰知道呢)而等這麼久。

那時,莎拉與柏娜已經累積了更多的數據,所以我們決定將研究結果投稿到我比較不熟悉的《科學》。事實證明這是正確的選擇。跟過往一樣,審稿人要求我們再多做一點實驗。但這次的要求還做得到,只是我們就得在 2016 年的聖誕節假期長時間的工作,以便在新學期開始前完成手稿。大衛也一起下來幫忙,他成為這篇論文的共同作者。

-----廣告,請繼續往下閱讀-----

為「類胚胎模型」命名也是一門大學問

命名很重要,因為「珠子」那個命名的前車之鑑,所以我們對於要怎麼為我們的類胚胎模型命名進行了漫長的討論。這些模型讓我們知道胚胎結構是如何從幹細胞自我建構而成,所以我們想要給它們取個特別的名字。但是我們最後沒有得到共識。

圖/imdb

《科學》的編輯不喜歡「合成」類胚胎結構這個名字。我在期中假期得知這個消息,那時我正與家人及朋友滑雪度假中,所以我請他們一起來想想其他的名字。這或許就是為何我們會想到「ETs」這個名字的原因之一。史蒂芬.史匹柏有部科幻電影講述到從異世界來的訪客,而從幹細胞自我建構出的第一個類胚胎結構似乎也帶給我們這樣的感受。不過這個 E 不是代表「另外(extra)」的意思,而 T 也不是「地球人(terrestrials)」的意思。E 代表的是胚胎幹細胞(ES),而 T 代表的則是滋養層細胞(TS)。

——本文摘自《生命之舞》,2023 年 9 月,出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。